android_kernel_xiaomi_sm8350/drivers/net/usb/asix.c

1471 lines
37 KiB
C
Raw Normal View History

/*
* ASIX AX8817X based USB 2.0 Ethernet Devices
* Copyright (C) 2003-2006 David Hollis <dhollis@davehollis.com>
* Copyright (C) 2005 Phil Chang <pchang23@sbcglobal.net>
* Copyright (C) 2006 James Painter <jamie.painter@iname.com>
* Copyright (c) 2002-2003 TiVo Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
// #define DEBUG // error path messages, extra info
// #define VERBOSE // more; success messages
#include <linux/module.h>
#include <linux/kmod.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/workqueue.h>
#include <linux/mii.h>
#include <linux/usb.h>
#include <linux/crc32.h>
#include "usbnet.h"
#define DRIVER_VERSION "14-Jun-2006"
static const char driver_name [] = "asix";
/* ASIX AX8817X based USB 2.0 Ethernet Devices */
#define AX_CMD_SET_SW_MII 0x06
#define AX_CMD_READ_MII_REG 0x07
#define AX_CMD_WRITE_MII_REG 0x08
#define AX_CMD_SET_HW_MII 0x0a
#define AX_CMD_READ_EEPROM 0x0b
#define AX_CMD_WRITE_EEPROM 0x0c
#define AX_CMD_WRITE_ENABLE 0x0d
#define AX_CMD_WRITE_DISABLE 0x0e
#define AX_CMD_READ_RX_CTL 0x0f
#define AX_CMD_WRITE_RX_CTL 0x10
#define AX_CMD_READ_IPG012 0x11
#define AX_CMD_WRITE_IPG0 0x12
#define AX_CMD_WRITE_IPG1 0x13
#define AX_CMD_READ_NODE_ID 0x13
#define AX_CMD_WRITE_IPG2 0x14
#define AX_CMD_WRITE_MULTI_FILTER 0x16
#define AX88172_CMD_READ_NODE_ID 0x17
#define AX_CMD_READ_PHY_ID 0x19
#define AX_CMD_READ_MEDIUM_STATUS 0x1a
#define AX_CMD_WRITE_MEDIUM_MODE 0x1b
#define AX_CMD_READ_MONITOR_MODE 0x1c
#define AX_CMD_WRITE_MONITOR_MODE 0x1d
#define AX_CMD_READ_GPIOS 0x1e
#define AX_CMD_WRITE_GPIOS 0x1f
#define AX_CMD_SW_RESET 0x20
#define AX_CMD_SW_PHY_STATUS 0x21
#define AX_CMD_SW_PHY_SELECT 0x22
#define AX_MONITOR_MODE 0x01
#define AX_MONITOR_LINK 0x02
#define AX_MONITOR_MAGIC 0x04
#define AX_MONITOR_HSFS 0x10
/* AX88172 Medium Status Register values */
#define AX88172_MEDIUM_FD 0x02
#define AX88172_MEDIUM_TX 0x04
#define AX88172_MEDIUM_FC 0x10
#define AX88172_MEDIUM_DEFAULT \
( AX88172_MEDIUM_FD | AX88172_MEDIUM_TX | AX88172_MEDIUM_FC )
#define AX_MCAST_FILTER_SIZE 8
#define AX_MAX_MCAST 64
#define AX_SWRESET_CLEAR 0x00
#define AX_SWRESET_RR 0x01
#define AX_SWRESET_RT 0x02
#define AX_SWRESET_PRTE 0x04
#define AX_SWRESET_PRL 0x08
#define AX_SWRESET_BZ 0x10
#define AX_SWRESET_IPRL 0x20
#define AX_SWRESET_IPPD 0x40
#define AX88772_IPG0_DEFAULT 0x15
#define AX88772_IPG1_DEFAULT 0x0c
#define AX88772_IPG2_DEFAULT 0x12
/* AX88772 & AX88178 Medium Mode Register */
#define AX_MEDIUM_PF 0x0080
#define AX_MEDIUM_JFE 0x0040
#define AX_MEDIUM_TFC 0x0020
#define AX_MEDIUM_RFC 0x0010
#define AX_MEDIUM_ENCK 0x0008
#define AX_MEDIUM_AC 0x0004
#define AX_MEDIUM_FD 0x0002
#define AX_MEDIUM_GM 0x0001
#define AX_MEDIUM_SM 0x1000
#define AX_MEDIUM_SBP 0x0800
#define AX_MEDIUM_PS 0x0200
#define AX_MEDIUM_RE 0x0100
#define AX88178_MEDIUM_DEFAULT \
(AX_MEDIUM_PS | AX_MEDIUM_FD | AX_MEDIUM_AC | \
AX_MEDIUM_RFC | AX_MEDIUM_TFC | AX_MEDIUM_JFE | \
AX_MEDIUM_RE )
#define AX88772_MEDIUM_DEFAULT \
(AX_MEDIUM_FD | AX_MEDIUM_RFC | \
AX_MEDIUM_TFC | AX_MEDIUM_PS | \
AX_MEDIUM_AC | AX_MEDIUM_RE )
/* AX88772 & AX88178 RX_CTL values */
#define AX_RX_CTL_SO 0x0080
#define AX_RX_CTL_AP 0x0020
#define AX_RX_CTL_AM 0x0010
#define AX_RX_CTL_AB 0x0008
#define AX_RX_CTL_SEP 0x0004
#define AX_RX_CTL_AMALL 0x0002
#define AX_RX_CTL_PRO 0x0001
#define AX_RX_CTL_MFB_2048 0x0000
#define AX_RX_CTL_MFB_4096 0x0100
#define AX_RX_CTL_MFB_8192 0x0200
#define AX_RX_CTL_MFB_16384 0x0300
#define AX_DEFAULT_RX_CTL \
(AX_RX_CTL_SO | AX_RX_CTL_AB )
/* GPIO 0 .. 2 toggles */
#define AX_GPIO_GPO0EN 0x01 /* GPIO0 Output enable */
#define AX_GPIO_GPO_0 0x02 /* GPIO0 Output value */
#define AX_GPIO_GPO1EN 0x04 /* GPIO1 Output enable */
#define AX_GPIO_GPO_1 0x08 /* GPIO1 Output value */
#define AX_GPIO_GPO2EN 0x10 /* GPIO2 Output enable */
#define AX_GPIO_GPO_2 0x20 /* GPIO2 Output value */
#define AX_GPIO_RESERVED 0x40 /* Reserved */
#define AX_GPIO_RSE 0x80 /* Reload serial EEPROM */
#define AX_EEPROM_MAGIC 0xdeadbeef
#define AX88172_EEPROM_LEN 0x40
#define AX88772_EEPROM_LEN 0xff
#define PHY_MODE_MARVELL 0x0000
#define MII_MARVELL_LED_CTRL 0x0018
#define MII_MARVELL_STATUS 0x001b
#define MII_MARVELL_CTRL 0x0014
#define MARVELL_LED_MANUAL 0x0019
#define MARVELL_STATUS_HWCFG 0x0004
#define MARVELL_CTRL_TXDELAY 0x0002
#define MARVELL_CTRL_RXDELAY 0x0080
