android_kernel_xiaomi_sm8350/drivers/net/netxen/netxen_nic_init.c

1578 lines
40 KiB
C
Raw Normal View History

/*
* Copyright (C) 2003 - 2006 NetXen, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.
*
* Contact Information:
* info@netxen.com
* NetXen,
* 3965 Freedom Circle, Fourth floor,
* Santa Clara, CA 95054
*
*
* Source file for NIC routines to initialize the Phantom Hardware
*
*/
#include <linux/netdevice.h>
#include <linux/delay.h>
#include "netxen_nic.h"
#include "netxen_nic_hw.h"
#include "netxen_nic_phan_reg.h"
struct crb_addr_pair {
u32 addr;
u32 data;
};
#define NETXEN_MAX_CRB_XFORM 60
static unsigned int crb_addr_xform[NETXEN_MAX_CRB_XFORM];
#define NETXEN_ADDR_ERROR (0xffffffff)
#define crb_addr_transform(name) \
crb_addr_xform[NETXEN_HW_PX_MAP_CRB_##name] = \
NETXEN_HW_CRB_HUB_AGT_ADR_##name << 20
#define NETXEN_NIC_XDMA_RESET 0x8000ff
static void netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter,
uint32_t ctx, uint32_t ringid);
#if 0
static void netxen_nic_locked_write_reg(struct netxen_adapter *adapter,
unsigned long off, int *data)
{
void __iomem *addr = pci_base_offset(adapter, off);
writel(*data, addr);
}
#endif /* 0 */
static void crb_addr_transform_setup(void)
{
crb_addr_transform(XDMA);
crb_addr_transform(TIMR);
crb_addr_transform(SRE);
crb_addr_transform(SQN3);
crb_addr_transform(SQN2);
crb_addr_transform(SQN1);
crb_addr_transform(SQN0);
crb_addr_transform(SQS3);
crb_addr_transform(SQS2);
crb_addr_transform(SQS1);
crb_addr_transform(SQS0);
crb_addr_transform(RPMX7);
crb_addr_transform(RPMX6);
crb_addr_transform(RPMX5);
crb_addr_transform(RPMX4);
crb_addr_transform(RPMX3);
crb_addr_transform(RPMX2);
crb_addr_transform(RPMX1);
crb_addr_transform(RPMX0);
crb_addr_transform(ROMUSB);
crb_addr_transform(SN);
crb_addr_transform(QMN);
crb_addr_transform(QMS);
crb_addr_transform(PGNI);
crb_addr_transform(PGND);
crb_addr_transform(PGN3);
crb_addr_transform(PGN2);
crb_addr_transform(PGN1);
crb_addr_transform(PGN0);
crb_addr_transform(PGSI);
crb_addr_transform(PGSD);
crb_addr_transform(PGS3);
crb_addr_transform(PGS2);
crb_addr_transform(PGS1);
crb_addr_transform(PGS0);
crb_addr_transform(PS);
crb_addr_transform(PH);
crb_addr_transform(NIU);
crb_addr_transform(I2Q);
crb_addr_transform(EG);
crb_addr_transform(MN);
crb_addr_transform(MS);
crb_addr_transform(CAS2);
crb_addr_transform(CAS1);
crb_addr_transform(CAS0);
crb_addr_transform(CAM);
crb_addr_transform(C2C1);
crb_addr_transform(C2C0);
crb_addr_transform(SMB);
crb_addr_transform(OCM0);
crb_addr_transform(I2C0);
}
int netxen_init_firmware(struct netxen_adapter *adapter)
{
u32 state = 0, loops = 0, err = 0;
/* Window 1 call */
state = adapter->pci_read_normalize(adapter, CRB_CMDPEG_STATE);
if (state == PHAN_INITIALIZE_ACK)
return 0;
while (state != PHAN_INITIALIZE_COMPLETE && loops < 2000) {
msleep(1);
/* Window 1 call */
state = adapter->pci_read_normalize(adapter, CRB_CMDPEG_STATE);
loops++;
}
if (loops >= 2000) {
printk(KERN_ERR "Cmd Peg initialization not complete:%x.\n",
state);
err = -EIO;
return err;
}
/* Window 1 call */
adapter->pci_write_normalize(adapter,
CRB_NIC_CAPABILITIES_HOST, INTR_SCHEME_PERPORT);
adapter->pci_write_normalize(adapter,
CRB_NIC_MSI_MODE_HOST, MSI_MODE_MULTIFUNC);
adapter->pci_write_normalize(adapter,
CRB_MPORT_MODE, MPORT_MULTI_FUNCTION_MODE);
adapter->pci_write_normalize(adapter,
CRB_CMDPEG_STATE, PHAN_INITIALIZE_ACK);
return err;
}
void netxen_release_rx_buffers(struct netxen_adapter *adapter)
{
struct netxen_recv_context *recv_ctx;
struct nx_host_rds_ring *rds_ring;
struct netxen_rx_buffer *rx_buf;
int i, ctxid, ring;
for (ctxid = 0; ctxid < MAX_RCV_CTX; ++ctxid) {
recv_ctx = &adapter->recv_ctx[ctxid];
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rds_ring = &recv_ctx->rds_rings[ring];
for (i = 0; i < rds_ring->max_rx_desc_count; ++i) {
rx_buf = &(rds_ring->rx_buf_arr[i]);
if (rx_buf->state == NETXEN_BUFFER_FREE)
continue;
pci_unmap_single(adapter->pdev,
rx_buf->dma,
rds_ring->dma_size,
PCI_DMA_FROMDEVICE);
if (rx_buf->skb != NULL)
dev_kfree_skb_any(rx_buf->skb);
}
}
}
}
void netxen_release_tx_buffers(struct netxen_adapter *adapter)
{
struct netxen_cmd_buffer *cmd_buf;
struct netxen_skb_frag *buffrag;
int i, j;
cmd_buf = adapter->cmd_buf_arr;
for (i = 0; i < adapter->max_tx_desc_count; i++) {
buffrag = cmd_buf->frag_array;
if (buffrag->dma) {
pci_unmap_single(adapter->pdev, buffrag->dma,
buffrag->length, PCI_DMA_TODEVICE);
buffrag->dma = 0ULL;
}
for (j = 0; j < cmd_buf->frag_count; j++) {
