android_kernel_xiaomi_sm8350/drivers/net/smc911x.c

2315 lines
60 KiB
C
Raw Normal View History

/*
* smc911x.c
* This is a driver for SMSC's LAN911{5,6,7,8} single-chip Ethernet devices.
*
* Copyright (C) 2005 Sensoria Corp
* Derived from the unified SMC91x driver by Nicolas Pitre
* and the smsc911x.c reference driver by SMSC
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Arguments:
* watchdog = TX watchdog timeout
* tx_fifo_kb = Size of TX FIFO in KB
*
* History:
* 04/16/05 Dustin McIntire Initial version
*/
static const char version[] =
"smc911x.c: v1.0 04-16-2005 by Dustin McIntire <dustin@sensoria.com>\n";
/* Debugging options */
#define ENABLE_SMC_DEBUG_RX 0
#define ENABLE_SMC_DEBUG_TX 0
#define ENABLE_SMC_DEBUG_DMA 0
#define ENABLE_SMC_DEBUG_PKTS 0
#define ENABLE_SMC_DEBUG_MISC 0
#define ENABLE_SMC_DEBUG_FUNC 0
#define SMC_DEBUG_RX ((ENABLE_SMC_DEBUG_RX ? 1 : 0) << 0)
#define SMC_DEBUG_TX ((ENABLE_SMC_DEBUG_TX ? 1 : 0) << 1)
#define SMC_DEBUG_DMA ((ENABLE_SMC_DEBUG_DMA ? 1 : 0) << 2)
#define SMC_DEBUG_PKTS ((ENABLE_SMC_DEBUG_PKTS ? 1 : 0) << 3)
#define SMC_DEBUG_MISC ((ENABLE_SMC_DEBUG_MISC ? 1 : 0) << 4)
#define SMC_DEBUG_FUNC ((ENABLE_SMC_DEBUG_FUNC ? 1 : 0) << 5)
#ifndef SMC_DEBUG
#define SMC_DEBUG ( SMC_DEBUG_RX | \
SMC_DEBUG_TX | \
SMC_DEBUG_DMA | \
SMC_DEBUG_PKTS | \
SMC_DEBUG_MISC | \
SMC_DEBUG_FUNC \
)
#endif
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/crc32.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/workqueue.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <asm/io.h>
#include <asm/irq.h>
#include "smc911x.h"
/*
* Transmit timeout, default 5 seconds.
*/
static int watchdog = 5000;
module_param(watchdog, int, 0400);
MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
static int tx_fifo_kb=8;
module_param(tx_fifo_kb, int, 0400);
MODULE_PARM_DESC(tx_fifo_kb,"transmit FIFO size in KB (1<x<15)(default=8)");
MODULE_LICENSE("GPL");
/*
* The internal workings of the driver. If you are changing anything
* here with the SMC stuff, you should have the datasheet and know
* what you are doing.
*/
#define CARDNAME "smc911x"
/*
* Use power-down feature of the chip
*/
#define POWER_DOWN 1
/* store this information for the driver.. */
struct smc911x_local {
/*
* If I have to wait until the DMA is finished and ready to reload a
* packet, I will store the skbuff here. Then, the DMA will send it
* out and free it.
*/
struct sk_buff *pending_tx_skb;
/*
* these are things that the kernel wants me to keep, so users
* can find out semi-useless statistics of how well the card is
* performing
*/
struct net_device_stats stats;
/* version/revision of the SMC911x chip */
u16 version;
u16 revision;
/* FIFO sizes */
int tx_fifo_kb;
int tx_fifo_size;
int rx_fifo_size;
int afc_cfg;
/* Contains the current active receive/phy mode */
int ctl_rfduplx;
int ctl_rspeed;
u32 msg_enable;
u32 phy_type;
struct mii_if_info mii;
/* work queue */
struct work_struct phy_configure;
int work_pending;
int tx_throttle;
spinlock_t lock;
struct net_device *netdev;
#ifdef SMC_USE_DMA
/* DMA needs the physical address of the chip */
u_long physaddr;
int rxdma;
int txdma;
int rxdma_active;
int txdma_active;
struct sk_buff *current_rx_skb;
struct sk_buff *current_tx_skb;
struct device *dev;
#endif
};
#if SMC_DEBUG > 0
#define DBG(n, args...) \
do { \
if (SMC_DEBUG & (n)) \
printk(args); \
} while (0)
#define PRINTK(args...) printk(args)
#else
#define DBG(n, args...) do { } while (0)
#define PRINTK(args...) printk(KERN_DEBUG args)
#endif
#if SMC_DEBUG_PKTS > 0
static void PRINT_PKT(u_char *buf, int length)
{
int i;
int remainder;
int lines;
lines = length / 16;
remainder = length % 16;
for (i = 0; i < lines ; i ++) {
int cur;
for (cur = 0; cur < 8; cur++) {
u_char a, b;
a = *buf++;
b = *buf++;
printk("%02x%02x ", a, b);
}
printk("\n");
}
for (i = 0; i < remainder/2 ; i++) {
u_char a, b;
a = *buf++;
b = *buf++;
printk("%02x%02x ", a, b);
}
printk("\n");
}
#else
#define PRINT_PKT(x...) do { } while (0)
#endif
/* this enables an interrupt in the interrupt mask register */
#define SMC_ENABLE_INT(x) do { \
unsigned int __mask; \
unsigned long __flags; \
spin_lock_irqsave(&lp->lock, __flags); \
__mask = SMC_GET_INT_EN(); \
__mask |= (x); \
SMC_SET_INT_EN(__mask); \
spin_unlock_irqrestore(&lp->lock, __flags); \
} while (0)
/* this disables an interrupt from the interrupt mask register */
#define SMC_DISABLE_INT(x) do { \
unsigned int __mask; \
unsigned long __flags; \
spin_lock_irqsave(&lp->lock, __flags); \
__mask = SMC_GET_INT_EN(); \
__mask &= ~(x); \
SMC_SET_INT_EN(__mask); \
spin_unlock_irqrestore(&lp->lock, __flags); \
} while (0)
/*
* this does a soft reset on the device
*/
static void smc911x_reset(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr;
struct smc911x_local *lp = netdev_priv(dev);
unsigned int reg, timeout=0, resets=1;
unsigned long flags;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
/* Take out of PM setting first */
if ((SMC_GET_PMT_CTRL() & PMT_CTRL_READY_) == 0) {
/* Write to the bytetest will take out of powerdown */
SMC_SET_BYTE_TEST(0);
timeout=10;
do {
udelay(10);
reg = SMC_GET_PMT_CTRL() & PMT_CTRL_READY_;
} while ( timeout-- && !reg);
if (timeout == 0) {
PRINTK("%s: smc911x_reset timeout waiting for PM restore\n", dev->name);
return;
}
}
/* Disable all interrupts */
spin_lock_irqsave(&lp->lock, flags);
SMC_SET_INT_EN(0);
spin_unlock_irqrestore(&lp->lock, flags);
while (resets--) {
SMC_SET_HW_CFG(HW_CFG_SRST_);
timeout=10;
do {
udelay(10);
reg = SMC_GET_HW_CFG();
/* If chip indicates reset timeout then try again */
if (reg & HW_CFG_SRST_TO_) {
PRINTK("%s: chip reset timeout, retrying...\n", dev->name);
resets++;
break;
}
} while ( timeout-- && (reg & HW_CFG_SRST_));
}
if (timeout == 0) {
PRINTK("%s: smc911x_reset timeout waiting for reset\n", dev->name);
return;
}
/* make sure EEPROM has finished loading before setting GPIO_CFG */
timeout=1000;
while ( timeout-- && (SMC_GET_E2P_CMD() & E2P_CMD_EPC_BUSY_)) {
udelay(10);
}
if (timeout == 0){
PRINTK("%s: smc911x_reset timeout waiting for EEPROM busy\n", dev->name);
return;
}
/* Initialize interrupts */
SMC_SET_INT_EN(0);
SMC_ACK_INT(-1);
/* Reset the FIFO level and flow control settings */
SMC_SET_HW_CFG((lp->tx_fifo_kb & 0xF) << 16);
//TODO: Figure out what appropriate pause time is
SMC_SET_FLOW(FLOW_FCPT_ | FLOW_FCEN_);
SMC_SET_AFC_CFG(lp->afc_cfg);
/* Set to LED outputs */
SMC_SET_GPIO_CFG(0x70070000);
/*
* Deassert IRQ for 1*10us for edge type interrupts
* and drive IRQ pin push-pull
*/
SMC_SET_IRQ_CFG( (1 << 24) | INT_CFG_IRQ_EN_ | INT_CFG_IRQ_TYPE_ );
/* clear anything saved */
if (lp->pending_tx_skb != NULL) {
dev_kfree_skb (lp->pending_tx_skb);
lp->pending_tx_skb = NULL;
lp->stats.tx_errors++;
lp->stats.tx_aborted_errors++;
}
}
/*
* Enable Interrupts, Receive, and Transmit
*/
static void smc911x_enable(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr;