/* This structure cannot exceed sizeof(unsigned long [5]) AKA 20 bytes */
struct asix_data {
u8 multi_filter[AX_MCAST_FILTER_SIZE];
u8 phymode;
u8 ledmode;
u8 eeprom_len;
};
struct ax88172_int_data {
__le16 res1;
u8 link;
__le16 res2;
u8 status;
__le16 res3;
} __attribute__ ((packed));
static int asix_read_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index,
u16 size, void *data)
{
void *buf;
int err = -ENOMEM;
devdbg(dev,"asix_read_cmd() cmd=0x%02x value=0x%04x index=0x%04x size=%d",
cmd, value, index, size);
buf = kmalloc(size, GFP_KERNEL);
if (!buf)
goto out;
err = usb_control_msg(
dev->udev,
usb_rcvctrlpipe(dev->udev, 0),
cmd,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
value,
index,
buf,
size,
USB_CTRL_GET_TIMEOUT);
if (err == size)
memcpy(data, buf, size);
else if (err >= 0)
err = -EINVAL;
kfree(buf);
out:
return err;
}
static int asix_write_cmd(struct usbnet *dev, u8 cmd, u16 value, u16 index,
u16 size, void *data)
{
void *buf = NULL;
int err = -ENOMEM;
devdbg(dev,"asix_write_cmd() cmd=0x%02x value=0x%04x index=0x%04x size=%d",
cmd, value, index, size);
if (data) {
buf = kmalloc(size, GFP_KERNEL);
if (!buf)
goto out;
memcpy(buf, data, size);
}
err = usb_control_msg(
dev->udev,
usb_sndctrlpipe(dev->udev, 0),
cmd,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
value,
index,
buf,
size,
USB_CTRL_SET_TIMEOUT);
kfree(buf);
out:
return err;
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 09:55:46 -04:00
static void asix_async_cmd_callback(struct urb *urb)
{
struct usb_ctrlrequest *req = (struct usb_ctrlrequest *)urb->context;
if (urb->status < 0)
printk(KERN_DEBUG "asix_async_cmd_callback() failed with %d",
urb->status);
kfree(req);
usb_free_urb(urb);
}
static void
asix_write_cmd_async(struct usbnet *dev, u8 cmd, u16 value, u16 index,
u16 size, void *data)
{
struct usb_ctrlrequest *req;
int status;
struct urb *urb;
devdbg(dev,"asix_write_cmd_async() cmd=0x%02x value=0x%04x index=0x%04x size=%d",
cmd, value, index, size);
if ((urb = usb_alloc_urb(0, GFP_ATOMIC)) == NULL) {
deverr(dev, "Error allocating URB in write_cmd_async!");
return;
}
if ((req = kmalloc(sizeof(struct usb_ctrlrequest), GFP_ATOMIC)) == NULL) {
deverr(dev, "Failed to allocate memory for control request");
usb_free_urb(urb);
return;
}
req->bRequestType = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE;
req->bRequest = cmd;
req->wValue = cpu_to_le16(value);
req->wIndex = cpu_to_le16(index);
req->wLength = cpu_to_le16(size);
usb_fill_control_urb(urb, dev->udev,
usb_sndctrlpipe(dev->udev, 0),
(void *)req, data, size,
asix_async_cmd_callback, req);
if((status = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
deverr(dev, "Error submitting the control message: status=%d",
status);
kfree(req);
usb_free_urb(urb);
}
}
static int asix_rx_fixup(struct usbnet *dev, struct sk_buff *skb)
{
u8 *head;
u32 header;
char *packet;
struct sk_buff *ax_skb;
u16 size;
head = (u8 *) skb->data;
memcpy(&header, head, sizeof(header));
le32_to_cpus(&header);
packet = head + sizeof(header);
skb_pull(skb, 4);
while (skb->len > 0) {
if ((short)(header & 0x0000ffff) !=
~((short)((header & 0xffff0000) >> 16))) {
deverr(dev,"asix_rx_fixup() Bad Header Length");
}
/* get the packet length */
size = (u16) (header & 0x0000ffff);
if ((skb->len) - ((size + 1) & 0xfffe) == 0)
return 2;
if (size > ETH_FRAME_LEN) {
deverr(dev,"asix_rx_fixup() Bad RX Length %d", size);
return 0;
}
ax_skb = skb_clone(skb, GFP_ATOMIC);
if (ax_skb) {
ax_skb->len = size;
ax_skb->data = packet;
skb_set_tail_pointer(ax_skb, size);
usbnet_skb_return(dev, ax_skb);
} else {
return 0;
}
skb_pull(skb, (size + 1) & 0xfffe);
if (skb->len == 0)
break;
head = (u8 *) skb->data;
memcpy(&header, head, sizeof(header));
le32_to_cpus(&header);
packet = head + sizeof(header);
skb_pull(skb, 4);
}
if (skb->len < 0) {
deverr(dev,"asix_rx_fixup() Bad SKB Length %d", skb->len);
return 0;
}
return 1;
}
static struct sk_buff *asix_tx_fixup(struct usbnet *dev, struct sk_buff *skb,
gfp_t flags)
{
int padlen;
int headroom = skb_headroom(skb);
int tailroom = skb_tailroom(skb);
u32 packet_len;
u32 padbytes = 0xffff0000;
padlen = ((skb->len + 4) % 512) ? 0 : 4;
if ((!skb_cloned(skb))
&& ((headroom + tailroom) >= (4 + padlen))) {
if ((headroom < 4) || (tailroom < padlen)) {
skb->data = memmove(skb->head + 4, skb->data, skb->len);
skb_set_tail_pointer(skb, skb->len);
}
} else {
struct sk_buff *skb2;
skb2 = skb_copy_expand(skb, 4, padlen, flags);