buffrag++;
if (buffrag->dma) {
pci_unmap_page(adapter->pdev, buffrag->dma,
buffrag->length,
PCI_DMA_TODEVICE);
buffrag->dma = 0ULL;
}
}
/* Free the skb we received in netxen_nic_xmit_frame */
if (cmd_buf->skb) {
dev_kfree_skb_any(cmd_buf->skb);
cmd_buf->skb = NULL;
}
cmd_buf++;
}
}
void netxen_free_sw_resources(struct netxen_adapter *adapter)
{
struct netxen_recv_context *recv_ctx;
struct nx_host_rds_ring *rds_ring;
int ctx, ring;
for (ctx = 0; ctx < MAX_RCV_CTX; ctx++) {
recv_ctx = &adapter->recv_ctx[ctx];
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rds_ring = &recv_ctx->rds_rings[ring];
if (rds_ring->rx_buf_arr) {
vfree(rds_ring->rx_buf_arr);
rds_ring->rx_buf_arr = NULL;
}
}
}
if (adapter->cmd_buf_arr)
vfree(adapter->cmd_buf_arr);
return;
}
int netxen_alloc_sw_resources(struct netxen_adapter *adapter)
{
struct netxen_recv_context *recv_ctx;
struct nx_host_rds_ring *rds_ring;
struct netxen_rx_buffer *rx_buf;
int ctx, ring, i, num_rx_bufs;
struct netxen_cmd_buffer *cmd_buf_arr;
struct net_device *netdev = adapter->netdev;
cmd_buf_arr = (struct netxen_cmd_buffer *)vmalloc(TX_RINGSIZE);
if (cmd_buf_arr == NULL) {
printk(KERN_ERR "%s: Failed to allocate cmd buffer ring\n",
netdev->name);
return -ENOMEM;
}
memset(cmd_buf_arr, 0, TX_RINGSIZE);
adapter->cmd_buf_arr = cmd_buf_arr;
for (ctx = 0; ctx < MAX_RCV_CTX; ctx++) {
recv_ctx = &adapter->recv_ctx[ctx];
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rds_ring = &recv_ctx->rds_rings[ring];
switch (RCV_DESC_TYPE(ring)) {
case RCV_DESC_NORMAL:
rds_ring->max_rx_desc_count =
adapter->max_rx_desc_count;
rds_ring->flags = RCV_DESC_NORMAL;
if (adapter->ahw.cut_through) {
rds_ring->dma_size =
NX_CT_DEFAULT_RX_BUF_LEN;
rds_ring->skb_size =
NX_CT_DEFAULT_RX_BUF_LEN;
} else {
rds_ring->dma_size = RX_DMA_MAP_LEN;
rds_ring->skb_size =
MAX_RX_BUFFER_LENGTH;
}
break;
case RCV_DESC_JUMBO:
rds_ring->max_rx_desc_count =
adapter->max_jumbo_rx_desc_count;
rds_ring->flags = RCV_DESC_JUMBO;
if (NX_IS_REVISION_P3(adapter->ahw.revision_id))
rds_ring->dma_size =
NX_P3_RX_JUMBO_BUF_MAX_LEN;
else
rds_ring->dma_size =
NX_P2_RX_JUMBO_BUF_MAX_LEN;
rds_ring->skb_size =
rds_ring->dma_size + NET_IP_ALIGN;
break;
case RCV_RING_LRO:
rds_ring->max_rx_desc_count =
adapter->max_lro_rx_desc_count;
rds_ring->flags = RCV_DESC_LRO;
rds_ring->dma_size = RX_LRO_DMA_MAP_LEN;
rds_ring->skb_size = MAX_RX_LRO_BUFFER_LENGTH;
break;
}
rds_ring->rx_buf_arr = (struct netxen_rx_buffer *)
vmalloc(RCV_BUFFSIZE);
if (rds_ring->rx_buf_arr == NULL) {
printk(KERN_ERR "%s: Failed to allocate "
"rx buffer ring %d\n",
netdev->name, ring);
/* free whatever was already allocated */
goto err_out;
}
memset(rds_ring->rx_buf_arr, 0, RCV_BUFFSIZE);
INIT_LIST_HEAD(&rds_ring->free_list);
rds_ring->begin_alloc = 0;
/*
* Now go through all of them, set reference handles
* and put them in the queues.
*/
num_rx_bufs = rds_ring->max_rx_desc_count;
rx_buf = rds_ring->rx_buf_arr;
for (i = 0; i < num_rx_bufs; i++) {
list_add_tail(&rx_buf->list,
&rds_ring->free_list);
rx_buf->ref_handle = i;
rx_buf->state = NETXEN_BUFFER_FREE;
rx_buf++;
}
}
}
return 0;
err_out:
netxen_free_sw_resources(adapter);
return -ENOMEM;
}
void netxen_initialize_adapter_ops(struct netxen_adapter *adapter)
{
switch (adapter->ahw.board_type) {
case NETXEN_NIC_GBE:
adapter->enable_phy_interrupts =
netxen_niu_gbe_enable_phy_interrupts;
adapter->disable_phy_interrupts =
netxen_niu_gbe_disable_phy_interrupts;
adapter->macaddr_set = netxen_niu_macaddr_set;
adapter->set_mtu = netxen_nic_set_mtu_gb;
adapter->set_promisc = netxen_niu_set_promiscuous_mode;
adapter->phy_read = netxen_niu_gbe_phy_read;
adapter->phy_write = netxen_niu_gbe_phy_write;
adapter->init_port = netxen_niu_gbe_init_port;
adapter->stop_port = netxen_niu_disable_gbe_port;
break;
case NETXEN_NIC_XGBE:
adapter->enable_phy_interrupts =
netxen_niu_xgbe_enable_phy_interrupts;
adapter->disable_phy_interrupts =
netxen_niu_xgbe_disable_phy_interrupts;
adapter->macaddr_set = netxen_niu_xg_macaddr_set;
adapter->set_mtu = netxen_nic_set_mtu_xgb;
adapter->init_port = netxen_niu_xg_init_port;
adapter->set_promisc = netxen_niu_xg_set_promiscuous_mode;
adapter->stop_port = netxen_niu_disable_xg_port;
break;
default:
break;
}
if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) {
adapter->set_mtu = nx_fw_cmd_set_mtu;
adapter->set_promisc = netxen_p3_nic_set_promisc;
}
}
/*
* netxen_decode_crb_addr(0 - utility to translate from internal Phantom CRB
* address to external PCI CRB address.
