android_kernel_xiaomi_sm8350/drivers/block/umem.c

1245 lines
35 KiB
C
Raw Normal View History

/*
* mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
*
* (C) 2001 San Mehat <nettwerk@valinux.com>
* (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
* (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
*
* This driver for the Micro Memory PCI Memory Module with Battery Backup
* is Copyright Micro Memory Inc 2001-2002. All rights reserved.
*
* This driver is released to the public under the terms of the
* GNU GENERAL PUBLIC LICENSE version 2
* See the file COPYING for details.
*
* This driver provides a standard block device interface for Micro Memory(tm)
* PCI based RAM boards.
* 10/05/01: Phap Nguyen - Rebuilt the driver
* 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
* 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
* - use stand disk partitioning (so fdisk works).
* 08nov2001:NeilBrown - change driver name from "mm" to "umem"
* - incorporate into main kernel
* 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
* - use spin_lock_bh instead of _irq
* - Never block on make_request. queue
* bh's instead.
* - unregister umem from devfs at mod unload
* - Change version to 2.3
* 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
* 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
* 15May2002:NeilBrown - convert to bio for 2.5
* 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
* - a sequence of writes that cover the card, and
* - set initialised bit then.
*/
//#define DEBUG /* uncomment if you want debugging info (pr_debug) */
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/ioctl.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/smp_lock.h>
#include <linux/timer.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/dma-mapping.h>
#include <linux/fcntl.h> /* O_ACCMODE */
#include <linux/hdreg.h> /* HDIO_GETGEO */
#include <linux/umem.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#define MM_MAXCARDS 4
#define MM_RAHEAD 2 /* two sectors */
#define MM_BLKSIZE 1024 /* 1k blocks */
#define MM_HARDSECT 512 /* 512-byte hardware sectors */
#define MM_SHIFT 6 /* max 64 partitions on 4 cards */
/*
* Version Information
*/
#define DRIVER_VERSION "v2.3"
#define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
#define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
static int debug;
/* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
#define HW_TRACE(x)
#define DEBUG_LED_ON_TRANSFER 0x01
#define DEBUG_BATTERY_POLLING 0x02
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Debug bitmask");
static int pci_read_cmd = 0x0C; /* Read Multiple */
module_param(pci_read_cmd, int, 0);
MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
static int pci_write_cmd = 0x0F; /* Write and Invalidate */
module_param(pci_write_cmd, int, 0);
MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
static int pci_cmds;
static int major_nr;
#include <linux/blkdev.h>
#include <linux/blkpg.h>
struct cardinfo {
int card_number;
struct pci_dev *dev;
int irq;
unsigned long csr_base;
unsigned char __iomem *csr_remap;
unsigned long csr_len;
#ifdef CONFIG_MM_MAP_MEMORY
unsigned long mem_base;
unsigned char __iomem *mem_remap;
unsigned long mem_len;
#endif
unsigned int win_size; /* PCI window size */
unsigned int mm_size; /* size in kbytes */
unsigned int init_size; /* initial segment, in sectors,
* that we know to
* have been written
*/
struct bio *bio, *currentbio, **biotail;
request_queue_t *queue;
struct mm_page {
dma_addr_t page_dma;
struct mm_dma_desc *desc;
int cnt, headcnt;
struct bio *bio, **biotail;
} mm_pages[2];
#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
int Active, Ready;
struct tasklet_struct tasklet;
unsigned int dma_status;
struct {
int good;
int warned;
unsigned long last_change;
} battery[2];
spinlock_t lock;
int check_batteries;
int flags;
};
static struct cardinfo cards[MM_MAXCARDS];
static struct block_device_operations mm_fops;
static struct timer_list battery_timer;
static int num_cards = 0;
static struct gendisk *mm_gendisk[MM_MAXCARDS];
static void check_batteries(struct cardinfo *card);
/*
-----------------------------------------------------------------------------------
-- get_userbit
-----------------------------------------------------------------------------------
*/
static int get_userbit(struct cardinfo *card, int bit)
{
unsigned char led;
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
return led & bit;
}
/*
-----------------------------------------------------------------------------------
-- set_userbit
-----------------------------------------------------------------------------------
*/
static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
{
unsigned char led;
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
if (state)
led |= bit;
else
led &= ~bit;
writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
return 0;
}
/*