struct smc911x_local *lp = netdev_priv(dev);
unsigned mask, cfg, cr;
unsigned long flags;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
SMC_SET_MAC_ADDR(dev->dev_addr);
/* Enable TX */
cfg = SMC_GET_HW_CFG();
cfg &= HW_CFG_TX_FIF_SZ_ | 0xFFF;
cfg |= HW_CFG_SF_;
SMC_SET_HW_CFG(cfg);
SMC_SET_FIFO_TDA(0xFF);
/* Update TX stats on every 64 packets received or every 1 sec */
SMC_SET_FIFO_TSL(64);
SMC_SET_GPT_CFG(GPT_CFG_TIMER_EN_ | 10000);
spin_lock_irqsave(&lp->lock, flags);
SMC_GET_MAC_CR(cr);
cr |= MAC_CR_TXEN_ | MAC_CR_HBDIS_;
SMC_SET_MAC_CR(cr);
SMC_SET_TX_CFG(TX_CFG_TX_ON_);
spin_unlock_irqrestore(&lp->lock, flags);
/* Add 2 byte padding to start of packets */
SMC_SET_RX_CFG((2<<8) & RX_CFG_RXDOFF_);
/* Turn on receiver and enable RX */
if (cr & MAC_CR_RXEN_)
DBG(SMC_DEBUG_RX, "%s: Receiver already enabled\n", dev->name);
spin_lock_irqsave(&lp->lock, flags);
SMC_SET_MAC_CR( cr | MAC_CR_RXEN_ );
spin_unlock_irqrestore(&lp->lock, flags);
/* Interrupt on every received packet */
SMC_SET_FIFO_RSA(0x01);
SMC_SET_FIFO_RSL(0x00);
/* now, enable interrupts */
mask = INT_EN_TDFA_EN_ | INT_EN_TSFL_EN_ | INT_EN_RSFL_EN_ |
INT_EN_GPT_INT_EN_ | INT_EN_RXDFH_INT_EN_ | INT_EN_RXE_EN_ |
INT_EN_PHY_INT_EN_;
if (IS_REV_A(lp->revision))
mask|=INT_EN_RDFL_EN_;
else {
mask|=INT_EN_RDFO_EN_;
}
SMC_ENABLE_INT(mask);
}
/*
* this puts the device in an inactive state
*/
static void smc911x_shutdown(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr;
struct smc911x_local *lp = netdev_priv(dev);
unsigned cr;
unsigned long flags;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", CARDNAME, __FUNCTION__);
/* Disable IRQ's */
SMC_SET_INT_EN(0);
/* Turn of Rx and TX */
spin_lock_irqsave(&lp->lock, flags);
SMC_GET_MAC_CR(cr);
cr &= ~(MAC_CR_TXEN_ | MAC_CR_RXEN_ | MAC_CR_HBDIS_);
SMC_SET_MAC_CR(cr);
SMC_SET_TX_CFG(TX_CFG_STOP_TX_);
spin_unlock_irqrestore(&lp->lock, flags);
}
static inline void smc911x_drop_pkt(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr;
unsigned int fifo_count, timeout, reg;
DBG(SMC_DEBUG_FUNC | SMC_DEBUG_RX, "%s: --> %s\n", CARDNAME, __FUNCTION__);
fifo_count = SMC_GET_RX_FIFO_INF() & 0xFFFF;
if (fifo_count <= 4) {
/* Manually dump the packet data */
while (fifo_count--)
SMC_GET_RX_FIFO();
} else {
/* Fast forward through the bad packet */
SMC_SET_RX_DP_CTRL(RX_DP_CTRL_FFWD_BUSY_);
timeout=50;
do {
udelay(10);
reg = SMC_GET_RX_DP_CTRL() & RX_DP_CTRL_FFWD_BUSY_;
} while ( timeout-- && reg);
if (timeout == 0) {
PRINTK("%s: timeout waiting for RX fast forward\n", dev->name);
}
}
}
/*
* This is the procedure to handle the receipt of a packet.
* It should be called after checking for packet presence in
* the RX status FIFO. It must be called with the spin lock
* already held.
*/
static inline void smc911x_rcv(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
unsigned int pkt_len, status;
struct sk_buff *skb;
unsigned char *data;
DBG(SMC_DEBUG_FUNC | SMC_DEBUG_RX, "%s: --> %s\n",
dev->name, __FUNCTION__);
status = SMC_GET_RX_STS_FIFO();
DBG(SMC_DEBUG_RX, "%s: Rx pkt len %d status 0x%08x \n",
dev->name, (status & 0x3fff0000) >> 16, status & 0xc000ffff);
pkt_len = (status & RX_STS_PKT_LEN_) >> 16;
if (status & RX_STS_ES_) {
/* Deal with a bad packet */
lp->stats.rx_errors++;
if (status & RX_STS_CRC_ERR_)
lp->stats.rx_crc_errors++;
else {
if (status & RX_STS_LEN_ERR_)
lp->stats.rx_length_errors++;
if (status & RX_STS_MCAST_)
lp->stats.multicast++;
}
/* Remove the bad packet data from the RX FIFO */
smc911x_drop_pkt(dev);
} else {
/* Receive a valid packet */
/* Alloc a buffer with extra room for DMA alignment */
skb=dev_alloc_skb(pkt_len+32);
if (unlikely(skb == NULL)) {
PRINTK( "%s: Low memory, rcvd packet dropped.\n",
dev->name);
lp->stats.rx_dropped++;
smc911x_drop_pkt(dev);
return;
}
/* Align IP header to 32 bits
* Note that the device is configured to add a 2
* byte padding to the packet start, so we really
* want to write to the orignal data pointer */
data = skb->data;
skb_reserve(skb, 2);
skb_put(skb,pkt_len-4);
#ifdef SMC_USE_DMA
{
unsigned int fifo;
/* Lower the FIFO threshold if possible */
fifo = SMC_GET_FIFO_INT();
if (fifo & 0xFF) fifo--;
DBG(SMC_DEBUG_RX, "%s: Setting RX stat FIFO threshold to %d\n",
dev->name, fifo & 0xff);
SMC_SET_FIFO_INT(fifo);
/* Setup RX DMA */
SMC_SET_RX_CFG(RX_CFG_RX_END_ALGN16_ | ((2<<8) & RX_CFG_RXDOFF_));
lp->rxdma_active = 1;
lp->current_rx_skb = skb;
SMC_PULL_DATA(data, (pkt_len+2+15) & ~15);
/* Packet processing deferred to DMA RX interrupt */
}
#else
SMC_SET_RX_CFG(RX_CFG_RX_END_ALGN4_ | ((2<<8) & RX_CFG_RXDOFF_));
SMC_PULL_DATA(data, pkt_len+2+3);
DBG(SMC_DEBUG_PKTS, "%s: Received packet\n", dev->name,);
PRINT_PKT(data, ((pkt_len - 4) <= 64) ? pkt_len - 4 : 64);
dev->last_rx = jiffies;
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
lp->stats.rx_packets++;
lp->stats.rx_bytes += pkt_len-4;
#endif
}
}
/*
* This is called to actually send a packet to the chip.
*/
static void smc911x_hardware_send_pkt(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
struct sk_buff *skb;
unsigned int cmdA, cmdB, len;
unsigned char *buf;
unsigned long flags;
DBG(SMC_DEBUG_FUNC | SMC_DEBUG_TX, "%s: --> %s\n", dev->name, __FUNCTION__);
BUG_ON(lp->pending_tx_skb == NULL);
skb = lp->pending_tx_skb;
lp->pending_tx_skb = NULL;
/* cmdA {25:24] data alignment [20:16] start offset [10:0] buffer length */
/* cmdB {31:16] pkt tag [10:0] length */
#ifdef SMC_USE_DMA
/* 16 byte buffer alignment mode */
buf = (char*)((u32)(skb->data) & ~0xF);
len = (skb->len + 0xF + ((u32)skb->data & 0xF)) & ~0xF;
cmdA = (1<<24) | (((u32)skb->data & 0xF)<<16) |
TX_CMD_A_INT_FIRST_SEG_ | TX_CMD_A_INT_LAST_SEG_ |
skb->len;
#else
buf = (char*)((u32)skb->data & ~0x3);
len = (skb->len + 3 + ((u32)skb->data & 3)) & ~0x3;
cmdA = (((u32)skb->data & 0x3) << 16) |
TX_CMD_A_INT_FIRST_SEG_ | TX_CMD_A_INT_LAST_SEG_ |
skb->len;
#endif
/* tag is packet length so we can use this in stats update later */
cmdB = (skb->len << 16) | (skb->len & 0x7FF);
DBG(SMC_DEBUG_TX, "%s: TX PKT LENGTH 0x%04x (%d) BUF 0x%p CMDA 0x%08x CMDB 0x%08x\n",
dev->name, len, len, buf, cmdA, cmdB);
SMC_SET_TX_FIFO(cmdA);
SMC_SET_TX_FIFO(cmdB);
DBG(SMC_DEBUG_PKTS, "%s: Transmitted packet\n", dev->name);
PRINT_PKT(buf, len <= 64 ? len : 64);
/* Send pkt via PIO or DMA */
#ifdef SMC_USE_DMA
lp->current_tx_skb = skb;
SMC_PUSH_DATA(buf, len);
/* DMA complete IRQ will free buffer and set jiffies */
#else
SMC_PUSH_DATA(buf, len);
dev->trans_start = jiffies;
dev_kfree_skb(skb);
#endif
spin_lock_irqsave(&lp->lock, flags);
if (!lp->tx_throttle) {
netif_wake_queue(dev);
}
spin_unlock_irqrestore(&lp->lock, flags);
SMC_ENABLE_INT(INT_EN_TDFA_EN_ | INT_EN_TSFL_EN_);
}
/*
* Since I am not sure if I will have enough room in the chip's ram
* to store the packet, I call this routine which either sends it
* now, or set the card to generates an interrupt when ready
* for the packet.