*/
static u32 netxen_decode_crb_addr(u32 addr)
{
int i;
u32 base_addr, offset, pci_base;
crb_addr_transform_setup();
pci_base = NETXEN_ADDR_ERROR;
base_addr = addr & 0xfff00000;
offset = addr & 0x000fffff;
for (i = 0; i < NETXEN_MAX_CRB_XFORM; i++) {
if (crb_addr_xform[i] == base_addr) {
pci_base = i << 20;
break;
}
}
if (pci_base == NETXEN_ADDR_ERROR)
return pci_base;
else
return (pci_base + offset);
}
static long rom_max_timeout = 100;
static long rom_lock_timeout = 10000;
#if 0
static long rom_write_timeout = 700;
#endif
static int rom_lock(struct netxen_adapter *adapter)
{
int iter;
u32 done = 0;
int timeout = 0;
while (!done) {
/* acquire semaphore2 from PCI HW block */
netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_LOCK),
&done);
if (done == 1)
break;
if (timeout >= rom_lock_timeout)
return -EIO;
timeout++;
/*
* Yield CPU
*/
if (!in_atomic())
schedule();
else {
for (iter = 0; iter < 20; iter++)
cpu_relax(); /*This a nop instr on i386 */
}
}
netxen_nic_reg_write(adapter, NETXEN_ROM_LOCK_ID, ROM_LOCK_DRIVER);
return 0;
}
static int netxen_wait_rom_done(struct netxen_adapter *adapter)
{
long timeout = 0;
long done = 0;
while (done == 0) {
done = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_GLB_STATUS);
done &= 2;
timeout++;
if (timeout >= rom_max_timeout) {
printk("Timeout reached waiting for rom done");
return -EIO;
}
}
return 0;
}
#if 0
static int netxen_rom_wren(struct netxen_adapter *adapter)
{
/* Set write enable latch in ROM status register */
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
M25P_INSTR_WREN);
if (netxen_wait_rom_done(adapter)) {
return -1;
}
return 0;
}
static unsigned int netxen_rdcrbreg(struct netxen_adapter *adapter,
unsigned int addr)
{
unsigned int data = 0xdeaddead;
data = netxen_nic_reg_read(adapter, addr);
return data;
}
static int netxen_do_rom_rdsr(struct netxen_adapter *adapter)
{
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
M25P_INSTR_RDSR);
if (netxen_wait_rom_done(adapter)) {
return -1;
}
return netxen_rdcrbreg(adapter, NETXEN_ROMUSB_ROM_RDATA);
}
#endif
static void netxen_rom_unlock(struct netxen_adapter *adapter)
{
u32 val;
/* release semaphore2 */
netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_UNLOCK), &val);
}
#if 0
static int netxen_rom_wip_poll(struct netxen_adapter *adapter)
{
long timeout = 0;
long wip = 1;
int val;
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
while (wip != 0) {
val = netxen_do_rom_rdsr(adapter);
wip = val & 1;
timeout++;
if (timeout > rom_max_timeout) {
return -1;
}
}
return 0;
}
static int do_rom_fast_write(struct netxen_adapter *adapter, int addr,
int data)
{
if (netxen_rom_wren(adapter)) {
return -1;
}
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_WDATA, data);
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
M25P_INSTR_PP);
if (netxen_wait_rom_done(adapter)) {
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
return -1;
}
return netxen_rom_wip_poll(adapter);
}
#endif
static int do_rom_fast_read(struct netxen_adapter *adapter,
int addr, int *valp)
{
cond_resched();
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
udelay(100); /* prevent bursting on CRB */
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE, 0xb);
if (netxen_wait_rom_done(adapter)) {
printk("Error waiting for rom done\n");
return -EIO;
}
/* reset abyte_cnt and dummy_byte_cnt */
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
udelay(100); /* prevent bursting on CRB */
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
*valp = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_ROM_RDATA);
return 0;
}
static int do_rom_fast_read_words(struct netxen_adapter *adapter, int addr,
u8 *bytes, size_t size)
{
int addridx;
int ret = 0;
for (addridx = addr; addridx < (addr + size); addridx += 4) {
int v;
ret = do_rom_fast_read(adapter, addridx, &v);
if (ret != 0)
break;
*(__le32 *)bytes = cpu_to_le32(v);
bytes += 4;
}