dev_kfree_skb_any(skb);
skb = skb2;
if (!skb)
return NULL;
}
skb_push(skb, 4);
packet_len = (((skb->len - 4) ^ 0x0000ffff) << 16) + (skb->len - 4);
cpu_to_le32s(&packet_len);
skb_copy_to_linear_data(skb, &packet_len, sizeof(packet_len));
if ((skb->len % 512) == 0) {
cpu_to_le32s(&padbytes);
memcpy(skb_tail_pointer(skb), &padbytes, sizeof(padbytes));
skb_put(skb, sizeof(padbytes));
}
return skb;
}
static void asix_status(struct usbnet *dev, struct urb *urb)
{
struct ax88172_int_data *event;
int link;
if (urb->actual_length < 8)
return;
event = urb->transfer_buffer;
link = event->link & 0x01;
if (netif_carrier_ok(dev->net) != link) {
if (link) {
netif_carrier_on(dev->net);
usbnet_defer_kevent (dev, EVENT_LINK_RESET );
} else
netif_carrier_off(dev->net);
devdbg(dev, "Link Status is: %d", link);
}
}
static inline int asix_set_sw_mii(struct usbnet *dev)
{
int ret;
ret = asix_write_cmd(dev, AX_CMD_SET_SW_MII, 0x0000, 0, 0, NULL);
if (ret < 0)
deverr(dev, "Failed to enable software MII access");
return ret;
}
static inline int asix_set_hw_mii(struct usbnet *dev)
{
int ret;
ret = asix_write_cmd(dev, AX_CMD_SET_HW_MII, 0x0000, 0, 0, NULL);
if (ret < 0)
deverr(dev, "Failed to enable hardware MII access");
return ret;
}
static inline int asix_get_phy_addr(struct usbnet *dev)
{
u8 buf[2];
int ret = asix_read_cmd(dev, AX_CMD_READ_PHY_ID, 0, 0, 2, buf);
devdbg(dev, "asix_get_phy_addr()");
if (ret < 0) {
deverr(dev, "Error reading PHYID register: %02x", ret);
goto out;
}
devdbg(dev, "asix_get_phy_addr() returning 0x%04x", *((__le16 *)buf));
ret = buf[1];
out:
return ret;
}
static int asix_sw_reset(struct usbnet *dev, u8 flags)
{
int ret;
ret = asix_write_cmd(dev, AX_CMD_SW_RESET, flags, 0, 0, NULL);
if (ret < 0)
deverr(dev,"Failed to send software reset: %02x", ret);
return ret;
}
static u16 asix_read_rx_ctl(struct usbnet *dev)
{
__le16 v;
int ret = asix_read_cmd(dev, AX_CMD_READ_RX_CTL, 0, 0, 2, &v);
if (ret < 0) {
deverr(dev, "Error reading RX_CTL register: %02x", ret);
goto out;
}
ret = le16_to_cpu(v);
out:
return ret;
}
static int asix_write_rx_ctl(struct usbnet *dev, u16 mode)
{
int ret;
devdbg(dev,"asix_write_rx_ctl() - mode = 0x%04x", mode);
ret = asix_write_cmd(dev, AX_CMD_WRITE_RX_CTL, mode, 0, 0, NULL);
if (ret < 0)
deverr(dev, "Failed to write RX_CTL mode to 0x%04x: %02x",
mode, ret);
return ret;
}
static u16 asix_read_medium_status(struct usbnet *dev)
{
__le16 v;
int ret = asix_read_cmd(dev, AX_CMD_READ_MEDIUM_STATUS, 0, 0, 2, &v);
if (ret < 0) {
deverr(dev, "Error reading Medium Status register: %02x", ret);
goto out;
}
ret = le16_to_cpu(v);
out:
return ret;
}
static int asix_write_medium_mode(struct usbnet *dev, u16 mode)
{
int ret;
devdbg(dev,"asix_write_medium_mode() - mode = 0x%04x", mode);
ret = asix_write_cmd(dev, AX_CMD_WRITE_MEDIUM_MODE, mode, 0, 0, NULL);
if (ret < 0)
deverr(dev, "Failed to write Medium Mode mode to 0x%04x: %02x",
mode, ret);
return ret;
}
static int asix_write_gpio(struct usbnet *dev, u16 value, int sleep)
{
int ret;
devdbg(dev,"asix_write_gpio() - value = 0x%04x", value);
ret = asix_write_cmd(dev, AX_CMD_WRITE_GPIOS, value, 0, 0, NULL);
if (ret < 0)
deverr(dev, "Failed to write GPIO value 0x%04x: %02x",
value, ret);
if (sleep)
msleep(sleep);
return ret;
}
/*
* AX88772 & AX88178 have a 16-bit RX_CTL value
*/
static void asix_set_multicast(struct net_device *net)
{
struct usbnet *dev = netdev_priv(net);
struct asix_data *data = (struct asix_data *)&dev->data;
u16 rx_ctl = AX_DEFAULT_RX_CTL;
if (net->flags & IFF_PROMISC) {
rx_ctl |= AX_RX_CTL_PRO;
} else if (net->flags & IFF_ALLMULTI
|| net->mc_count > AX_MAX_MCAST) {
rx_ctl |= AX_RX_CTL_AMALL;
} else if (net->mc_count == 0) {
/* just broadcast and directed */
} else {
/* We use the 20 byte dev->data
* for our 8 byte filter buffer
* to avoid allocating memory that
* is tricky to free later */
struct dev_mc_list *mc_list = net->mc_list;
u32 crc_bits;
int i;
memset(data->multi_filter, 0, AX_MCAST_FILTER_SIZE);
/* Build the multicast hash filter. */
for (i = 0; i < net->mc_count; i++) {
crc_bits =
ether_crc(ETH_ALEN,
mc_list->dmi_addr) >> 26;
data->multi_filter[crc_bits >> 3] |=
1 << (crc_bits & 7);
mc_list = mc_list->next;
}
asix_write_cmd_async(dev, AX_CMD_WRITE_MULTI_FILTER, 0, 0,
AX_MCAST_FILTER_SIZE, data->multi_filter);
rx_ctl |= AX_RX_CTL_AM;
}
asix_write_cmd_async(dev, AX_CMD_WRITE_RX_CTL, rx_ctl, 0, 0, NULL);
}