*/
static int smc911x_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
unsigned int free;
unsigned long flags;
DBG(SMC_DEBUG_FUNC | SMC_DEBUG_TX, "%s: --> %s\n",
dev->name, __FUNCTION__);
BUG_ON(lp->pending_tx_skb != NULL);
free = SMC_GET_TX_FIFO_INF() & TX_FIFO_INF_TDFREE_;
DBG(SMC_DEBUG_TX, "%s: TX free space %d\n", dev->name, free);
/* Turn off the flow when running out of space in FIFO */
if (free <= SMC911X_TX_FIFO_LOW_THRESHOLD) {
DBG(SMC_DEBUG_TX, "%s: Disabling data flow due to low FIFO space (%d)\n",
dev->name, free);
spin_lock_irqsave(&lp->lock, flags);
/* Reenable when at least 1 packet of size MTU present */
SMC_SET_FIFO_TDA((SMC911X_TX_FIFO_LOW_THRESHOLD)/64);
lp->tx_throttle = 1;
netif_stop_queue(dev);
spin_unlock_irqrestore(&lp->lock, flags);
}
/* Drop packets when we run out of space in TX FIFO
* Account for overhead required for:
*
* Tx command words 8 bytes
* Start offset 15 bytes
* End padding 15 bytes
*/
if (unlikely(free < (skb->len + 8 + 15 + 15))) {
printk("%s: No Tx free space %d < %d\n",
dev->name, free, skb->len);
lp->pending_tx_skb = NULL;
lp->stats.tx_errors++;
lp->stats.tx_dropped++;
dev_kfree_skb(skb);
return 0;
}
#ifdef SMC_USE_DMA
{
/* If the DMA is already running then defer this packet Tx until
* the DMA IRQ starts it
*/
spin_lock_irqsave(&lp->lock, flags);
if (lp->txdma_active) {
DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA, "%s: Tx DMA running, deferring packet\n", dev->name);
lp->pending_tx_skb = skb;
netif_stop_queue(dev);
spin_unlock_irqrestore(&lp->lock, flags);
return 0;
} else {
DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA, "%s: Activating Tx DMA\n", dev->name);
lp->txdma_active = 1;
}
spin_unlock_irqrestore(&lp->lock, flags);
}
#endif
lp->pending_tx_skb = skb;
smc911x_hardware_send_pkt(dev);
return 0;
}
/*
* This handles a TX status interrupt, which is only called when:
* - a TX error occurred, or
* - TX of a packet completed.
*/
static void smc911x_tx(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr;
struct smc911x_local *lp = netdev_priv(dev);
unsigned int tx_status;
DBG(SMC_DEBUG_FUNC | SMC_DEBUG_TX, "%s: --> %s\n",
dev->name, __FUNCTION__);
/* Collect the TX status */
while (((SMC_GET_TX_FIFO_INF() & TX_FIFO_INF_TSUSED_) >> 16) != 0) {
DBG(SMC_DEBUG_TX, "%s: Tx stat FIFO used 0x%04x\n",
dev->name,
(SMC_GET_TX_FIFO_INF() & TX_FIFO_INF_TSUSED_) >> 16);
tx_status = SMC_GET_TX_STS_FIFO();
lp->stats.tx_packets++;
lp->stats.tx_bytes+=tx_status>>16;
DBG(SMC_DEBUG_TX, "%s: Tx FIFO tag 0x%04x status 0x%04x\n",
dev->name, (tx_status & 0xffff0000) >> 16,
tx_status & 0x0000ffff);
/* count Tx errors, but ignore lost carrier errors when in
* full-duplex mode */
if ((tx_status & TX_STS_ES_) && !(lp->ctl_rfduplx &&
!(tx_status & 0x00000306))) {
lp->stats.tx_errors++;
}
if (tx_status & TX_STS_MANY_COLL_) {
lp->stats.collisions+=16;
lp->stats.tx_aborted_errors++;
} else {
lp->stats.collisions+=(tx_status & TX_STS_COLL_CNT_) >> 3;
}
/* carrier error only has meaning for half-duplex communication */
if ((tx_status & (TX_STS_LOC_ | TX_STS_NO_CARR_)) &&
!lp->ctl_rfduplx) {
lp->stats.tx_carrier_errors++;
}
if (tx_status & TX_STS_LATE_COLL_) {
lp->stats.collisions++;
lp->stats.tx_aborted_errors++;
}
}
}
/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
/*
* Reads a register from the MII Management serial interface
*/
static int smc911x_phy_read(struct net_device *dev, int phyaddr, int phyreg)
{
unsigned long ioaddr = dev->base_addr;
unsigned int phydata;
SMC_GET_MII(phyreg, phyaddr, phydata);
DBG(SMC_DEBUG_MISC, "%s: phyaddr=0x%x, phyreg=0x%02x, phydata=0x%04x\n",
__FUNCTION__, phyaddr, phyreg, phydata);
return phydata;
}
/*
* Writes a register to the MII Management serial interface
*/
static void smc911x_phy_write(struct net_device *dev, int phyaddr, int phyreg,
int phydata)
{
unsigned long ioaddr = dev->base_addr;
DBG(SMC_DEBUG_MISC, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
__FUNCTION__, phyaddr, phyreg, phydata);
SMC_SET_MII(phyreg, phyaddr, phydata);
}
/*
* Finds and reports the PHY address (115 and 117 have external
* PHY interface 118 has internal only
*/
static void smc911x_phy_detect(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr;
struct smc911x_local *lp = netdev_priv(dev);
int phyaddr;
unsigned int cfg, id1, id2;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
lp->phy_type = 0;
/*
* Scan all 32 PHY addresses if necessary, starting at
* PHY#1 to PHY#31, and then PHY#0 last.
*/
switch(lp->version) {
case 0x115:
case 0x117:
cfg = SMC_GET_HW_CFG();
if (cfg & HW_CFG_EXT_PHY_DET_) {
cfg &= ~HW_CFG_PHY_CLK_SEL_;
cfg |= HW_CFG_PHY_CLK_SEL_CLK_DIS_;
SMC_SET_HW_CFG(cfg);
udelay(10); /* Wait for clocks to stop */
cfg |= HW_CFG_EXT_PHY_EN_;
SMC_SET_HW_CFG(cfg);
udelay(10); /* Wait for clocks to stop */
cfg &= ~HW_CFG_PHY_CLK_SEL_;
cfg |= HW_CFG_PHY_CLK_SEL_EXT_PHY_;
SMC_SET_HW_CFG(cfg);
udelay(10); /* Wait for clocks to stop */
cfg |= HW_CFG_SMI_SEL_;
SMC_SET_HW_CFG(cfg);
for (phyaddr = 1; phyaddr < 32; ++phyaddr) {
/* Read the PHY identifiers */
SMC_GET_PHY_ID1(phyaddr & 31, id1);
SMC_GET_PHY_ID2(phyaddr & 31, id2);
/* Make sure it is a valid identifier */
if (id1 != 0x0000 && id1 != 0xffff &&
id1 != 0x8000 && id2 != 0x0000 &&
id2 != 0xffff && id2 != 0x8000) {
/* Save the PHY's address */
lp->mii.phy_id = phyaddr & 31;
lp->phy_type = id1 << 16 | id2;
break;
}
}
}
default:
/* Internal media only */
SMC_GET_PHY_ID1(1, id1);
SMC_GET_PHY_ID2(1, id2);
/* Save the PHY's address */
lp->mii.phy_id = 1;
lp->phy_type = id1 << 16 | id2;
}
DBG(SMC_DEBUG_MISC, "%s: phy_id1=0x%x, phy_id2=0x%x phyaddr=0x%d\n",
dev->name, id1, id2, lp->mii.phy_id);
}
/*
* Sets the PHY to a configuration as determined by the user.
* Called with spin_lock held.
*/
static int smc911x_phy_fixed(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
int phyaddr = lp->mii.phy_id;
int bmcr;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
/* Enter Link Disable state */
SMC_GET_PHY_BMCR(phyaddr, bmcr);
bmcr |= BMCR_PDOWN;
SMC_SET_PHY_BMCR(phyaddr, bmcr);
/*
* Set our fixed capabilities
* Disable auto-negotiation
*/
bmcr &= ~BMCR_ANENABLE;
if (lp->ctl_rfduplx)
bmcr |= BMCR_FULLDPLX;
if (lp->ctl_rspeed == 100)
bmcr |= BMCR_SPEED100;
/* Write our capabilities to the phy control register */
SMC_SET_PHY_BMCR(phyaddr, bmcr);
/* Re-Configure the Receive/Phy Control register */
bmcr &= ~BMCR_PDOWN;
SMC_SET_PHY_BMCR(phyaddr, bmcr);
return 1;
}
/*
* smc911x_phy_reset - reset the phy
* @dev: net device
* @phy: phy address
*
* Issue a software reset for the specified PHY and
* wait up to 100ms for the reset to complete. We should
* not access the PHY for 50ms after issuing the reset.
*
* The time to wait appears to be dependent on the PHY.