return ret;
}
int
netxen_rom_fast_read_words(struct netxen_adapter *adapter, int addr,
u8 *bytes, size_t size)
{
int ret;
ret = rom_lock(adapter);
if (ret < 0)
return ret;
ret = do_rom_fast_read_words(adapter, addr, bytes, size);
netxen_rom_unlock(adapter);
return ret;
}
int netxen_rom_fast_read(struct netxen_adapter *adapter, int addr, int *valp)
{
int ret;
if (rom_lock(adapter) != 0)
return -EIO;
ret = do_rom_fast_read(adapter, addr, valp);
netxen_rom_unlock(adapter);
return ret;
}
#if 0
int netxen_rom_fast_write(struct netxen_adapter *adapter, int addr, int data)
{
int ret = 0;
if (rom_lock(adapter) != 0) {
return -1;
}
ret = do_rom_fast_write(adapter, addr, data);
netxen_rom_unlock(adapter);
return ret;
}
static int do_rom_fast_write_words(struct netxen_adapter *adapter,
int addr, u8 *bytes, size_t size)
{
int addridx = addr;
int ret = 0;
while (addridx < (addr + size)) {
int last_attempt = 0;
int timeout = 0;
int data;
data = le32_to_cpu((*(__le32*)bytes));
ret = do_rom_fast_write(adapter, addridx, data);
if (ret < 0)
return ret;
while(1) {
int data1;
ret = do_rom_fast_read(adapter, addridx, &data1);
if (ret < 0)
return ret;
if (data1 == data)
break;
if (timeout++ >= rom_write_timeout) {
if (last_attempt++ < 4) {
ret = do_rom_fast_write(adapter,
addridx, data);
if (ret < 0)
return ret;
}
else {
printk(KERN_INFO "Data write did not "
"succeed at address 0x%x\n", addridx);
break;
}
}
}
bytes += 4;
addridx += 4;
}
return ret;
}
int netxen_rom_fast_write_words(struct netxen_adapter *adapter, int addr,
u8 *bytes, size_t size)
{
int ret = 0;
ret = rom_lock(adapter);
if (ret < 0)
return ret;
ret = do_rom_fast_write_words(adapter, addr, bytes, size);
netxen_rom_unlock(adapter);
return ret;
}
static int netxen_rom_wrsr(struct netxen_adapter *adapter, int data)
{
int ret;
ret = netxen_rom_wren(adapter);
if (ret < 0)
return ret;
netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_ROM_WDATA, data);
netxen_crb_writelit_adapter(adapter,
NETXEN_ROMUSB_ROM_INSTR_OPCODE, 0x1);
ret = netxen_wait_rom_done(adapter);
if (ret < 0)
return ret;
return netxen_rom_wip_poll(adapter);
}
static int netxen_rom_rdsr(struct netxen_adapter *adapter)
{
int ret;
ret = rom_lock(adapter);
if (ret < 0)
return ret;
ret = netxen_do_rom_rdsr(adapter);
netxen_rom_unlock(adapter);
return ret;
}
int netxen_backup_crbinit(struct netxen_adapter *adapter)
{
int ret = FLASH_SUCCESS;
int val;
char *buffer = kmalloc(NETXEN_FLASH_SECTOR_SIZE, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
/* unlock sector 63 */
val = netxen_rom_rdsr(adapter);
val = val & 0xe3;
ret = netxen_rom_wrsr(adapter, val);
if (ret != FLASH_SUCCESS)
goto out_kfree;
ret = netxen_rom_wip_poll(adapter);
if (ret != FLASH_SUCCESS)
goto out_kfree;
/* copy sector 0 to sector 63 */
ret = netxen_rom_fast_read_words(adapter, NETXEN_CRBINIT_START,
buffer, NETXEN_FLASH_SECTOR_SIZE);
if (ret != FLASH_SUCCESS)
goto out_kfree;
ret = netxen_rom_fast_write_words(adapter, NETXEN_FIXED_START,
buffer, NETXEN_FLASH_SECTOR_SIZE);
if (ret != FLASH_SUCCESS)
goto out_kfree;
/* lock sector 63 */
val = netxen_rom_rdsr(adapter);
if (!(val & 0x8)) {
val |= (0x1 << 2);
/* lock sector 63 */
if (netxen_rom_wrsr(adapter, val) == 0) {
ret = netxen_rom_wip_poll(adapter);
if (ret != FLASH_SUCCESS)
goto out_kfree;
/* lock SR writes */
ret = netxen_rom_wip_poll(adapter);
if (ret != FLASH_SUCCESS)
goto out_kfree;
}
}
out_kfree:
kfree(buffer);
return ret;
}
static int netxen_do_rom_se(struct netxen_adapter *adapter, int addr)
{
netxen_rom_wren(adapter);
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
M25P_INSTR_SE);
if (netxen_wait_rom_done(adapter)) {
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
return -1;
}
return netxen_rom_wip_poll(adapter);
}
static void check_erased_flash(struct netxen_adapter *adapter, int addr)
{
int i;
int val;
int count = 0, erased_errors = 0;
int range;
range = (addr == NETXEN_USER_START) ?