static int asix_mdio_read(struct net_device *netdev, int phy_id, int loc)
{
struct usbnet *dev = netdev_priv(netdev);
__le16 res;
mutex_lock(&dev->phy_mutex);
asix_set_sw_mii(dev);
asix_read_cmd(dev, AX_CMD_READ_MII_REG, phy_id,
(__u16)loc, 2, &res);
asix_set_hw_mii(dev);
mutex_unlock(&dev->phy_mutex);
devdbg(dev, "asix_mdio_read() phy_id=0x%02x, loc=0x%02x, returns=0x%04x", phy_id, loc, le16_to_cpu(res));
return le16_to_cpu(res);
}
static void
asix_mdio_write(struct net_device *netdev, int phy_id, int loc, int val)
{
struct usbnet *dev = netdev_priv(netdev);
__le16 res = cpu_to_le16(val);
devdbg(dev, "asix_mdio_write() phy_id=0x%02x, loc=0x%02x, val=0x%04x", phy_id, loc, val);
mutex_lock(&dev->phy_mutex);
asix_set_sw_mii(dev);
asix_write_cmd(dev, AX_CMD_WRITE_MII_REG, phy_id, (__u16)loc, 2, &res);
asix_set_hw_mii(dev);
mutex_unlock(&dev->phy_mutex);
}
/* Get the PHY Identifier from the PHYSID1 & PHYSID2 MII registers */
static u32 asix_get_phyid(struct usbnet *dev)
{
int phy_reg;
u32 phy_id;
phy_reg = asix_mdio_read(dev->net, dev->mii.phy_id, MII_PHYSID1);
if (phy_reg < 0)
return 0;
phy_id = (phy_reg & 0xffff) << 16;
phy_reg = asix_mdio_read(dev->net, dev->mii.phy_id, MII_PHYSID2);
if (phy_reg < 0)
return 0;
phy_id |= (phy_reg & 0xffff);
return phy_id;
}
static void
asix_get_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo)
{
struct usbnet *dev = netdev_priv(net);
u8 opt;
if (asix_read_cmd(dev, AX_CMD_READ_MONITOR_MODE, 0, 0, 1, &opt) < 0) {
wolinfo->supported = 0;
wolinfo->wolopts = 0;
return;
}
wolinfo->supported = WAKE_PHY | WAKE_MAGIC;
wolinfo->wolopts = 0;
if (opt & AX_MONITOR_MODE) {
if (opt & AX_MONITOR_LINK)
wolinfo->wolopts |= WAKE_PHY;
if (opt & AX_MONITOR_MAGIC)
wolinfo->wolopts |= WAKE_MAGIC;
}
}
static int
asix_set_wol(struct net_device *net, struct ethtool_wolinfo *wolinfo)
{
struct usbnet *dev = netdev_priv(net);
u8 opt = 0;
if (wolinfo->wolopts & WAKE_PHY)
opt |= AX_MONITOR_LINK;
if (wolinfo->wolopts & WAKE_MAGIC)
opt |= AX_MONITOR_MAGIC;
if (opt != 0)
opt |= AX_MONITOR_MODE;
if (asix_write_cmd(dev, AX_CMD_WRITE_MONITOR_MODE,
opt, 0, 0, NULL) < 0)
return -EINVAL;
return 0;
}
static int asix_get_eeprom_len(struct net_device *net)
{
struct usbnet *dev = netdev_priv(net);
struct asix_data *data = (struct asix_data *)&dev->data;
return data->eeprom_len;
}
static int asix_get_eeprom(struct net_device *net,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct usbnet *dev = netdev_priv(net);
__le16 *ebuf = (__le16 *)data;
int i;
/* Crude hack to ensure that we don't overwrite memory
* if an odd length is supplied
*/
if (eeprom->len % 2)
return -EINVAL;
eeprom->magic = AX_EEPROM_MAGIC;
/* ax8817x returns 2 bytes from eeprom on read */
for (i=0; i < eeprom->len / 2; i++) {
if (asix_read_cmd(dev, AX_CMD_READ_EEPROM,
eeprom->offset + i, 0, 2, &ebuf[i]) < 0)
return -EINVAL;
}
return 0;
}
static void asix_get_drvinfo (struct net_device *net,
struct ethtool_drvinfo *info)
{
struct usbnet *dev = netdev_priv(net);
struct asix_data *data = (struct asix_data *)&dev->data;
/* Inherit standard device info */
usbnet_get_drvinfo(net, info);
strncpy (info->driver, driver_name, sizeof info->driver);
strncpy (info->version, DRIVER_VERSION, sizeof info->version);
info->eedump_len = data->eeprom_len;
}
static u32 asix_get_link(struct net_device *net)
{
struct usbnet *dev = netdev_priv(net);
return mii_link_ok(&dev->mii);
}
static int asix_ioctl (struct net_device *net, struct ifreq *rq, int cmd)
{
struct usbnet *dev = netdev_priv(net);
return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL);
}
/* We need to override some ethtool_ops so we require our
own structure so we don't interfere with other usbnet
devices that may be connected at the same time. */
static struct ethtool_ops ax88172_ethtool_ops = {
.get_drvinfo = asix_get_drvinfo,
.get_link = asix_get_link,
.get_msglevel = usbnet_get_msglevel,
.set_msglevel = usbnet_set_msglevel,
.get_wol = asix_get_wol,
.set_wol = asix_set_wol,
.get_eeprom_len = asix_get_eeprom_len,
.get_eeprom = asix_get_eeprom,
.get_settings = usbnet_get_settings,
.set_settings = usbnet_set_settings,
.nway_reset = usbnet_nway_reset,
};
static void ax88172_set_multicast(struct net_device *net)
{
struct usbnet *dev = netdev_priv(net);
struct asix_data *data = (struct asix_data *)&dev->data;
u8 rx_ctl = 0x8c;
if (net->flags & IFF_PROMISC) {
rx_ctl |= 0x01;
} else if (net->flags & IFF_ALLMULTI
|| net->mc_count > AX_MAX_MCAST) {