*
*/
static int smc911x_phy_reset(struct net_device *dev, int phy)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
int timeout;
unsigned long flags;
unsigned int reg;
DBG(SMC_DEBUG_FUNC, "%s: --> %s()\n", dev->name, __FUNCTION__);
spin_lock_irqsave(&lp->lock, flags);
reg = SMC_GET_PMT_CTRL();
reg &= ~0xfffff030;
reg |= PMT_CTRL_PHY_RST_;
SMC_SET_PMT_CTRL(reg);
spin_unlock_irqrestore(&lp->lock, flags);
for (timeout = 2; timeout; timeout--) {
msleep(50);
spin_lock_irqsave(&lp->lock, flags);
reg = SMC_GET_PMT_CTRL();
spin_unlock_irqrestore(&lp->lock, flags);
if (!(reg & PMT_CTRL_PHY_RST_)) {
/* extra delay required because the phy may
* not be completed with its reset
* when PHY_BCR_RESET_ is cleared. 256us
* should suffice, but use 500us to be safe
*/
udelay(500);
break;
}
}
return reg & PMT_CTRL_PHY_RST_;
}
/*
* smc911x_phy_powerdown - powerdown phy
* @dev: net device
* @phy: phy address
*
* Power down the specified PHY
*/
static void smc911x_phy_powerdown(struct net_device *dev, int phy)
{
unsigned long ioaddr = dev->base_addr;
unsigned int bmcr;
/* Enter Link Disable state */
SMC_GET_PHY_BMCR(phy, bmcr);
bmcr |= BMCR_PDOWN;
SMC_SET_PHY_BMCR(phy, bmcr);
}
/*
* smc911x_phy_check_media - check the media status and adjust BMCR
* @dev: net device
* @init: set true for initialisation
*
* Select duplex mode depending on negotiation state. This
* also updates our carrier state.
*/
static void smc911x_phy_check_media(struct net_device *dev, int init)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
int phyaddr = lp->mii.phy_id;
unsigned int bmcr, cr;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
/* duplex state has changed */
SMC_GET_PHY_BMCR(phyaddr, bmcr);
SMC_GET_MAC_CR(cr);
if (lp->mii.full_duplex) {
DBG(SMC_DEBUG_MISC, "%s: Configuring for full-duplex mode\n", dev->name);
bmcr |= BMCR_FULLDPLX;
cr |= MAC_CR_RCVOWN_;
} else {
DBG(SMC_DEBUG_MISC, "%s: Configuring for half-duplex mode\n", dev->name);
bmcr &= ~BMCR_FULLDPLX;
cr &= ~MAC_CR_RCVOWN_;
}
SMC_SET_PHY_BMCR(phyaddr, bmcr);
SMC_SET_MAC_CR(cr);
}
}
/*
* Configures the specified PHY through the MII management interface
* using Autonegotiation.
* Calls smc911x_phy_fixed() if the user has requested a certain config.
* If RPC ANEG bit is set, the media selection is dependent purely on
* the selection by the MII (either in the MII BMCR reg or the result
* of autonegotiation.) If the RPC ANEG bit is cleared, the selection
* is controlled by the RPC SPEED and RPC DPLX bits.
*/
static void smc911x_phy_configure(struct work_struct *work)
{
struct smc911x_local *lp = container_of(work, struct smc911x_local,
phy_configure);
struct net_device *dev = lp->netdev;
unsigned long ioaddr = dev->base_addr;
int phyaddr = lp->mii.phy_id;
int my_phy_caps; /* My PHY capabilities */
int my_ad_caps; /* My Advertised capabilities */
int status;
unsigned long flags;
DBG(SMC_DEBUG_FUNC, "%s: --> %s()\n", dev->name, __FUNCTION__);
/*
* We should not be called if phy_type is zero.
*/
if (lp->phy_type == 0)
goto smc911x_phy_configure_exit_nolock;
if (smc911x_phy_reset(dev, phyaddr)) {
printk("%s: PHY reset timed out\n", dev->name);
goto smc911x_phy_configure_exit_nolock;
}
spin_lock_irqsave(&lp->lock, flags);
/*
* Enable PHY Interrupts (for register 18)
* Interrupts listed here are enabled
*/
SMC_SET_PHY_INT_MASK(phyaddr, PHY_INT_MASK_ENERGY_ON_ |
PHY_INT_MASK_ANEG_COMP_ | PHY_INT_MASK_REMOTE_FAULT_ |
PHY_INT_MASK_LINK_DOWN_);
/* If the user requested no auto neg, then go set his request */
if (lp->mii.force_media) {
smc911x_phy_fixed(dev);
goto smc911x_phy_configure_exit;
}
/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
SMC_GET_PHY_BMSR(phyaddr, my_phy_caps);
if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
printk(KERN_INFO "Auto negotiation NOT supported\n");
smc911x_phy_fixed(dev);
goto smc911x_phy_configure_exit;
}
/* CSMA capable w/ both pauses */
my_ad_caps = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
if (my_phy_caps & BMSR_100BASE4)
my_ad_caps |= ADVERTISE_100BASE4;
if (my_phy_caps & BMSR_100FULL)
my_ad_caps |= ADVERTISE_100FULL;
if (my_phy_caps & BMSR_100HALF)
my_ad_caps |= ADVERTISE_100HALF;
if (my_phy_caps & BMSR_10FULL)
my_ad_caps |= ADVERTISE_10FULL;
if (my_phy_caps & BMSR_10HALF)
my_ad_caps |= ADVERTISE_10HALF;
/* Disable capabilities not selected by our user */
if (lp->ctl_rspeed != 100)
my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
if (!lp->ctl_rfduplx)
my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
/* Update our Auto-Neg Advertisement Register */
SMC_SET_PHY_MII_ADV(phyaddr, my_ad_caps);
lp->mii.advertising = my_ad_caps;
/*
* Read the register back. Without this, it appears that when
* auto-negotiation is restarted, sometimes it isn't ready and
* the link does not come up.
*/
udelay(10);
SMC_GET_PHY_MII_ADV(phyaddr, status);
DBG(SMC_DEBUG_MISC, "%s: phy caps=0x%04x\n", dev->name, my_phy_caps);
DBG(SMC_DEBUG_MISC, "%s: phy advertised caps=0x%04x\n", dev->name, my_ad_caps);
/* Restart auto-negotiation process in order to advertise my caps */
SMC_SET_PHY_BMCR(phyaddr, BMCR_ANENABLE | BMCR_ANRESTART);
smc911x_phy_check_media(dev, 1);
smc911x_phy_configure_exit:
spin_unlock_irqrestore(&lp->lock, flags);
smc911x_phy_configure_exit_nolock:
lp->work_pending = 0;
}
/*
* smc911x_phy_interrupt
*
* Purpose: Handle interrupts relating to PHY register 18. This is
* called from the "hard" interrupt handler under our private spinlock.
*/
static void smc911x_phy_interrupt(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
int phyaddr = lp->mii.phy_id;
int status;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
if (lp->phy_type == 0)
return;
smc911x_phy_check_media(dev, 0);
/* read to clear status bits */
SMC_GET_PHY_INT_SRC(phyaddr,status);
DBG(SMC_DEBUG_MISC, "%s: PHY interrupt status 0x%04x\n",
dev->name, status & 0xffff);
DBG(SMC_DEBUG_MISC, "%s: AFC_CFG 0x%08x\n",
dev->name, SMC_GET_AFC_CFG());
}
/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
/*
* This is the main routine of the driver, to handle the device when
* it needs some attention.