NETXEN_FIXED_START : addr + NETXEN_FLASH_SECTOR_SIZE;
for (i = addr; i < range; i += 4) {
netxen_rom_fast_read(adapter, i, &val);
if (val != 0xffffffff)
erased_errors++;
count++;
}
if (erased_errors)
printk(KERN_INFO "0x%x out of 0x%x words fail to be erased "
"for sector address: %x\n", erased_errors, count, addr);
}
int netxen_rom_se(struct netxen_adapter *adapter, int addr)
{
int ret = 0;
if (rom_lock(adapter) != 0) {
return -1;
}
ret = netxen_do_rom_se(adapter, addr);
netxen_rom_unlock(adapter);
msleep(30);
check_erased_flash(adapter, addr);
return ret;
}
static int netxen_flash_erase_sections(struct netxen_adapter *adapter,
int start, int end)
{
int ret = FLASH_SUCCESS;
int i;
for (i = start; i < end; i++) {
ret = netxen_rom_se(adapter, i * NETXEN_FLASH_SECTOR_SIZE);
if (ret)
break;
ret = netxen_rom_wip_poll(adapter);
if (ret < 0)
return ret;
}
return ret;
}
int
netxen_flash_erase_secondary(struct netxen_adapter *adapter)
{
int ret = FLASH_SUCCESS;
int start, end;
start = NETXEN_SECONDARY_START / NETXEN_FLASH_SECTOR_SIZE;
end = NETXEN_USER_START / NETXEN_FLASH_SECTOR_SIZE;
ret = netxen_flash_erase_sections(adapter, start, end);
return ret;
}
int
netxen_flash_erase_primary(struct netxen_adapter *adapter)
{
int ret = FLASH_SUCCESS;
int start, end;
start = NETXEN_PRIMARY_START / NETXEN_FLASH_SECTOR_SIZE;
end = NETXEN_SECONDARY_START / NETXEN_FLASH_SECTOR_SIZE;
ret = netxen_flash_erase_sections(adapter, start, end);
return ret;
}
void netxen_halt_pegs(struct netxen_adapter *adapter)
{
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0x3c, 1);
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0x3c, 1);
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0x3c, 1);
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0x3c, 1);
}
int netxen_flash_unlock(struct netxen_adapter *adapter)
{
int ret = 0;
ret = netxen_rom_wrsr(adapter, 0);
if (ret < 0)
return ret;
ret = netxen_rom_wren(adapter);
if (ret < 0)
return ret;
return ret;
}
#endif /* 0 */
#define NETXEN_BOARDTYPE 0x4008
#define NETXEN_BOARDNUM 0x400c
#define NETXEN_CHIPNUM 0x4010
int netxen_pinit_from_rom(struct netxen_adapter *adapter, int verbose)
{
int addr, val;
int i, init_delay = 0;
struct crb_addr_pair *buf;
unsigned offset, n;
u32 off;
/* resetall */
netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_GLB_SW_RESET,
0xffffffff);
if (verbose) {
if (netxen_rom_fast_read(adapter, NETXEN_BOARDTYPE, &val) == 0)
printk("P2 ROM board type: 0x%08x\n", val);
else
printk("Could not read board type\n");
if (netxen_rom_fast_read(adapter, NETXEN_BOARDNUM, &val) == 0)
printk("P2 ROM board num: 0x%08x\n", val);
else
printk("Could not read board number\n");
if (netxen_rom_fast_read(adapter, NETXEN_CHIPNUM, &val) == 0)
printk("P2 ROM chip num: 0x%08x\n", val);
else
printk("Could not read chip number\n");
}
if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) {
if (netxen_rom_fast_read(adapter, 0, &n) != 0 ||
(n != 0xcafecafeUL) ||
netxen_rom_fast_read(adapter, 4, &n) != 0) {
printk(KERN_ERR "%s: ERROR Reading crb_init area: "
"n: %08x\n", netxen_nic_driver_name, n);
return -EIO;
}
offset = n & 0xffffU;
n = (n >> 16) & 0xffffU;
} else {
if (netxen_rom_fast_read(adapter, 0, &n) != 0 ||
!(n & 0x80000000)) {
printk(KERN_ERR "%s: ERROR Reading crb_init area: "
"n: %08x\n", netxen_nic_driver_name, n);
return -EIO;
}
offset = 1;
n &= ~0x80000000;
}
if (n < 1024) {
if (verbose)
printk(KERN_DEBUG "%s: %d CRB init values found"
" in ROM.\n", netxen_nic_driver_name, n);
} else {
printk(KERN_ERR "%s:n=0x%x Error! NetXen card flash not"
" initialized.\n", __func__, n);
return -EIO;
}
buf = kcalloc(n, sizeof(struct crb_addr_pair), GFP_KERNEL);
if (buf == NULL) {
printk("%s: netxen_pinit_from_rom: Unable to calloc memory.\n",
netxen_nic_driver_name);
return -ENOMEM;
}
for (i = 0; i < n; i++) {
if (netxen_rom_fast_read(adapter, 8*i + 4*offset, &val) != 0 ||
netxen_rom_fast_read(adapter, 8*i + 4*offset + 4, &addr) != 0)
return -EIO;
buf[i].addr = addr;
buf[i].data = val;
if (verbose)
printk(KERN_DEBUG "%s: PCI: 0x%08x == 0x%08x\n",
netxen_nic_driver_name,
(u32)netxen_decode_crb_addr(addr), val);
}
for (i = 0; i < n; i++) {
off = netxen_decode_crb_addr(buf[i].addr);
if (off == NETXEN_ADDR_ERROR) {
printk(KERN_ERR"CRB init value out of range %x\n",
buf[i].addr);
continue;
}
off += NETXEN_PCI_CRBSPACE;
/* skipping cold reboot MAGIC */
if (off == NETXEN_CAM_RAM(0x1fc))
continue;
if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) {
/* do not reset PCI */
if (off == (ROMUSB_GLB + 0xbc))
continue;
if (off == (NETXEN_CRB_PEG_NET_1 + 0x18))
buf[i].data = 0x1020;
/* skip the function enable register */
if (off == NETXEN_PCIE_REG(PCIE_SETUP_FUNCTION))
continue;
if (off == NETXEN_PCIE_REG(PCIE_SETUP_FUNCTION2))
continue;
if ((off & 0x0ff00000) == NETXEN_CRB_SMB)
continue;
}
if (off == NETXEN_ADDR_ERROR) {