rx_ctl |= 0x02;
} else if (net->mc_count == 0) {
/* just broadcast and directed */
} else {
/* We use the 20 byte dev->data
* for our 8 byte filter buffer
* to avoid allocating memory that
* is tricky to free later */
struct dev_mc_list *mc_list = net->mc_list;
u32 crc_bits;
int i;
memset(data->multi_filter, 0, AX_MCAST_FILTER_SIZE);
/* Build the multicast hash filter. */
for (i = 0; i < net->mc_count; i++) {
crc_bits =
ether_crc(ETH_ALEN,
mc_list->dmi_addr) >> 26;
data->multi_filter[crc_bits >> 3] |=
1 << (crc_bits & 7);
mc_list = mc_list->next;
}
asix_write_cmd_async(dev, AX_CMD_WRITE_MULTI_FILTER, 0, 0,
AX_MCAST_FILTER_SIZE, data->multi_filter);
rx_ctl |= 0x10;
}
asix_write_cmd_async(dev, AX_CMD_WRITE_RX_CTL, rx_ctl, 0, 0, NULL);
}
static int ax88172_link_reset(struct usbnet *dev)
{
u8 mode;
struct ethtool_cmd ecmd;
mii_check_media(&dev->mii, 1, 1);
mii_ethtool_gset(&dev->mii, &ecmd);
mode = AX88172_MEDIUM_DEFAULT;
if (ecmd.duplex != DUPLEX_FULL)
mode |= ~AX88172_MEDIUM_FD;
devdbg(dev, "ax88172_link_reset() speed: %d duplex: %d setting mode to 0x%04x", ecmd.speed, ecmd.duplex, mode);
asix_write_medium_mode(dev, mode);
return 0;
}
static int ax88172_bind(struct usbnet *dev, struct usb_interface *intf)
{
int ret = 0;
u8 buf[ETH_ALEN];
int i;
unsigned long gpio_bits = dev->driver_info->data;
struct asix_data *data = (struct asix_data *)&dev->data;
data->eeprom_len = AX88172_EEPROM_LEN;
usbnet_get_endpoints(dev,intf);
/* Toggle the GPIOs in a manufacturer/model specific way */
for (i = 2; i >= 0; i--) {
if ((ret = asix_write_cmd(dev, AX_CMD_WRITE_GPIOS,
(gpio_bits >> (i * 8)) & 0xff, 0, 0,
NULL)) < 0)
goto out;
msleep(5);
}
if ((ret = asix_write_rx_ctl(dev, 0x80)) < 0)
goto out;
/* Get the MAC address */
if ((ret = asix_read_cmd(dev, AX88172_CMD_READ_NODE_ID,
0, 0, ETH_ALEN, buf)) < 0) {
dbg("read AX_CMD_READ_NODE_ID failed: %d", ret);
goto out;
}
memcpy(dev->net->dev_addr, buf, ETH_ALEN);
/* Initialize MII structure */
dev->mii.dev = dev->net;
dev->mii.mdio_read = asix_mdio_read;
dev->mii.mdio_write = asix_mdio_write;
dev->mii.phy_id_mask = 0x3f;
dev->mii.reg_num_mask = 0x1f;
dev->mii.phy_id = asix_get_phy_addr(dev);
dev->net->do_ioctl = asix_ioctl;
dev->net->set_multicast_list = ax88172_set_multicast;
dev->net->ethtool_ops = &ax88172_ethtool_ops;
asix_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR, BMCR_RESET);
asix_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE,
ADVERTISE_ALL | ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP);
mii_nway_restart(&dev->mii);
return 0;
out:
return ret;
}
static struct ethtool_ops ax88772_ethtool_ops = {
.get_drvinfo = asix_get_drvinfo,
.get_link = asix_get_link,
.get_msglevel = usbnet_get_msglevel,
.set_msglevel = usbnet_set_msglevel,
.get_wol = asix_get_wol,
.set_wol = asix_set_wol,
.get_eeprom_len = asix_get_eeprom_len,
.get_eeprom = asix_get_eeprom,
.get_settings = usbnet_get_settings,
.set_settings = usbnet_set_settings,
.nway_reset = usbnet_nway_reset,
};
static int ax88772_link_reset(struct usbnet *dev)
{
u16 mode;
struct ethtool_cmd ecmd;
mii_check_media(&dev->mii, 1, 1);
mii_ethtool_gset(&dev->mii, &ecmd);
mode = AX88772_MEDIUM_DEFAULT;
if (ecmd.speed != SPEED_100)
mode &= ~AX_MEDIUM_PS;
if (ecmd.duplex != DUPLEX_FULL)
mode &= ~AX_MEDIUM_FD;
devdbg(dev, "ax88772_link_reset() speed: %d duplex: %d setting mode to 0x%04x", ecmd.speed, ecmd.duplex, mode);
asix_write_medium_mode(dev, mode);
return 0;
}
static int ax88772_bind(struct usbnet *dev, struct usb_interface *intf)
{
int ret, embd_phy;
u16 rx_ctl;
struct asix_data *data = (struct asix_data *)&dev->data;
u8 buf[ETH_ALEN];
u32 phyid;
data->eeprom_len = AX88772_EEPROM_LEN;
usbnet_get_endpoints(dev,intf);
if ((ret = asix_write_gpio(dev,
AX_GPIO_RSE | AX_GPIO_GPO_2 | AX_GPIO_GPO2EN, 5)) < 0)
goto out;
/* 0x10 is the phy id of the embedded 10/100 ethernet phy */
embd_phy = ((asix_get_phy_addr(dev) & 0x1f) == 0x10 ? 1 : 0);
if ((ret = asix_write_cmd(dev, AX_CMD_SW_PHY_SELECT,
embd_phy, 0, 0, NULL)) < 0) {
dbg("Select PHY #1 failed: %d", ret);
goto out;
}
if ((ret = asix_sw_reset(dev, AX_SWRESET_IPPD | AX_SWRESET_PRL)) < 0)
goto out;
msleep(150);
if ((ret = asix_sw_reset(dev, AX_SWRESET_CLEAR)) < 0)
goto out;
msleep(150);
if (embd_phy) {
if ((ret = asix_sw_reset(dev, AX_SWRESET_IPRL)) < 0)
goto out;
}
else {
if ((ret = asix_sw_reset(dev, AX_SWRESET_PRTE)) < 0)
goto out;
}
msleep(150);
rx_ctl = asix_read_rx_ctl(dev);