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 09:55:46 -04:00
static irqreturn_t smc911x_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
unsigned long ioaddr = dev->base_addr;
struct smc911x_local *lp = netdev_priv(dev);
unsigned int status, mask, timeout;
unsigned int rx_overrun=0, cr, pkts;
unsigned long flags;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
spin_lock_irqsave(&lp->lock, flags);
/* Spurious interrupt check */
if ((SMC_GET_IRQ_CFG() & (INT_CFG_IRQ_INT_ | INT_CFG_IRQ_EN_)) !=
(INT_CFG_IRQ_INT_ | INT_CFG_IRQ_EN_)) {
spin_unlock_irqrestore(&lp->lock, flags);
return IRQ_NONE;
}
mask = SMC_GET_INT_EN();
SMC_SET_INT_EN(0);
/* set a timeout value, so I don't stay here forever */
timeout = 8;
do {
status = SMC_GET_INT();
DBG(SMC_DEBUG_MISC, "%s: INT 0x%08x MASK 0x%08x OUTSIDE MASK 0x%08x\n",
dev->name, status, mask, status & ~mask);
status &= mask;
if (!status)
break;
/* Handle SW interrupt condition */
if (status & INT_STS_SW_INT_) {
SMC_ACK_INT(INT_STS_SW_INT_);
mask &= ~INT_EN_SW_INT_EN_;
}
/* Handle various error conditions */
if (status & INT_STS_RXE_) {
SMC_ACK_INT(INT_STS_RXE_);
lp->stats.rx_errors++;
}
if (status & INT_STS_RXDFH_INT_) {
SMC_ACK_INT(INT_STS_RXDFH_INT_);
lp->stats.rx_dropped+=SMC_GET_RX_DROP();
}
/* Undocumented interrupt-what is the right thing to do here? */
if (status & INT_STS_RXDF_INT_) {
SMC_ACK_INT(INT_STS_RXDF_INT_);
}
/* Rx Data FIFO exceeds set level */
if (status & INT_STS_RDFL_) {
if (IS_REV_A(lp->revision)) {
rx_overrun=1;
SMC_GET_MAC_CR(cr);
cr &= ~MAC_CR_RXEN_;
SMC_SET_MAC_CR(cr);
DBG(SMC_DEBUG_RX, "%s: RX overrun\n", dev->name);
lp->stats.rx_errors++;
lp->stats.rx_fifo_errors++;
}
SMC_ACK_INT(INT_STS_RDFL_);
}
if (status & INT_STS_RDFO_) {
if (!IS_REV_A(lp->revision)) {
SMC_GET_MAC_CR(cr);
cr &= ~MAC_CR_RXEN_;
SMC_SET_MAC_CR(cr);
rx_overrun=1;
DBG(SMC_DEBUG_RX, "%s: RX overrun\n", dev->name);
lp->stats.rx_errors++;
lp->stats.rx_fifo_errors++;
}
SMC_ACK_INT(INT_STS_RDFO_);
}
/* Handle receive condition */
if ((status & INT_STS_RSFL_) || rx_overrun) {
unsigned int fifo;
DBG(SMC_DEBUG_RX, "%s: RX irq\n", dev->name);
fifo = SMC_GET_RX_FIFO_INF();
pkts = (fifo & RX_FIFO_INF_RXSUSED_) >> 16;
DBG(SMC_DEBUG_RX, "%s: Rx FIFO pkts %d, bytes %d\n",
dev->name, pkts, fifo & 0xFFFF );
if (pkts != 0) {
#ifdef SMC_USE_DMA
unsigned int fifo;
if (lp->rxdma_active){
DBG(SMC_DEBUG_RX | SMC_DEBUG_DMA,
"%s: RX DMA active\n", dev->name);
/* The DMA is already running so up the IRQ threshold */
fifo = SMC_GET_FIFO_INT() & ~0xFF;
fifo |= pkts & 0xFF;
DBG(SMC_DEBUG_RX,
"%s: Setting RX stat FIFO threshold to %d\n",
dev->name, fifo & 0xff);
SMC_SET_FIFO_INT(fifo);
} else
#endif
smc911x_rcv(dev);
}
SMC_ACK_INT(INT_STS_RSFL_);
}
/* Handle transmit FIFO available */
if (status & INT_STS_TDFA_) {
DBG(SMC_DEBUG_TX, "%s: TX data FIFO space available irq\n", dev->name);
SMC_SET_FIFO_TDA(0xFF);
lp->tx_throttle = 0;
#ifdef SMC_USE_DMA
if (!lp->txdma_active)
#endif
netif_wake_queue(dev);
SMC_ACK_INT(INT_STS_TDFA_);
}
/* Handle transmit done condition */
#if 1
if (status & (INT_STS_TSFL_ | INT_STS_GPT_INT_)) {
DBG(SMC_DEBUG_TX | SMC_DEBUG_MISC,
"%s: Tx stat FIFO limit (%d) /GPT irq\n",
dev->name, (SMC_GET_FIFO_INT() & 0x00ff0000) >> 16);
smc911x_tx(dev);
SMC_SET_GPT_CFG(GPT_CFG_TIMER_EN_ | 10000);
SMC_ACK_INT(INT_STS_TSFL_);
SMC_ACK_INT(INT_STS_TSFL_ | INT_STS_GPT_INT_);
}
#else
if (status & INT_STS_TSFL_) {
DBG(SMC_DEBUG_TX, "%s: TX status FIFO limit (%d) irq \n", dev->name, );
smc911x_tx(dev);
SMC_ACK_INT(INT_STS_TSFL_);
}
if (status & INT_STS_GPT_INT_) {
DBG(SMC_DEBUG_RX, "%s: IRQ_CFG 0x%08x FIFO_INT 0x%08x RX_CFG 0x%08x\n",
dev->name,
SMC_GET_IRQ_CFG(),
SMC_GET_FIFO_INT(),
SMC_GET_RX_CFG());
DBG(SMC_DEBUG_RX, "%s: Rx Stat FIFO Used 0x%02x "
"Data FIFO Used 0x%04x Stat FIFO 0x%08x\n",
dev->name,
(SMC_GET_RX_FIFO_INF() & 0x00ff0000) >> 16,
SMC_GET_RX_FIFO_INF() & 0xffff,
SMC_GET_RX_STS_FIFO_PEEK());
SMC_SET_GPT_CFG(GPT_CFG_TIMER_EN_ | 10000);
SMC_ACK_INT(INT_STS_GPT_INT_);
}
#endif
/* Handle PHY interupt condition */
if (status & INT_STS_PHY_INT_) {
DBG(SMC_DEBUG_MISC, "%s: PHY irq\n", dev->name);
smc911x_phy_interrupt(dev);
SMC_ACK_INT(INT_STS_PHY_INT_);
}
} while (--timeout);
/* restore mask state */
SMC_SET_INT_EN(mask);
DBG(SMC_DEBUG_MISC, "%s: Interrupt done (%d loops)\n",
dev->name, 8-timeout);
spin_unlock_irqrestore(&lp->lock, flags);
DBG(3, "%s: Interrupt done (%d loops)\n", dev->name, 8-timeout);
return IRQ_HANDLED;
}
#ifdef SMC_USE_DMA
static void
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 09:55:46 -04:00
smc911x_tx_dma_irq(int dma, void *data)
{
struct net_device *dev = (struct net_device *)data;
struct smc911x_local *lp = netdev_priv(dev);
struct sk_buff *skb = lp->current_tx_skb;
unsigned long flags;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA, "%s: TX DMA irq handler\n", dev->name);
/* Clear the DMA interrupt sources */
SMC_DMA_ACK_IRQ(dev, dma);
BUG_ON(skb == NULL);
dma_unmap_single(NULL, tx_dmabuf, tx_dmalen, DMA_TO_DEVICE);
dev->trans_start = jiffies;
dev_kfree_skb_irq(skb);
lp->current_tx_skb = NULL;
if (lp->pending_tx_skb != NULL)
smc911x_hardware_send_pkt(dev);
else {
DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA,
"%s: No pending Tx packets. DMA disabled\n", dev->name);
spin_lock_irqsave(&lp->lock, flags);
lp->txdma_active = 0;
if (!lp->tx_throttle) {
netif_wake_queue(dev);
}
spin_unlock_irqrestore(&lp->lock, flags);
}
DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA,
"%s: TX DMA irq completed\n", dev->name);
}
static void
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 09:55:46 -04:00
smc911x_rx_dma_irq(int dma, void *data)
{
struct net_device *dev = (struct net_device *)data;
unsigned long ioaddr = dev->base_addr;
struct smc911x_local *lp = netdev_priv(dev);
struct sk_buff *skb = lp->current_rx_skb;
unsigned long flags;
unsigned int pkts;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
DBG(SMC_DEBUG_RX | SMC_DEBUG_DMA, "%s: RX DMA irq handler\n", dev->name);
/* Clear the DMA interrupt sources */
SMC_DMA_ACK_IRQ(dev, dma);
dma_unmap_single(NULL, rx_dmabuf, rx_dmalen, DMA_FROM_DEVICE);
BUG_ON(skb == NULL);
lp->current_rx_skb = NULL;
PRINT_PKT(skb->data, skb->len);
dev->last_rx = jiffies;
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
lp->stats.rx_packets++;
lp->stats.rx_bytes += skb->len;
spin_lock_irqsave(&lp->lock, flags);
pkts = (SMC_GET_RX_FIFO_INF() & RX_FIFO_INF_RXSUSED_) >> 16;
if (pkts != 0) {
smc911x_rcv(dev);
}else {
lp->rxdma_active = 0;
}
spin_unlock_irqrestore(&lp->lock, flags);
DBG(SMC_DEBUG_RX | SMC_DEBUG_DMA,
"%s: RX DMA irq completed. DMA RX FIFO PKTS %d\n",
dev->name, pkts);
}
#endif /* SMC_USE_DMA */
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
* Polling receive - used by netconsole and other diagnostic tools
* to allow network i/o with interrupts disabled.
*/
static void smc911x_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
smc911x_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
/* Our watchdog timed out. Called by the networking layer */
static void smc911x_timeout(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
int status, mask;
unsigned long flags;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
spin_lock_irqsave(&lp->lock, flags);
status = SMC_GET_INT();
mask = SMC_GET_INT_EN();
spin_unlock_irqrestore(&lp->lock, flags);
DBG(SMC_DEBUG_MISC, "%s: INT 0x%02x MASK 0x%02x \n",
dev->name, status, mask);
/* Dump the current TX FIFO contents and restart */
mask = SMC_GET_TX_CFG();
SMC_SET_TX_CFG(mask | TX_CFG_TXS_DUMP_ | TX_CFG_TXD_DUMP_);
/*
* Reconfiguring the PHY doesn't seem like a bad idea here, but
* smc911x_phy_configure() calls msleep() which calls schedule_timeout()
* which calls schedule(). Hence we use a work queue.