printk(KERN_ERR "%s: Err: Unknown addr: 0x%08x\n",
netxen_nic_driver_name, buf[i].addr);
continue;
}
/* After writing this register, HW needs time for CRB */
/* to quiet down (else crb_window returns 0xffffffff) */
if (off == NETXEN_ROMUSB_GLB_SW_RESET) {
init_delay = 1;
if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) {
/* hold xdma in reset also */
buf[i].data = NETXEN_NIC_XDMA_RESET;
}
}
adapter->hw_write_wx(adapter, off, &buf[i].data, 4);
if (init_delay == 1) {
msleep(1000);
init_delay = 0;
}
msleep(1);
}
kfree(buf);
/* disable_peg_cache_all */
/* unreset_net_cache */
if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) {
adapter->hw_read_wx(adapter,
NETXEN_ROMUSB_GLB_SW_RESET, &val, 4);
netxen_crb_writelit_adapter(adapter,
NETXEN_ROMUSB_GLB_SW_RESET, (val & 0xffffff0f));
}
/* p2dn replyCount */
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_D + 0xec, 0x1e);
/* disable_peg_cache 0 */
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_D + 0x4c, 8);
/* disable_peg_cache 1 */
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_I + 0x4c, 8);
/* peg_clr_all */
/* peg_clr 0 */
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0x8, 0);
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0xc, 0);
/* peg_clr 1 */
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0x8, 0);
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0xc, 0);
/* peg_clr 2 */
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0x8, 0);
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0xc, 0);
/* peg_clr 3 */
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0x8, 0);
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0xc, 0);
return 0;
}
int netxen_initialize_adapter_offload(struct netxen_adapter *adapter)
{
uint64_t addr;
uint32_t hi;
uint32_t lo;
adapter->dummy_dma.addr =
pci_alloc_consistent(adapter->pdev,
NETXEN_HOST_DUMMY_DMA_SIZE,
&adapter->dummy_dma.phys_addr);
if (adapter->dummy_dma.addr == NULL) {
printk("%s: ERROR: Could not allocate dummy DMA memory\n",
__func__);
return -ENOMEM;
}
addr = (uint64_t) adapter->dummy_dma.phys_addr;
hi = (addr >> 32) & 0xffffffff;
lo = addr & 0xffffffff;
adapter->pci_write_normalize(adapter, CRB_HOST_DUMMY_BUF_ADDR_HI, hi);
adapter->pci_write_normalize(adapter, CRB_HOST_DUMMY_BUF_ADDR_LO, lo);
if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) {
uint32_t temp = 0;
adapter->hw_write_wx(adapter, CRB_HOST_DUMMY_BUF, &temp, 4);
}
return 0;
}
void netxen_free_adapter_offload(struct netxen_adapter *adapter)
{
int i = 100;
if (!adapter->dummy_dma.addr)
return;
if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) {
do {
if (dma_watchdog_shutdown_request(adapter) == 1)
break;
msleep(50);
if (dma_watchdog_shutdown_poll_result(adapter) == 1)
break;
} while (--i);
}
if (i) {
pci_free_consistent(adapter->pdev,
NETXEN_HOST_DUMMY_DMA_SIZE,
adapter->dummy_dma.addr,
adapter->dummy_dma.phys_addr);
adapter->dummy_dma.addr = NULL;
} else {
printk(KERN_ERR "%s: dma_watchdog_shutdown failed\n",
adapter->netdev->name);
}
}
int netxen_phantom_init(struct netxen_adapter *adapter, int pegtune_val)
{
u32 val = 0;
int retries = 60;
if (!pegtune_val) {
do {
val = adapter->pci_read_normalize(adapter,
CRB_CMDPEG_STATE);
if (val == PHAN_INITIALIZE_COMPLETE ||
val == PHAN_INITIALIZE_ACK)
return 0;
msleep(500);
} while (--retries);
if (!retries) {
pegtune_val = adapter->pci_read_normalize(adapter,
NETXEN_ROMUSB_GLB_PEGTUNE_DONE);
printk(KERN_WARNING "netxen_phantom_init: init failed, "
"pegtune_val=%x\n", pegtune_val);
return -1;
}
}
return 0;
}
int netxen_receive_peg_ready(struct netxen_adapter *adapter)
{
u32 val = 0;
int retries = 2000;
do {
val = adapter->pci_read_normalize(adapter, CRB_RCVPEG_STATE);
if (val == PHAN_PEG_RCV_INITIALIZED)
return 0;
msleep(10);
} while (--retries);
if (!retries) {
printk(KERN_ERR "Receive Peg initialization not "
"complete, state: 0x%x.\n", val);
return -EIO;
}
return 0;
}
static struct sk_buff *netxen_process_rxbuf(struct netxen_adapter *adapter,
struct nx_host_rds_ring *rds_ring, u16 index, u16 cksum)
{
struct netxen_rx_buffer *buffer;
struct sk_buff *skb;
buffer = &rds_ring->rx_buf_arr[index];
pci_unmap_single(adapter->pdev, buffer->dma, rds_ring->dma_size,
PCI_DMA_FROMDEVICE);
skb = buffer->skb;
if (!skb)
goto no_skb;
if (likely(adapter->rx_csum && cksum == STATUS_CKSUM_OK)) {
adapter->stats.csummed++;
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else
skb->ip_summed = CHECKSUM_NONE;
skb->dev = adapter->netdev;
buffer->skb = NULL;
no_skb:
buffer->state = NETXEN_BUFFER_FREE;
buffer->lro_current_frags = 0;
buffer->lro_expected_frags = 0;
list_add_tail(&buffer->list, &rds_ring->free_list);
return skb;
}
/*
* netxen_process_rcv() send the received packet to the protocol stack.
* and if the number of receives exceeds RX_BUFFERS_REFILL, then we
* invoke the routine to send more rx buffers to the Phantom...