-----------------------------------------------------------------------------------
-- set_led
-----------------------------------------------------------------------------------
*/
/*
* NOTE: For the power LED, use the LED_POWER_* macros since they differ
*/
static void set_led(struct cardinfo *card, int shift, unsigned char state)
{
unsigned char led;
led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
if (state == LED_FLIP)
led ^= (1<<shift);
else {
led &= ~(0x03 << shift);
led |= (state << shift);
}
writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
}
#ifdef MM_DIAG
/*
-----------------------------------------------------------------------------------
-- dump_regs
-----------------------------------------------------------------------------------
*/
static void dump_regs(struct cardinfo *card)
{
unsigned char *p;
int i, i1;
p = card->csr_remap;
for (i = 0; i < 8; i++) {
printk(KERN_DEBUG "%p ", p);
for (i1 = 0; i1 < 16; i1++)
printk("%02x ", *p++);
printk("\n");
}
}
#endif
/*
-----------------------------------------------------------------------------------
-- dump_dmastat
-----------------------------------------------------------------------------------
*/
static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
{
printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
if (dmastat & DMASCR_ANY_ERR)
printk("ANY_ERR ");
if (dmastat & DMASCR_MBE_ERR)
printk("MBE_ERR ");
if (dmastat & DMASCR_PARITY_ERR_REP)
printk("PARITY_ERR_REP ");
if (dmastat & DMASCR_PARITY_ERR_DET)
printk("PARITY_ERR_DET ");
if (dmastat & DMASCR_SYSTEM_ERR_SIG)
printk("SYSTEM_ERR_SIG ");
if (dmastat & DMASCR_TARGET_ABT)
printk("TARGET_ABT ");
if (dmastat & DMASCR_MASTER_ABT)
printk("MASTER_ABT ");
if (dmastat & DMASCR_CHAIN_COMPLETE)
printk("CHAIN_COMPLETE ");
if (dmastat & DMASCR_DMA_COMPLETE)
printk("DMA_COMPLETE ");
printk("\n");
}
/*
* Theory of request handling
*
* Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
* We have two pages of mm_dma_desc, holding about 64 descriptors
* each. These are allocated at init time.
* One page is "Ready" and is either full, or can have request added.
* The other page might be "Active", which DMA is happening on it.
*
* Whenever IO on the active page completes, the Ready page is activated
* and the ex-Active page is clean out and made Ready.
* Otherwise the Ready page is only activated when it becomes full, or
* when mm_unplug_device is called via the unplug_io_fn.
*
* If a request arrives while both pages a full, it is queued, and b_rdev is
* overloaded to record whether it was a read or a write.
*
* The interrupt handler only polls the device to clear the interrupt.
* The processing of the result is done in a tasklet.
*/
static void mm_start_io(struct cardinfo *card)
{
/* we have the lock, we know there is
* no IO active, and we know that card->Active
* is set
*/
struct mm_dma_desc *desc;
struct mm_page *page;
int offset;
/* make the last descriptor end the chain */
page = &card->mm_pages[card->Active];
pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
desc = &page->desc[page->cnt-1];
desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
desc->sem_control_bits = desc->control_bits;
if (debug & DEBUG_LED_ON_TRANSFER)
set_led(card, LED_REMOVE, LED_ON);
desc = &page->desc[page->headcnt];
writel(0, card->csr_remap + DMA_PCI_ADDR);
writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
writel(0, card->csr_remap + DMA_LOCAL_ADDR);
writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
offset = ((char*)desc) - ((char*)page->desc);
writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
card->csr_remap + DMA_DESCRIPTOR_ADDR);
/* Force the value to u64 before shifting otherwise >> 32 is undefined C
* and on some ports will do nothing ! */
writel(cpu_to_le32(((u64)page->page_dma)>>32),
card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
/* Go, go, go */
writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
card->csr_remap + DMA_STATUS_CTRL);
}
static int add_bio(struct cardinfo *card);
static void activate(struct cardinfo *card)
{
/* if No page is Active, and Ready is
* not empty, then switch Ready page
* to active and start IO.
* Then add any bh's that are available to Ready
*/
do {
while (add_bio(card))
;
if (card->Active == -1 &&
card->mm_pages[card->Ready].cnt > 0) {
card->Active = card->Ready;
card->Ready = 1-card->Ready;
mm_start_io(card);
}
} while (card->Active == -1 && add_bio(card));
}
static inline void reset_page(struct mm_page *page)
{
page->cnt = 0;
page->headcnt = 0;
page->bio = NULL;
page->biotail = & page->bio;
}
static void mm_unplug_device(request_queue_t *q)
{
struct cardinfo *card = q->queuedata;
unsigned long flags;
spin_lock_irqsave(&card->lock, flags);
if (blk_remove_plug(q))
activate(card);
spin_unlock_irqrestore(&card->lock, flags);
}
/*
* If there is room on Ready page, take
* one bh off list and add it.
* return 1 if there was room, else 0.