*/
if (lp->phy_type != 0) {
if (schedule_work(&lp->phy_configure)) {
lp->work_pending = 1;
}
}
/* We can accept TX packets again */
dev->trans_start = jiffies;
netif_wake_queue(dev);
}
/*
* This routine will, depending on the values passed to it,
* either make it accept multicast packets, go into
* promiscuous mode (for TCPDUMP and cousins) or accept
* a select set of multicast packets
*/
static void smc911x_set_multicast_list(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
unsigned int multicast_table[2];
unsigned int mcr, update_multicast = 0;
unsigned long flags;
/* table for flipping the order of 5 bits */
static const unsigned char invert5[] =
{0x00, 0x10, 0x08, 0x18, 0x04, 0x14, 0x0C, 0x1C,
0x02, 0x12, 0x0A, 0x1A, 0x06, 0x16, 0x0E, 0x1E,
0x01, 0x11, 0x09, 0x19, 0x05, 0x15, 0x0D, 0x1D,
0x03, 0x13, 0x0B, 0x1B, 0x07, 0x17, 0x0F, 0x1F};
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
spin_lock_irqsave(&lp->lock, flags);
SMC_GET_MAC_CR(mcr);
spin_unlock_irqrestore(&lp->lock, flags);
if (dev->flags & IFF_PROMISC) {
DBG(SMC_DEBUG_MISC, "%s: RCR_PRMS\n", dev->name);
mcr |= MAC_CR_PRMS_;
}
/*
* Here, I am setting this to accept all multicast packets.
* I don't need to zero the multicast table, because the flag is
* checked before the table is
*/
else if (dev->flags & IFF_ALLMULTI || dev->mc_count > 16) {
DBG(SMC_DEBUG_MISC, "%s: RCR_ALMUL\n", dev->name);
mcr |= MAC_CR_MCPAS_;
}
/*
* This sets the internal hardware table to filter out unwanted
* multicast packets before they take up memory.
*
* The SMC chip uses a hash table where the high 6 bits of the CRC of
* address are the offset into the table. If that bit is 1, then the
* multicast packet is accepted. Otherwise, it's dropped silently.
*
* To use the 6 bits as an offset into the table, the high 1 bit is
* the number of the 32 bit register, while the low 5 bits are the bit
* within that register.
*/
else if (dev->mc_count) {
int i;
struct dev_mc_list *cur_addr;
/* Set the Hash perfec mode */
mcr |= MAC_CR_HPFILT_;
/* start with a table of all zeros: reject all */
memset(multicast_table, 0, sizeof(multicast_table));
cur_addr = dev->mc_list;
for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
int position;
/* do we have a pointer here? */
if (!cur_addr)
break;
/* make sure this is a multicast address -
shouldn't this be a given if we have it here ? */
if (!(*cur_addr->dmi_addr & 1))
continue;
/* only use the low order bits */
position = crc32_le(~0, cur_addr->dmi_addr, 6) & 0x3f;
/* do some messy swapping to put the bit in the right spot */
multicast_table[invert5[position&0x1F]&0x1] |=
(1<<invert5[(position>>1)&0x1F]);
}
/* be sure I get rid of flags I might have set */
mcr &= ~(MAC_CR_PRMS_ | MAC_CR_MCPAS_);
/* now, the table can be loaded into the chipset */
update_multicast = 1;
} else {
DBG(SMC_DEBUG_MISC, "%s: ~(MAC_CR_PRMS_|MAC_CR_MCPAS_)\n",
dev->name);
mcr &= ~(MAC_CR_PRMS_ | MAC_CR_MCPAS_);
/*
* since I'm disabling all multicast entirely, I need to
* clear the multicast list
*/
memset(multicast_table, 0, sizeof(multicast_table));
update_multicast = 1;
}
spin_lock_irqsave(&lp->lock, flags);
SMC_SET_MAC_CR(mcr);
if (update_multicast) {
DBG(SMC_DEBUG_MISC,
"%s: update mcast hash table 0x%08x 0x%08x\n",
dev->name, multicast_table[0], multicast_table[1]);
SMC_SET_HASHL(multicast_table[0]);
SMC_SET_HASHH(multicast_table[1]);
}
spin_unlock_irqrestore(&lp->lock, flags);
}
/*
* Open and Initialize the board
*
* Set up everything, reset the card, etc..
*/
static int
smc911x_open(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
/*
* Check that the address is valid. If its not, refuse
* to bring the device up. The user must specify an
* address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
*/
if (!is_valid_ether_addr(dev->dev_addr)) {
PRINTK("%s: no valid ethernet hw addr\n", __FUNCTION__);
return -EINVAL;
}
/* reset the hardware */
smc911x_reset(dev);
/* Configure the PHY, initialize the link state */
smc911x_phy_configure(&lp->phy_configure);
/* Turn on Tx + Rx */
smc911x_enable(dev);
netif_start_queue(dev);
return 0;
}
/*
* smc911x_close
*
* this makes the board clean up everything that it can
* and not talk to the outside world. Caused by
* an 'ifconfig ethX down'
*/
static int smc911x_close(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
netif_stop_queue(dev);
netif_carrier_off(dev);
/* clear everything */
smc911x_shutdown(dev);
if (lp->phy_type != 0) {
/* We need to ensure that no calls to
* smc911x_phy_configure are pending.
* flush_scheduled_work() cannot be called because we
* are running with the netlink semaphore held (from
* devinet_ioctl()) and the pending work queue
* contains linkwatch_event() (scheduled by
* netif_carrier_off() above). linkwatch_event() also
* wants the netlink semaphore.
*/
while (lp->work_pending)
schedule();
smc911x_phy_powerdown(dev, lp->mii.phy_id);
}
if (lp->pending_tx_skb) {
dev_kfree_skb(lp->pending_tx_skb);
lp->pending_tx_skb = NULL;
}
return 0;
}
/*
* Get the current statistics.
* This may be called with the card open or closed.
*/
static struct net_device_stats *smc911x_query_statistics(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
return &lp->stats;
}
/*
* Ethtool support
*/
static int
smc911x_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct smc911x_local *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
int ret, status;
unsigned long flags;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
cmd->maxtxpkt = 1;
cmd->maxrxpkt = 1;
if (lp->phy_type != 0) {
spin_lock_irqsave(&lp->lock, flags);
ret = mii_ethtool_gset(&lp->mii, cmd);
spin_unlock_irqrestore(&lp->lock, flags);
} else {
cmd->supported = SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_TP | SUPPORTED_AUI;
if (lp->ctl_rspeed == 10)
cmd->speed = SPEED_10;
else if (lp->ctl_rspeed == 100)
cmd->speed = SPEED_100;
cmd->autoneg = AUTONEG_DISABLE;
if (lp->mii.phy_id==1)
cmd->transceiver = XCVR_INTERNAL;
else
cmd->transceiver = XCVR_EXTERNAL;
cmd->port = 0;
SMC_GET_PHY_SPECIAL(lp->mii.phy_id, status);
cmd->duplex =
(status & (PHY_SPECIAL_SPD_10FULL_ | PHY_SPECIAL_SPD_100FULL_)) ?