*/
static void netxen_process_rcv(struct netxen_adapter *adapter, int ctxid,
struct status_desc *desc, struct status_desc *frag_desc)
{
struct net_device *netdev = adapter->netdev;
u64 sts_data = le64_to_cpu(desc->status_desc_data);
int index = netxen_get_sts_refhandle(sts_data);
struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctxid]);
struct netxen_rx_buffer *buffer;
struct sk_buff *skb;
u32 length = netxen_get_sts_totallength(sts_data);
u32 desc_ctx;
u16 pkt_offset = 0, cksum;
struct nx_host_rds_ring *rds_ring;
desc_ctx = netxen_get_sts_type(sts_data);
if (unlikely(desc_ctx >= NUM_RCV_DESC_RINGS)) {
printk("%s: %s Bad Rcv descriptor ring\n",
netxen_nic_driver_name, netdev->name);
return;
}
rds_ring = &recv_ctx->rds_rings[desc_ctx];
if (unlikely(index > rds_ring->max_rx_desc_count)) {
DPRINTK(ERR, "Got a buffer index:%x Max is %x\n",
index, rds_ring->max_rx_desc_count);
return;
}
buffer = &rds_ring->rx_buf_arr[index];
if (desc_ctx == RCV_DESC_LRO_CTXID) {
buffer->lro_current_frags++;
if (netxen_get_sts_desc_lro_last_frag(desc)) {
buffer->lro_expected_frags =
netxen_get_sts_desc_lro_cnt(desc);
buffer->lro_length = length;
}
if (buffer->lro_current_frags != buffer->lro_expected_frags) {
if (buffer->lro_expected_frags != 0) {
printk("LRO: (refhandle:%x) recv frag. "
"wait for last. flags: %x expected:%d "
"have:%d\n", index,
netxen_get_sts_desc_lro_last_frag(desc),
buffer->lro_expected_frags,
buffer->lro_current_frags);
}
return;
}
}
cksum = netxen_get_sts_status(sts_data);
skb = netxen_process_rxbuf(adapter, rds_ring, index, cksum);
if (!skb)
return;
if (desc_ctx == RCV_DESC_LRO_CTXID) {
/* True length was only available on the last pkt */
skb_put(skb, buffer->lro_length);
} else {
if (length > rds_ring->skb_size)
skb_put(skb, rds_ring->skb_size);
else
skb_put(skb, length);
pkt_offset = netxen_get_sts_pkt_offset(sts_data);
if (pkt_offset)
skb_pull(skb, pkt_offset);
}
skb->protocol = eth_type_trans(skb, netdev);
/*
* rx buffer chaining is disabled, walk and free
* any spurious rx buffer chain.
*/
if (frag_desc) {
u16 i, nr_frags = desc->nr_frags;
dev_kfree_skb_any(skb);
for (i = 0; i < nr_frags; i++) {
index = frag_desc->frag_handles[i];
skb = netxen_process_rxbuf(adapter,
rds_ring, index, cksum);
if (skb)
dev_kfree_skb_any(skb);
}
adapter->stats.rxdropped++;
} else {
netif_receive_skb(skb);
netdev->last_rx = jiffies;
adapter->stats.no_rcv++;
adapter->stats.rxbytes += length;
}
}
/* Process Receive status ring */
u32 netxen_process_rcv_ring(struct netxen_adapter *adapter, int ctxid, int max)
{
struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctxid]);
struct status_desc *desc_head = recv_ctx->rcv_status_desc_head;
struct status_desc *desc, *frag_desc;
u32 consumer = recv_ctx->status_rx_consumer;
int count = 0, ring;
u64 sts_data;
u16 opcode;
while (count < max) {
desc = &desc_head[consumer];
if (!(netxen_get_sts_owner(desc) & STATUS_OWNER_HOST)) {
DPRINTK(ERR, "desc %p ownedby %x\n", desc,
netxen_get_sts_owner(desc));
break;
}
sts_data = le64_to_cpu(desc->status_desc_data);
opcode = netxen_get_sts_opcode(sts_data);
frag_desc = NULL;
if (opcode == NETXEN_NIC_RXPKT_DESC) {
if (desc->nr_frags) {
consumer = get_next_index(consumer,
adapter->max_rx_desc_count);
frag_desc = &desc_head[consumer];
netxen_set_sts_owner(frag_desc,
STATUS_OWNER_PHANTOM);
}
}
netxen_process_rcv(adapter, ctxid, desc, frag_desc);
netxen_set_sts_owner(desc, STATUS_OWNER_PHANTOM);
consumer = get_next_index(consumer,
adapter->max_rx_desc_count);
count++;
}
for (ring = 0; ring < adapter->max_rds_rings; ring++)
netxen_post_rx_buffers_nodb(adapter, ctxid, ring);
/* update the consumer index in phantom */
if (count) {
recv_ctx->status_rx_consumer = consumer;
/* Window = 1 */
adapter->pci_write_normalize(adapter,
recv_ctx->crb_sts_consumer, consumer);
}
return count;
}
/* Process Command status ring */
int netxen_process_cmd_ring(struct netxen_adapter *adapter)
{
u32 last_consumer, consumer;
int count = 0, i;
struct netxen_cmd_buffer *buffer;
struct pci_dev *pdev = adapter->pdev;
struct net_device *netdev = adapter->netdev;
struct netxen_skb_frag *frag;
int done = 0;
last_consumer = adapter->last_cmd_consumer;
consumer = le32_to_cpu(*(adapter->cmd_consumer));
while (last_consumer != consumer) {
buffer = &adapter->cmd_buf_arr[last_consumer];
if (buffer->skb) {
frag = &buffer->frag_array[0];
pci_unmap_single(pdev, frag->dma, frag->length,
PCI_DMA_TODEVICE);
frag->dma = 0ULL;
for (i = 1; i < buffer->frag_count; i++) {
frag++; /* Get the next frag */
pci_unmap_page(pdev, frag->dma, frag->length,
PCI_DMA_TODEVICE);
frag->dma = 0ULL;
}
adapter->stats.xmitfinished++;
dev_kfree_skb_any(buffer->skb);
buffer->skb = NULL;
}
last_consumer = get_next_index(last_consumer,
adapter->max_tx_desc_count);
if (++count >= MAX_STATUS_HANDLE)
break;
}
if (count) {
adapter->last_cmd_consumer = last_consumer;
smp_mb();
if (netif_queue_stopped(netdev) && netif_running(netdev)) {
netif_tx_lock(netdev);
netif_wake_queue(netdev);
smp_mb();
netif_tx_unlock(netdev);
}
}
/*
* If everything is freed up to consumer then check if the ring is full
* If the ring is full then check if more needs to be freed and
* schedule the call back again.