dbg("RX_CTL is 0x%04x after software reset", rx_ctl);
if ((ret = asix_write_rx_ctl(dev, 0x0000)) < 0)
goto out;
rx_ctl = asix_read_rx_ctl(dev);
dbg("RX_CTL is 0x%04x setting to 0x0000", rx_ctl);
/* Get the MAC address */
if ((ret = asix_read_cmd(dev, AX_CMD_READ_NODE_ID,
0, 0, ETH_ALEN, buf)) < 0) {
dbg("Failed to read MAC address: %d", ret);
goto out;
}
memcpy(dev->net->dev_addr, buf, ETH_ALEN);
/* Initialize MII structure */
dev->mii.dev = dev->net;
dev->mii.mdio_read = asix_mdio_read;
dev->mii.mdio_write = asix_mdio_write;
dev->mii.phy_id_mask = 0x1f;
dev->mii.reg_num_mask = 0x1f;
dev->net->do_ioctl = asix_ioctl;
dev->mii.phy_id = asix_get_phy_addr(dev);
phyid = asix_get_phyid(dev);
dbg("PHYID=0x%08x", phyid);
if ((ret = asix_sw_reset(dev, AX_SWRESET_PRL)) < 0)
goto out;
msleep(150);
if ((ret = asix_sw_reset(dev, AX_SWRESET_IPRL | AX_SWRESET_PRL)) < 0)
goto out;
msleep(150);
dev->net->set_multicast_list = asix_set_multicast;
dev->net->ethtool_ops = &ax88772_ethtool_ops;
asix_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR, BMCR_RESET);
asix_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE,
ADVERTISE_ALL | ADVERTISE_CSMA);
mii_nway_restart(&dev->mii);
if ((ret = asix_write_medium_mode(dev, AX88772_MEDIUM_DEFAULT)) < 0)
goto out;
if ((ret = asix_write_cmd(dev, AX_CMD_WRITE_IPG0,
AX88772_IPG0_DEFAULT | AX88772_IPG1_DEFAULT,
AX88772_IPG2_DEFAULT, 0, NULL)) < 0) {
dbg("Write IPG,IPG1,IPG2 failed: %d", ret);
goto out;
}
/* Set RX_CTL to default values with 2k buffer, and enable cactus */
if ((ret = asix_write_rx_ctl(dev, AX_DEFAULT_RX_CTL)) < 0)
goto out;
rx_ctl = asix_read_rx_ctl(dev);
dbg("RX_CTL is 0x%04x after all initializations", rx_ctl);
rx_ctl = asix_read_medium_status(dev);
dbg("Medium Status is 0x%04x after all initializations", rx_ctl);
/* Asix framing packs multiple eth frames into a 2K usb bulk transfer */
if (dev->driver_info->flags & FLAG_FRAMING_AX) {
/* hard_mtu is still the default - the device does not support
jumbo eth frames */
dev->rx_urb_size = 2048;
}
return 0;
out:
return ret;
}
static struct ethtool_ops ax88178_ethtool_ops = {
.get_drvinfo = asix_get_drvinfo,
.get_link = asix_get_link,
.get_msglevel = usbnet_get_msglevel,
.set_msglevel = usbnet_set_msglevel,
.get_wol = asix_get_wol,
.set_wol = asix_set_wol,
.get_eeprom_len = asix_get_eeprom_len,
.get_eeprom = asix_get_eeprom,
.get_settings = usbnet_get_settings,
.set_settings = usbnet_set_settings,
.nway_reset = usbnet_nway_reset,
};
static int marvell_phy_init(struct usbnet *dev)
{
struct asix_data *data = (struct asix_data *)&dev->data;
u16 reg;
devdbg(dev,"marvell_phy_init()");
reg = asix_mdio_read(dev->net, dev->mii.phy_id, MII_MARVELL_STATUS);
devdbg(dev,"MII_MARVELL_STATUS = 0x%04x", reg);
asix_mdio_write(dev->net, dev->mii.phy_id, MII_MARVELL_CTRL,
MARVELL_CTRL_RXDELAY | MARVELL_CTRL_TXDELAY);
if (data->ledmode) {
reg = asix_mdio_read(dev->net, dev->mii.phy_id,
MII_MARVELL_LED_CTRL);
devdbg(dev,"MII_MARVELL_LED_CTRL (1) = 0x%04x", reg);
reg &= 0xf8ff;
reg |= (1 + 0x0100);
asix_mdio_write(dev->net, dev->mii.phy_id,
MII_MARVELL_LED_CTRL, reg);
reg = asix_mdio_read(dev->net, dev->mii.phy_id,
MII_MARVELL_LED_CTRL);
devdbg(dev,"MII_MARVELL_LED_CTRL (2) = 0x%04x", reg);
reg &= 0xfc0f;
}
return 0;
}
static int marvell_led_status(struct usbnet *dev, u16 speed)
{
u16 reg = asix_mdio_read(dev->net, dev->mii.phy_id, MARVELL_LED_MANUAL);
devdbg(dev, "marvell_led_status() read 0x%04x", reg);
/* Clear out the center LED bits - 0x03F0 */
reg &= 0xfc0f;
switch (speed) {
case SPEED_1000:
reg |= 0x03e0;
break;
case SPEED_100:
reg |= 0x03b0;
break;
default:
reg |= 0x02f0;
}
devdbg(dev, "marvell_led_status() writing 0x%04x", reg);
asix_mdio_write(dev->net, dev->mii.phy_id, MARVELL_LED_MANUAL, reg);
return 0;
}
static int ax88178_link_reset(struct usbnet *dev)
{
u16 mode;
struct ethtool_cmd ecmd;
struct asix_data *data = (struct asix_data *)&dev->data;
devdbg(dev,"ax88178_link_reset()");
mii_check_media(&dev->mii, 1, 1);
mii_ethtool_gset(&dev->mii, &ecmd);
mode = AX88178_MEDIUM_DEFAULT;
if (ecmd.speed == SPEED_1000)
mode |= AX_MEDIUM_GM | AX_MEDIUM_ENCK;
else if (ecmd.speed == SPEED_100)
mode |= AX_MEDIUM_PS;
else
mode &= ~(AX_MEDIUM_PS | AX_MEDIUM_GM);
if (ecmd.duplex == DUPLEX_FULL)
mode |= AX_MEDIUM_FD;
else
mode &= ~AX_MEDIUM_FD;
devdbg(dev, "ax88178_link_reset() speed: %d duplex: %d setting mode to 0x%04x", ecmd.speed, ecmd.duplex, mode);