DUPLEX_FULL : DUPLEX_HALF;
ret = 0;
}
return ret;
}
static int
smc911x_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct smc911x_local *lp = netdev_priv(dev);
int ret;
unsigned long flags;
if (lp->phy_type != 0) {
spin_lock_irqsave(&lp->lock, flags);
ret = mii_ethtool_sset(&lp->mii, cmd);
spin_unlock_irqrestore(&lp->lock, flags);
} else {
if (cmd->autoneg != AUTONEG_DISABLE ||
cmd->speed != SPEED_10 ||
(cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
(cmd->port != PORT_TP && cmd->port != PORT_AUI))
return -EINVAL;
lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
ret = 0;
}
return ret;
}
static void
smc911x_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
strncpy(info->driver, CARDNAME, sizeof(info->driver));
strncpy(info->version, version, sizeof(info->version));
strncpy(info->bus_info, dev->dev.parent->bus_id, sizeof(info->bus_info));
}
static int smc911x_ethtool_nwayreset(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
int ret = -EINVAL;
unsigned long flags;
if (lp->phy_type != 0) {
spin_lock_irqsave(&lp->lock, flags);
ret = mii_nway_restart(&lp->mii);
spin_unlock_irqrestore(&lp->lock, flags);
}
return ret;
}
static u32 smc911x_ethtool_getmsglevel(struct net_device *dev)
{
struct smc911x_local *lp = netdev_priv(dev);
return lp->msg_enable;
}
static void smc911x_ethtool_setmsglevel(struct net_device *dev, u32 level)
{
struct smc911x_local *lp = netdev_priv(dev);
lp->msg_enable = level;
}
static int smc911x_ethtool_getregslen(struct net_device *dev)
{
/* System regs + MAC regs + PHY regs */
return (((E2P_CMD - ID_REV)/4 + 1) +
(WUCSR - MAC_CR)+1 + 32) * sizeof(u32);
}
static void smc911x_ethtool_getregs(struct net_device *dev,
struct ethtool_regs* regs, void *buf)
{
unsigned long ioaddr = dev->base_addr;
struct smc911x_local *lp = netdev_priv(dev);
unsigned long flags;
u32 reg,i,j=0;
u32 *data = (u32*)buf;
regs->version = lp->version;
for(i=ID_REV;i<=E2P_CMD;i+=4) {
data[j++] = SMC_inl(ioaddr,i);
}
for(i=MAC_CR;i<=WUCSR;i++) {
spin_lock_irqsave(&lp->lock, flags);
SMC_GET_MAC_CSR(i, reg);
spin_unlock_irqrestore(&lp->lock, flags);
data[j++] = reg;
}
for(i=0;i<=31;i++) {
spin_lock_irqsave(&lp->lock, flags);
SMC_GET_MII(i, lp->mii.phy_id, reg);
spin_unlock_irqrestore(&lp->lock, flags);
data[j++] = reg & 0xFFFF;
}
}
static int smc911x_ethtool_wait_eeprom_ready(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr;
unsigned int timeout;
int e2p_cmd;
e2p_cmd = SMC_GET_E2P_CMD();
for(timeout=10;(e2p_cmd & E2P_CMD_EPC_BUSY_) && timeout; timeout--) {
if (e2p_cmd & E2P_CMD_EPC_TIMEOUT_) {
PRINTK("%s: %s timeout waiting for EEPROM to respond\n",
dev->name, __FUNCTION__);
return -EFAULT;
}
mdelay(1);
e2p_cmd = SMC_GET_E2P_CMD();
}
if (timeout == 0) {
PRINTK("%s: %s timeout waiting for EEPROM CMD not busy\n",
dev->name, __FUNCTION__);
return -ETIMEDOUT;
}
return 0;
}
static inline int smc911x_ethtool_write_eeprom_cmd(struct net_device *dev,
int cmd, int addr)
{
unsigned long ioaddr = dev->base_addr;
int ret;
if ((ret = smc911x_ethtool_wait_eeprom_ready(dev))!=0)
return ret;
SMC_SET_E2P_CMD(E2P_CMD_EPC_BUSY_ |
((cmd) & (0x7<<28)) |
((addr) & 0xFF));
return 0;
}
static inline int smc911x_ethtool_read_eeprom_byte(struct net_device *dev,
u8 *data)
{
unsigned long ioaddr = dev->base_addr;
int ret;
if ((ret = smc911x_ethtool_wait_eeprom_ready(dev))!=0)
return ret;
*data = SMC_GET_E2P_DATA();
return 0;
}
static inline int smc911x_ethtool_write_eeprom_byte(struct net_device *dev,
u8 data)
{
unsigned long ioaddr = dev->base_addr;
int ret;
if ((ret = smc911x_ethtool_wait_eeprom_ready(dev))!=0)
return ret;
SMC_SET_E2P_DATA(data);
return 0;
}
static int smc911x_ethtool_geteeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
u8 eebuf[SMC911X_EEPROM_LEN];
int i, ret;
for(i=0;i<SMC911X_EEPROM_LEN;i++) {
if ((ret=smc911x_ethtool_write_eeprom_cmd(dev, E2P_CMD_EPC_CMD_READ_, i ))!=0)
return ret;
if ((ret=smc911x_ethtool_read_eeprom_byte(dev, &eebuf[i]))!=0)
return ret;
}
memcpy(data, eebuf+eeprom->offset, eeprom->len);
return 0;
}
static int smc911x_ethtool_seteeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
int i, ret;
/* Enable erase */
if ((ret=smc911x_ethtool_write_eeprom_cmd(dev, E2P_CMD_EPC_CMD_EWEN_, 0 ))!=0)
return ret;
for(i=eeprom->offset;i<(eeprom->offset+eeprom->len);i++) {
/* erase byte */
if ((ret=smc911x_ethtool_write_eeprom_cmd(dev, E2P_CMD_EPC_CMD_ERASE_, i ))!=0)
return ret;
/* write byte */
if ((ret=smc911x_ethtool_write_eeprom_byte(dev, *data))!=0)
return ret;
if ((ret=smc911x_ethtool_write_eeprom_cmd(dev, E2P_CMD_EPC_CMD_WRITE_, i ))!=0)
return ret;
}
return 0;
}
static int smc911x_ethtool_geteeprom_len(struct net_device *dev)
{
return SMC911X_EEPROM_LEN;
}
static const struct ethtool_ops smc911x_ethtool_ops = {
.get_settings = smc911x_ethtool_getsettings,
.set_settings = smc911x_ethtool_setsettings,
.get_drvinfo = smc911x_ethtool_getdrvinfo,
.get_msglevel = smc911x_ethtool_getmsglevel,
.set_msglevel = smc911x_ethtool_setmsglevel,
.nway_reset = smc911x_ethtool_nwayreset,
.get_link = ethtool_op_get_link,
.get_regs_len = smc911x_ethtool_getregslen,
.get_regs = smc911x_ethtool_getregs,
.get_eeprom_len = smc911x_ethtool_geteeprom_len,
.get_eeprom = smc911x_ethtool_geteeprom,
.set_eeprom = smc911x_ethtool_seteeprom,
};
/*
* smc911x_findirq
*
* This routine has a simple purpose -- make the SMC chip generate an
* interrupt, so an auto-detect routine can detect it, and find the IRQ,
*/
static int __init smc911x_findirq(unsigned long ioaddr)
{
int timeout = 20;
unsigned long cookie;
DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__);
cookie = probe_irq_on();
/*
* Force a SW interrupt
*/
SMC_SET_INT_EN(INT_EN_SW_INT_EN_);
/*
* Wait until positive that the interrupt has been generated
*/
do {
int int_status;
udelay(10);
int_status = SMC_GET_INT_EN();
if (int_status & INT_EN_SW_INT_EN_)
break; /* got the interrupt */
} while (--timeout);
/*
* there is really nothing that I can do here if timeout fails,
* as autoirq_report will return a 0 anyway, which is what I
* want in this case. Plus, the clean up is needed in both
* cases.
*/
/* and disable all interrupts again */
SMC_SET_INT_EN(0);
/* and return what I found */
return probe_irq_off(cookie);
}
/*
* Function: smc911x_probe(unsigned long ioaddr)
*
* Purpose:
* Tests to see if a given ioaddr points to an SMC911x chip.
* Returns a 0 on success
*
* Algorithm:
* (1) see if the endian word is OK
* (1) see if I recognize the chip ID in the appropriate register
*
* Here I do typical initialization tasks.
*
* o Initialize the structure if needed
* o print out my vanity message if not done so already
* o print out what type of hardware is detected
* o print out the ethernet address
* o find the IRQ
* o set up my private data
* o configure the dev structure with my subroutines
* o actually GRAB the irq.
* o GRAB the region
*/
static int __init smc911x_probe(struct net_device *dev, unsigned long ioaddr)
{
struct smc911x_local *lp = netdev_priv(dev);
int i, retval;
unsigned int val, chip_id, revision;
const char *version_string;
DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__);
/* First, see if the endian word is recognized */
val = SMC_GET_BYTE_TEST();
DBG(SMC_DEBUG_MISC, "%s: endian probe returned 0x%04x\n", CARDNAME, val);
if (val != 0x87654321) {
printk(KERN_ERR "Invalid chip endian 0x08%x\n",val);
retval = -ENODEV;
goto err_out;
}
/*
* check if the revision register is something that I
* recognize. These might need to be added to later,
* as future revisions could be added.
*/
chip_id = SMC_GET_PN();
DBG(SMC_DEBUG_MISC, "%s: id probe returned 0x%04x\n", CARDNAME, chip_id);
for(i=0;chip_ids[i].id != 0; i++) {
if (chip_ids[i].id == chip_id) break;
}
if (!chip_ids[i].id) {
printk(KERN_ERR "Unknown chip ID %04x\n", chip_id);
retval = -ENODEV;
goto err_out;
}
version_string = chip_ids[i].name;
revision = SMC_GET_REV();
DBG(SMC_DEBUG_MISC, "%s: revision = 0x%04x\n", CARDNAME, revision);
/* At this point I'll assume that the chip is an SMC911x. */
DBG(SMC_DEBUG_MISC, "%s: Found a %s\n", CARDNAME, chip_ids[i].name);
/* Validate the TX FIFO size requested */
if ((tx_fifo_kb < 2) || (tx_fifo_kb > 14)) {
printk(KERN_ERR "Invalid TX FIFO size requested %d\n", tx_fifo_kb);
retval = -EINVAL;
goto err_out;
}
/* fill in some of the fields */
dev->base_addr = ioaddr;
lp->version = chip_ids[i].id;
lp->revision = revision;
lp->tx_fifo_kb = tx_fifo_kb;
/* Reverse calculate the RX FIFO size from the TX */
lp->tx_fifo_size=(lp->tx_fifo_kb<<10) - 512;
lp->rx_fifo_size= ((0x4000 - 512 - lp->tx_fifo_size) / 16) * 15;
/* Set the automatic flow control values */
switch(lp->tx_fifo_kb) {
/*
* AFC_HI is about ((Rx Data Fifo Size)*2/3)/64
* AFC_LO is AFC_HI/2
* BACK_DUR is about 5uS*(AFC_LO) rounded down
*/
case 2:/* 13440 Rx Data Fifo Size */
lp->afc_cfg=0x008C46AF;break;
case 3:/* 12480 Rx Data Fifo Size */
lp->afc_cfg=0x0082419F;break;
case 4:/* 11520 Rx Data Fifo Size */
lp->afc_cfg=0x00783C9F;break;
case 5:/* 10560 Rx Data Fifo Size */
lp->afc_cfg=0x006E374F;break;
case 6:/* 9600 Rx Data Fifo Size */
lp->afc_cfg=0x0064328F;break;
case 7:/* 8640 Rx Data Fifo Size */
lp->afc_cfg=0x005A2D7F;break;
case 8:/* 7680 Rx Data Fifo Size */
lp->afc_cfg=0x0050287F;break;
case 9:/* 6720 Rx Data Fifo Size */
lp->afc_cfg=0x0046236F;break;
case 10:/* 5760 Rx Data Fifo Size */
lp->afc_cfg=0x003C1E6F;break;
case 11:/* 4800 Rx Data Fifo Size */
lp->afc_cfg=0x0032195F;break;
/*
* AFC_HI is ~1520 bytes less than RX Data Fifo Size
* AFC_LO is AFC_HI/2
* BACK_DUR is about 5uS*(AFC_LO) rounded down
*/
case 12:/* 3840 Rx Data Fifo Size */
lp->afc_cfg=0x0024124F;break;
case 13:/* 2880 Rx Data Fifo Size */
lp->afc_cfg=0x0015073F;break;
case 14:/* 1920 Rx Data Fifo Size */
lp->afc_cfg=0x0006032F;break;
default:
PRINTK("%s: ERROR -- no AFC_CFG setting found",
dev->name);
break;
}
DBG(SMC_DEBUG_MISC | SMC_DEBUG_TX | SMC_DEBUG_RX,
"%s: tx_fifo %d rx_fifo %d afc_cfg 0x%08x\n", CARDNAME,
lp->tx_fifo_size, lp->rx_fifo_size, lp->afc_cfg);
spin_lock_init(&lp->lock);
/* Get the MAC address */
SMC_GET_MAC_ADDR(dev->dev_addr);
/* now, reset the chip, and put it into a known state */
smc911x_reset(dev);
/*
* If dev->irq is 0, then the device has to be banged on to see
* what the IRQ is.