*
* This happens when there are 2 CPUs. One could be freeing and the
* other filling it. If the ring is full when we get out of here and
* the card has already interrupted the host then the host can miss the
* interrupt.
*
* There is still a possible race condition and the host could miss an
* interrupt. The card has to take care of this.
*/
consumer = le32_to_cpu(*(adapter->cmd_consumer));
done = (last_consumer == consumer);
return (done);
}
/*
* netxen_post_rx_buffers puts buffer in the Phantom memory
*/
void netxen_post_rx_buffers(struct netxen_adapter *adapter, u32 ctx, u32 ringid)
{
struct pci_dev *pdev = adapter->pdev;
struct sk_buff *skb;
struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctx]);
struct nx_host_rds_ring *rds_ring = NULL;
uint producer;
struct rcv_desc *pdesc;
struct netxen_rx_buffer *buffer;
int count = 0;
int index = 0;
netxen_ctx_msg msg = 0;
dma_addr_t dma;
struct list_head *head;
rds_ring = &recv_ctx->rds_rings[ringid];
producer = rds_ring->producer;
index = rds_ring->begin_alloc;
head = &rds_ring->free_list;
/* We can start writing rx descriptors into the phantom memory. */
while (!list_empty(head)) {
skb = dev_alloc_skb(rds_ring->skb_size);
if (unlikely(!skb)) {
rds_ring->begin_alloc = index;
break;
}
buffer = list_entry(head->next, struct netxen_rx_buffer, list);
list_del(&buffer->list);
count++; /* now there should be no failure */
pdesc = &rds_ring->desc_head[producer];
if (!adapter->ahw.cut_through)
skb_reserve(skb, 2);
/* This will be setup when we receive the
* buffer after it has been filled FSL TBD TBD
* skb->dev = netdev;
*/
dma = pci_map_single(pdev, skb->data, rds_ring->dma_size,
PCI_DMA_FROMDEVICE);
pdesc->addr_buffer = cpu_to_le64(dma);
buffer->skb = skb;
buffer->state = NETXEN_BUFFER_BUSY;
buffer->dma = dma;
/* make a rcv descriptor */
pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
pdesc->buffer_length = cpu_to_le32(rds_ring->dma_size);
DPRINTK(INFO, "done writing descripter\n");
producer =
get_next_index(producer, rds_ring->max_rx_desc_count);
index = get_next_index(index, rds_ring->max_rx_desc_count);
}
/* if we did allocate buffers, then write the count to Phantom */
if (count) {
rds_ring->begin_alloc = index;
rds_ring->producer = producer;
/* Window = 1 */
adapter->pci_write_normalize(adapter,
rds_ring->crb_rcv_producer,
(producer-1) & (rds_ring->max_rx_desc_count-1));
if (adapter->fw_major < 4) {
/*
* Write a doorbell msg to tell phanmon of change in
* receive ring producer
* Only for firmware version < 4.0.0
*/
netxen_set_msg_peg_id(msg, NETXEN_RCV_PEG_DB_ID);
netxen_set_msg_privid(msg);
netxen_set_msg_count(msg,
((producer -
1) & (rds_ring->
max_rx_desc_count - 1)));
netxen_set_msg_ctxid(msg, adapter->portnum);
netxen_set_msg_opcode(msg, NETXEN_RCV_PRODUCER(ringid));
writel(msg,
DB_NORMALIZE(adapter,
NETXEN_RCV_PRODUCER_OFFSET));
}
}
}
static void netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter,
uint32_t ctx, uint32_t ringid)
{
struct pci_dev *pdev = adapter->pdev;
struct sk_buff *skb;
struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctx]);
struct nx_host_rds_ring *rds_ring = NULL;
u32 producer;
struct rcv_desc *pdesc;
struct netxen_rx_buffer *buffer;
int count = 0;
int index = 0;
struct list_head *head;
rds_ring = &recv_ctx->rds_rings[ringid];
producer = rds_ring->producer;
index = rds_ring->begin_alloc;
head = &rds_ring->free_list;
/* We can start writing rx descriptors into the phantom memory. */
while (!list_empty(head)) {
skb = dev_alloc_skb(rds_ring->skb_size);
if (unlikely(!skb)) {
rds_ring->begin_alloc = index;
break;
}
buffer = list_entry(head->next, struct netxen_rx_buffer, list);
list_del(&buffer->list);
count++; /* now there should be no failure */
pdesc = &rds_ring->desc_head[producer];
if (!adapter->ahw.cut_through)
skb_reserve(skb, 2);
buffer->skb = skb;
buffer->state = NETXEN_BUFFER_BUSY;
buffer->dma = pci_map_single(pdev, skb->data,
rds_ring->dma_size,
PCI_DMA_FROMDEVICE);
/* make a rcv descriptor */
pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
pdesc->buffer_length = cpu_to_le32(rds_ring->dma_size);
pdesc->addr_buffer = cpu_to_le64(buffer->dma);
producer =
get_next_index(producer, rds_ring->max_rx_desc_count);
index = get_next_index(index, rds_ring->max_rx_desc_count);
buffer = &rds_ring->rx_buf_arr[index];
}
/* if we did allocate buffers, then write the count to Phantom */
if (count) {
rds_ring->begin_alloc = index;
rds_ring->producer = producer;
/* Window = 1 */
adapter->pci_write_normalize(adapter,
rds_ring->crb_rcv_producer,
(producer-1) & (rds_ring->max_rx_desc_count-1));
wmb();
}
}
void netxen_nic_clear_stats(struct netxen_adapter *adapter)
{
memset(&adapter->stats, 0, sizeof(adapter->stats));
return;
}