*/
static int add_bio(struct cardinfo *card)
{
struct mm_page *p;
struct mm_dma_desc *desc;
dma_addr_t dma_handle;
int offset;
struct bio *bio;
int rw;
int len;
bio = card->currentbio;
if (!bio && card->bio) {
card->currentbio = card->bio;
card->bio = card->bio->bi_next;
if (card->bio == NULL)
card->biotail = &card->bio;
card->currentbio->bi_next = NULL;
return 1;
}
if (!bio)
return 0;
rw = bio_rw(bio);
if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
return 0;
len = bio_iovec(bio)->bv_len;
dma_handle = pci_map_page(card->dev,
bio_page(bio),
bio_offset(bio),
len,
(rw==READ) ?
PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
p = &card->mm_pages[card->Ready];
desc = &p->desc[p->cnt];
p->cnt++;
if ((p->biotail) != &bio->bi_next) {
*(p->biotail) = bio;
p->biotail = &(bio->bi_next);
bio->bi_next = NULL;
}
desc->data_dma_handle = dma_handle;
desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
desc->local_addr= cpu_to_le64(bio->bi_sector << 9);
desc->transfer_size = cpu_to_le32(len);
offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
desc->zero1 = desc->zero2 = 0;
offset = ( ((char*)(desc+1)) - ((char*)p->desc));
desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
DMASCR_PARITY_INT_EN|
DMASCR_CHAIN_EN |
DMASCR_SEM_EN |
pci_cmds);
if (rw == WRITE)
desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
desc->sem_control_bits = desc->control_bits;
bio->bi_sector += (len>>9);
bio->bi_size -= len;
bio->bi_idx++;
if (bio->bi_idx >= bio->bi_vcnt)
card->currentbio = NULL;
return 1;
}
static void process_page(unsigned long data)
{
/* check if any of the requests in the page are DMA_COMPLETE,
* and deal with them appropriately.
* If we find a descriptor without DMA_COMPLETE in the semaphore, then
* dma must have hit an error on that descriptor, so use dma_status instead
* and assume that all following descriptors must be re-tried.
*/
struct mm_page *page;
struct bio *return_bio=NULL;
struct cardinfo *card = (struct cardinfo *)data;
unsigned int dma_status = card->dma_status;
spin_lock_bh(&card->lock);
if (card->Active < 0)
goto out_unlock;
page = &card->mm_pages[card->Active];
while (page->headcnt < page->cnt) {
struct bio *bio = page->bio;
struct mm_dma_desc *desc = &page->desc[page->headcnt];
int control = le32_to_cpu(desc->sem_control_bits);
int last=0;
int idx;
if (!(control & DMASCR_DMA_COMPLETE)) {
control = dma_status;
last=1;
}
page->headcnt++;
idx = bio->bi_phys_segments;
bio->bi_phys_segments++;
if (bio->bi_phys_segments >= bio->bi_vcnt)
page->bio = bio->bi_next;
pci_unmap_page(card->dev, desc->data_dma_handle,
bio_iovec_idx(bio,idx)->bv_len,
(control& DMASCR_TRANSFER_READ) ?
PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
if (control & DMASCR_HARD_ERROR) {
/* error */
clear_bit(BIO_UPTODATE, &bio->bi_flags);
printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
card->card_number,
le32_to_cpu(desc->local_addr)>>9,
le32_to_cpu(desc->transfer_size));
dump_dmastat(card, control);
} else if (test_bit(BIO_RW, &bio->bi_rw) &&
le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
card->init_size += le32_to_cpu(desc->transfer_size)>>9;
if (card->init_size>>1 >= card->mm_size) {
printk(KERN_INFO "MM%d: memory now initialised\n",
card->card_number);
set_userbit(card, MEMORY_INITIALIZED, 1);
}
}
if (bio != page->bio) {
bio->bi_next = return_bio;
return_bio = bio;
}
if (last) break;
}
if (debug & DEBUG_LED_ON_TRANSFER)
set_led(card, LED_REMOVE, LED_OFF);
if (card->check_batteries) {
card->check_batteries = 0;
check_batteries(card);
}
if (page->headcnt >= page->cnt) {
reset_page(page);
card->Active = -1;
activate(card);
} else {
/* haven't finished with this one yet */
pr_debug("do some more\n");
mm_start_io(card);
}
out_unlock:
spin_unlock_bh(&card->lock);
while(return_bio) {
struct bio *bio = return_bio;
return_bio = bio->bi_next;
bio->bi_next = NULL;
bio_endio(bio, bio->bi_size, 0);
}
}
/*
-----------------------------------------------------------------------------------
-- mm_make_request
-----------------------------------------------------------------------------------
*/
static int mm_make_request(request_queue_t *q, struct bio *bio)
{
struct cardinfo *card = q->queuedata;
pr_debug("mm_make_request %llu %u\n",
(unsigned long long)bio->bi_sector, bio->bi_size);
bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/
spin_lock_irq(&card->lock);
*card->biotail = bio;
bio->bi_next = NULL;
card->biotail = &bio->bi_next;
blk_plug_device(q);
spin_unlock_irq(&card->lock);
return 0;
}
/*
-----------------------------------------------------------------------------------
-- mm_interrupt
-----------------------------------------------------------------------------------
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 09:55:46 -04:00
static irqreturn_t mm_interrupt(int irq, void *__card)
{
struct cardinfo *card = (struct cardinfo *) __card;
unsigned int dma_status;
unsigned short cfg_status;
HW_TRACE(0x30);
dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
/* interrupt wasn't for me ... */
return IRQ_NONE;
}