*
* Specifying an IRQ is done with the assumption that the user knows
* what (s)he is doing. No checking is done!!!!
*/
if (dev->irq < 1) {
int trials;
trials = 3;
while (trials--) {
dev->irq = smc911x_findirq(ioaddr);
if (dev->irq)
break;
/* kick the card and try again */
smc911x_reset(dev);
}
}
if (dev->irq == 0) {
printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
dev->name);
retval = -ENODEV;
goto err_out;
}
dev->irq = irq_canonicalize(dev->irq);
/* Fill in the fields of the device structure with ethernet values. */
ether_setup(dev);
dev->open = smc911x_open;
dev->stop = smc911x_close;
dev->hard_start_xmit = smc911x_hard_start_xmit;
dev->tx_timeout = smc911x_timeout;
dev->watchdog_timeo = msecs_to_jiffies(watchdog);
dev->get_stats = smc911x_query_statistics;
dev->set_multicast_list = smc911x_set_multicast_list;
dev->ethtool_ops = &smc911x_ethtool_ops;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = smc911x_poll_controller;
#endif
INIT_WORK(&lp->phy_configure, smc911x_phy_configure);
lp->mii.phy_id_mask = 0x1f;
lp->mii.reg_num_mask = 0x1f;
lp->mii.force_media = 0;
lp->mii.full_duplex = 0;
lp->mii.dev = dev;
lp->mii.mdio_read = smc911x_phy_read;
lp->mii.mdio_write = smc911x_phy_write;
/*
* Locate the phy, if any.
*/
smc911x_phy_detect(dev);
/* Set default parameters */
lp->msg_enable = NETIF_MSG_LINK;
lp->ctl_rfduplx = 1;
lp->ctl_rspeed = 100;
/* Grab the IRQ */
retval = request_irq(dev->irq, &smc911x_interrupt, IRQF_SHARED, dev->name, dev);
if (retval)
goto err_out;
set_irq_type(dev->irq, IRQT_FALLING);
#ifdef SMC_USE_DMA
lp->rxdma = SMC_DMA_REQUEST(dev, smc911x_rx_dma_irq);
lp->txdma = SMC_DMA_REQUEST(dev, smc911x_tx_dma_irq);
lp->rxdma_active = 0;
lp->txdma_active = 0;
dev->dma = lp->rxdma;
#endif
retval = register_netdev(dev);
if (retval == 0) {
/* now, print out the card info, in a short format.. */
printk("%s: %s (rev %d) at %#lx IRQ %d",
dev->name, version_string, lp->revision,
dev->base_addr, dev->irq);
#ifdef SMC_USE_DMA
if (lp->rxdma != -1)
printk(" RXDMA %d ", lp->rxdma);
if (lp->txdma != -1)
printk("TXDMA %d", lp->txdma);
#endif
printk("\n");
if (!is_valid_ether_addr(dev->dev_addr)) {
printk("%s: Invalid ethernet MAC address. Please "
"set using ifconfig\n", dev->name);
} else {
/* Print the Ethernet address */
printk("%s: Ethernet addr: ", dev->name);
for (i = 0; i < 5; i++)
printk("%2.2x:", dev->dev_addr[i]);
printk("%2.2x\n", dev->dev_addr[5]);
}
if (lp->phy_type == 0) {
PRINTK("%s: No PHY found\n", dev->name);
} else if ((lp->phy_type & ~0xff) == LAN911X_INTERNAL_PHY_ID) {
PRINTK("%s: LAN911x Internal PHY\n", dev->name);
} else {
PRINTK("%s: External PHY 0x%08x\n", dev->name, lp->phy_type);
}
}
err_out:
#ifdef SMC_USE_DMA
if (retval) {
if (lp->rxdma != -1) {
SMC_DMA_FREE(dev, lp->rxdma);
}
if (lp->txdma != -1) {
SMC_DMA_FREE(dev, lp->txdma);
}
}
#endif
return retval;
}
/*
* smc911x_init(void)
*
* Output:
* 0 --> there is a device
* anything else, error
*/
static int smc911x_drv_probe(struct platform_device *pdev)
{
struct net_device *ndev;
struct resource *res;
struct smc911x_local *lp;
unsigned int *addr;
int ret;
DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
ret = -ENODEV;
goto out;
}
/*
* Request the regions.
*/
if (!request_mem_region(res->start, SMC911X_IO_EXTENT, CARDNAME)) {
ret = -EBUSY;
goto out;
}
ndev = alloc_etherdev(sizeof(struct smc911x_local));
if (!ndev) {
printk("%s: could not allocate device.\n", CARDNAME);
ret = -ENOMEM;
goto release_1;
}
SET_MODULE_OWNER(ndev);
SET_NETDEV_DEV(ndev, &pdev->dev);
ndev->dma = (unsigned char)-1;
ndev->irq = platform_get_irq(pdev, 0);
lp = netdev_priv(ndev);
lp->netdev = ndev;
addr = ioremap(res->start, SMC911X_IO_EXTENT);
if (!addr) {
ret = -ENOMEM;
goto release_both;
}
platform_set_drvdata(pdev, ndev);
ret = smc911x_probe(ndev, (unsigned long)addr);
if (ret != 0) {
platform_set_drvdata(pdev, NULL);
iounmap(addr);
release_both:
free_netdev(ndev);
release_1:
release_mem_region(res->start, SMC911X_IO_EXTENT);
out:
printk("%s: not found (%d).\n", CARDNAME, ret);
}
#ifdef SMC_USE_DMA
else {
lp->physaddr = res->start;
lp->dev = &pdev->dev;
}
#endif
return ret;
}
static int smc911x_drv_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct resource *res;
DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__);
platform_set_drvdata(pdev, NULL);
unregister_netdev(ndev);
free_irq(ndev->irq, ndev);
#ifdef SMC_USE_DMA
{
struct smc911x_local *lp = netdev_priv(ndev);
if (lp->rxdma != -1) {
SMC_DMA_FREE(dev, lp->rxdma);
}
if (lp->txdma != -1) {
SMC_DMA_FREE(dev, lp->txdma);
}
}
#endif
iounmap((void *)ndev->base_addr);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
release_mem_region(res->start, SMC911X_IO_EXTENT);
free_netdev(ndev);
return 0;
}
static int smc911x_drv_suspend(struct platform_device *dev, pm_message_t state)
{
struct net_device *ndev = platform_get_drvdata(dev);
unsigned long ioaddr = ndev->base_addr;
DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__);
if (ndev) {
if (netif_running(ndev)) {
netif_device_detach(ndev);
smc911x_shutdown(ndev);
#if POWER_DOWN
/* Set D2 - Energy detect only setting */
SMC_SET_PMT_CTRL(2<<12);
#endif
}
}
return 0;
}
static int smc911x_drv_resume(struct platform_device *dev)
{
struct net_device *ndev = platform_get_drvdata(dev);
DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__);
if (ndev) {
struct smc911x_local *lp = netdev_priv(ndev);
if (netif_running(ndev)) {
smc911x_reset(ndev);
smc911x_enable(ndev);
if (lp->phy_type != 0)
smc911x_phy_configure(&lp->phy_configure);
netif_device_attach(ndev);
}
}
return 0;
}
static struct platform_driver smc911x_driver = {
.probe = smc911x_drv_probe,
.remove = smc911x_drv_remove,
.suspend = smc911x_drv_suspend,
.resume = smc911x_drv_resume,
.driver = {
.name = CARDNAME,
},
};
static int __init smc911x_init(void)
{
return platform_driver_register(&smc911x_driver);
}
static void __exit smc911x_cleanup(void)
{
platform_driver_unregister(&smc911x_driver);
}
module_init(smc911x_init);
module_exit(smc911x_cleanup);