asix_write_medium_mode(dev, mode);
if (data->phymode == PHY_MODE_MARVELL && data->ledmode)
marvell_led_status(dev, ecmd.speed);
return 0;
}
static void ax88178_set_mfb(struct usbnet *dev)
{
u16 mfb = AX_RX_CTL_MFB_16384;
u16 rxctl;
u16 medium;
int old_rx_urb_size = dev->rx_urb_size;
if (dev->hard_mtu < 2048) {
dev->rx_urb_size = 2048;
mfb = AX_RX_CTL_MFB_2048;
} else if (dev->hard_mtu < 4096) {
dev->rx_urb_size = 4096;
mfb = AX_RX_CTL_MFB_4096;
} else if (dev->hard_mtu < 8192) {
dev->rx_urb_size = 8192;
mfb = AX_RX_CTL_MFB_8192;
} else if (dev->hard_mtu < 16384) {
dev->rx_urb_size = 16384;
mfb = AX_RX_CTL_MFB_16384;
}
rxctl = asix_read_rx_ctl(dev);
asix_write_rx_ctl(dev, (rxctl & ~AX_RX_CTL_MFB_16384) | mfb);
medium = asix_read_medium_status(dev);
if (dev->net->mtu > 1500)
medium |= AX_MEDIUM_JFE;
else
medium &= ~AX_MEDIUM_JFE;
asix_write_medium_mode(dev, medium);
if (dev->rx_urb_size > old_rx_urb_size)
usbnet_unlink_rx_urbs(dev);
}
static int ax88178_change_mtu(struct net_device *net, int new_mtu)
{
struct usbnet *dev = netdev_priv(net);
int ll_mtu = new_mtu + net->hard_header_len + 4;
devdbg(dev, "ax88178_change_mtu() new_mtu=%d", new_mtu);
if (new_mtu <= 0 || ll_mtu > 16384)
return -EINVAL;
if ((ll_mtu % dev->maxpacket) == 0)
return -EDOM;
net->mtu = new_mtu;
dev->hard_mtu = net->mtu + net->hard_header_len;
ax88178_set_mfb(dev);
return 0;
}
static int ax88178_bind(struct usbnet *dev, struct usb_interface *intf)
{
struct asix_data *data = (struct asix_data *)&dev->data;
int ret;
u8 buf[ETH_ALEN];
__le16 eeprom;
u8 status;
int gpio0 = 0;
u32 phyid;
usbnet_get_endpoints(dev,intf);
asix_read_cmd(dev, AX_CMD_READ_GPIOS, 0, 0, 1, &status);
dbg("GPIO Status: 0x%04x", status);
asix_write_cmd(dev, AX_CMD_WRITE_ENABLE, 0, 0, 0, NULL);
asix_read_cmd(dev, AX_CMD_READ_EEPROM, 0x0017, 0, 2, &eeprom);
asix_write_cmd(dev, AX_CMD_WRITE_DISABLE, 0, 0, 0, NULL);
dbg("EEPROM index 0x17 is 0x%04x", eeprom);
if (eeprom == cpu_to_le16(0xffff)) {
data->phymode = PHY_MODE_MARVELL;
data->ledmode = 0;
gpio0 = 1;
} else {
data->phymode = le16_to_cpu(eeprom) & 7;
data->ledmode = le16_to_cpu(eeprom) >> 8;
gpio0 = (le16_to_cpu(eeprom) & 0x80) ? 0 : 1;
}
dbg("GPIO0: %d, PhyMode: %d", gpio0, data->phymode);
asix_write_gpio(dev, AX_GPIO_RSE | AX_GPIO_GPO_1 | AX_GPIO_GPO1EN, 40);
if ((le16_to_cpu(eeprom) >> 8) != 1) {
asix_write_gpio(dev, 0x003c, 30);
asix_write_gpio(dev, 0x001c, 300);
asix_write_gpio(dev, 0x003c, 30);
} else {
dbg("gpio phymode == 1 path");
asix_write_gpio(dev, AX_GPIO_GPO1EN, 30);
asix_write_gpio(dev, AX_GPIO_GPO1EN | AX_GPIO_GPO_1, 30);
}
asix_sw_reset(dev, 0);
msleep(150);
asix_sw_reset(dev, AX_SWRESET_PRL | AX_SWRESET_IPPD);
msleep(150);
asix_write_rx_ctl(dev, 0);
/* Get the MAC address */
if ((ret = asix_read_cmd(dev, AX_CMD_READ_NODE_ID,
0, 0, ETH_ALEN, buf)) < 0) {
dbg("Failed to read MAC address: %d", ret);
goto out;
}
memcpy(dev->net->dev_addr, buf, ETH_ALEN);
/* Initialize MII structure */
dev->mii.dev = dev->net;
dev->mii.mdio_read = asix_mdio_read;
dev->mii.mdio_write = asix_mdio_write;
dev->mii.phy_id_mask = 0x1f;
dev->mii.reg_num_mask = 0xff;
dev->mii.supports_gmii = 1;
dev->net->do_ioctl = asix_ioctl;
dev->mii.phy_id = asix_get_phy_addr(dev);
dev->net->set_multicast_list = asix_set_multicast;
dev->net->ethtool_ops = &ax88178_ethtool_ops;
dev->net->change_mtu = &ax88178_change_mtu;
phyid = asix_get_phyid(dev);
dbg("PHYID=0x%08x", phyid);
if (data->phymode == PHY_MODE_MARVELL) {
marvell_phy_init(dev);
msleep(60);
}
asix_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR,
BMCR_RESET | BMCR_ANENABLE);
asix_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE,
ADVERTISE_ALL | ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP);
asix_mdio_write(dev->net, dev->mii.phy_id, MII_CTRL1000,
ADVERTISE_1000FULL);
mii_nway_restart(&dev->mii);
if ((ret = asix_write_medium_mode(dev, AX88178_MEDIUM_DEFAULT)) < 0)
goto out;
if ((ret = asix_write_rx_ctl(dev, AX_DEFAULT_RX_CTL)) < 0)
goto out;
/* Asix framing packs multiple eth frames into a 2K usb bulk transfer */
if (dev->driver_info->flags & FLAG_FRAMING_AX) {
/* hard_mtu is still the default - the device does not support
jumbo eth frames */
dev->rx_urb_size = 2048;
}
return 0;
out:
return ret;
}
static const struct driver_info ax8817x_info = {
.description = "ASIX AX8817x USB 2.0 Ethernet",
.bind = ax88172_bind,
.status = asix_status,
.link_reset = ax88172_link_reset,
.reset = ax88172_link_reset,
.flags = FLAG_ETHER,
.data = 0x00130103,
};
static const struct driver_info dlink_dub_e100_info = {
.description = "DLink DUB-E100 USB Ethernet",
.bind = ax88172_bind,
.status = asix_status,
.link_reset = ax88172_link_reset,
.reset = ax88172_link_reset,
.flags = FLAG_ETHER,
.data = 0x009f9d9f,
};
static const struct driver_info netgear_fa120_info = {
.description = "Netgear FA-120 USB Ethernet",
.bind = ax88172_bind,
.status = asix_status,
.link_reset = ax88172_link_reset,
.reset = ax88172_link_reset,
.flags = FLAG_ETHER,
.data = 0x00130103,
};
static const struct driver_info hawking_uf200_info = {
.description = "Hawking UF200 USB Ethernet",
.bind = ax88172_bind,
.status = asix_status,
.link_reset = ax88172_link_reset,
.reset = ax88172_link_reset,
.flags = FLAG_ETHER,
.data = 0x001f1d1f,
};
static const struct driver_info ax88772_info = {
.description = "ASIX AX88772 USB 2.0 Ethernet",
.bind = ax88772_bind,
.status = asix_status,
.link_reset = ax88772_link_reset,
.reset = ax88772_link_reset,
.flags = FLAG_ETHER | FLAG_FRAMING_AX,
.rx_fixup = asix_rx_fixup,
.tx_fixup = asix_tx_fixup,
};
static const struct driver_info ax88178_info = {
.description = "ASIX AX88178 USB 2.0 Ethernet",
.bind = ax88178_bind,
.status = asix_status,
.link_reset = ax88178_link_reset,
.reset = ax88178_link_reset,
.flags = FLAG_ETHER | FLAG_FRAMING_AX,
.rx_fixup = asix_rx_fixup,
.tx_fixup = asix_tx_fixup,
};
static const struct usb_device_id products [] = {
{
// Linksys USB200M
USB_DEVICE (0x077b, 0x2226),
.driver_info = (unsigned long) &ax8817x_info,
}, {
// Netgear FA120
USB_DEVICE (0x0846, 0x1040),
.driver_info = (unsigned long) &netgear_fa120_info,
}, {
// DLink DUB-E100
USB_DEVICE (0x2001, 0x1a00),
.driver_info = (unsigned long) &dlink_dub_e100_info,
}, {
// Intellinet, ST Lab USB Ethernet
USB_DEVICE (0x0b95, 0x1720),
.driver_info = (unsigned long) &ax8817x_info,
}, {
// Hawking UF200, TrendNet TU2-ET100
USB_DEVICE (0x07b8, 0x420a),
.driver_info = (unsigned long) &hawking_uf200_info,
}, {
// Billionton Systems, USB2AR
USB_DEVICE (0x08dd, 0x90ff),
.driver_info = (unsigned long) &ax8817x_info,
}, {
// ATEN UC210T
USB_DEVICE (0x0557, 0x2009),
.driver_info = (unsigned long) &ax8817x_info,
}, {
// Buffalo LUA-U2-KTX
USB_DEVICE (0x0411, 0x003d),
.driver_info = (unsigned long) &ax8817x_info,
}, {
// Sitecom LN-029 "USB 2.0 10/100 Ethernet adapter"
USB_DEVICE (0x6189, 0x182d),
.driver_info = (unsigned long) &ax8817x_info,
}, {
// corega FEther USB2-TX
USB_DEVICE (0x07aa, 0x0017),
.driver_info = (unsigned long) &ax8817x_info,
}, {
// Surecom EP-1427X-2
USB_DEVICE (0x1189, 0x0893),
.driver_info = (unsigned long) &ax8817x_info,
}, {
// goodway corp usb gwusb2e
USB_DEVICE (0x1631, 0x6200),
.driver_info = (unsigned long) &ax8817x_info,
}, {
// JVC MP-PRX1 Port Replicator
USB_DEVICE (0x04f1, 0x3008),
.driver_info = (unsigned long) &ax8817x_info,
}, {
// ASIX AX88772 10/100
USB_DEVICE (0x0b95, 0x7720),
.driver_info = (unsigned long) &ax88772_info,
}, {
// ASIX AX88178 10/100/1000
USB_DEVICE (0x0b95, 0x1780),
.driver_info = (unsigned long) &ax88178_info,
}, {
// Linksys USB200M Rev 2
USB_DEVICE (0x13b1, 0x0018),
.driver_info = (unsigned long) &ax88772_info,
}, {
// 0Q0 cable ethernet
USB_DEVICE (0x1557, 0x7720),
.driver_info = (unsigned long) &ax88772_info,
}, {
// DLink DUB-E100 H/W Ver B1
USB_DEVICE (0x07d1, 0x3c05),
.driver_info = (unsigned long) &ax88772_info,
}, {
// DLink DUB-E100 H/W Ver B1 Alternate
USB_DEVICE (0x2001, 0x3c05),
.driver_info = (unsigned long) &ax88772_info,
}, {
// Linksys USB1000
USB_DEVICE (0x1737, 0x0039),
.driver_info = (unsigned long) &ax88178_info,
}, {
// IO-DATA ETG-US2
USB_DEVICE (0x04bb, 0x0930),
.driver_info = (unsigned long) &ax88178_info,
}, {
// Belkin F5D5055
USB_DEVICE(0x050d, 0x5055),
.driver_info = (unsigned long) &ax88178_info,
},
{ }, // END
};
MODULE_DEVICE_TABLE(usb, products);
static struct usb_driver asix_driver = {
.name = "asix",
.id_table = products,
.probe = usbnet_probe,
.suspend = usbnet_suspend,
.resume = usbnet_resume,
.disconnect = usbnet_disconnect,
.supports_autosuspend = 1,
};
static int __init asix_init(void)
{
return usb_register(&asix_driver);
}
module_init(asix_init);
static void __exit asix_exit(void)
{
usb_deregister(&asix_driver);
}
module_exit(asix_exit);
MODULE_AUTHOR("David Hollis");
MODULE_DESCRIPTION("ASIX AX8817X based USB 2.0 Ethernet Devices");
MODULE_LICENSE("GPL");