/* clear COMPLETION interrupts */
if (card->flags & UM_FLAG_NO_BYTE_STATUS)
writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
card->csr_remap+ DMA_STATUS_CTRL);
else
writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
card->csr_remap+ DMA_STATUS_CTRL + 2);
/* log errors and clear interrupt status */
if (dma_status & DMASCR_ANY_ERR) {
unsigned int data_log1, data_log2;
unsigned int addr_log1, addr_log2;
unsigned char stat, count, syndrome, check;
stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
count = readb(card->csr_remap + ERROR_COUNT);
syndrome = readb(card->csr_remap + ERROR_SYNDROME);
check = readb(card->csr_remap + ERROR_CHECK);
dump_dmastat(card, dma_status);
if (stat & 0x01)
printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
card->card_number, count);
if (stat & 0x02)
printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
card->card_number);
printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
card->card_number, addr_log2, addr_log1, data_log2, data_log1);
printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
card->card_number, check, syndrome);
writeb(0, card->csr_remap + ERROR_COUNT);
}
if (dma_status & DMASCR_PARITY_ERR_REP) {
printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_PARITY_ERR_DET) {
printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number);
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number);
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_TARGET_ABT) {
printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number);
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
if (dma_status & DMASCR_MASTER_ABT) {
printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number);
pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
}
/* and process the DMA descriptors */
card->dma_status = dma_status;
tasklet_schedule(&card->tasklet);
HW_TRACE(0x36);
return IRQ_HANDLED;
}
/*
-----------------------------------------------------------------------------------
-- set_fault_to_battery_status
-----------------------------------------------------------------------------------
*/
/*
* If both batteries are good, no LED
* If either battery has been warned, solid LED
* If both batteries are bad, flash the LED quickly
* If either battery is bad, flash the LED semi quickly
*/
static void set_fault_to_battery_status(struct cardinfo *card)
{
if (card->battery[0].good && card->battery[1].good)
set_led(card, LED_FAULT, LED_OFF);
else if (card->battery[0].warned || card->battery[1].warned)
set_led(card, LED_FAULT, LED_ON);
else if (!card->battery[0].good && !card->battery[1].good)
set_led(card, LED_FAULT, LED_FLASH_7_0);
else
set_led(card, LED_FAULT, LED_FLASH_3_5);
}
static void init_battery_timer(void);
/*
-----------------------------------------------------------------------------------
-- check_battery
-----------------------------------------------------------------------------------
*/
static int check_battery(struct cardinfo *card, int battery, int status)
{
if (status != card->battery[battery].good) {
card->battery[battery].good = !card->battery[battery].good;
card->battery[battery].last_change = jiffies;
if (card->battery[battery].good) {
printk(KERN_ERR "MM%d: Battery %d now good\n",
card->card_number, battery + 1);
card->battery[battery].warned = 0;
} else
printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
card->card_number, battery + 1);
return 1;
} else if (!card->battery[battery].good &&
!card->battery[battery].warned &&
time_after_eq(jiffies, card->battery[battery].last_change +
(HZ * 60 * 60 * 5))) {
printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
card->card_number, battery + 1);
card->battery[battery].warned = 1;
return 1;
}
return 0;
}
/*
-----------------------------------------------------------------------------------
-- check_batteries
-----------------------------------------------------------------------------------
*/
static void check_batteries(struct cardinfo *card)
{
/* NOTE: this must *never* be called while the card
* is doing (bus-to-card) DMA, or you will need the
* reset switch
*/
unsigned char status;
int ret1, ret2;
status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
if (debug & DEBUG_BATTERY_POLLING)
printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
card->card_number,
(status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
(status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
if (ret1 || ret2)
set_fault_to_battery_status(card);
}
static void check_all_batteries(unsigned long ptr)
{
int i;
for (i = 0; i < num_cards; i++)
if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
struct cardinfo *card = &cards[i];
spin_lock_bh(&card->lock);
if (card->Active >= 0)
card->check_batteries = 1;
else
check_batteries(card);
spin_unlock_bh(&card->lock);
}
init_battery_timer();
}
/*
-----------------------------------------------------------------------------------
-- init_battery_timer
-----------------------------------------------------------------------------------
*/
static void init_battery_timer(void)
{
init_timer(&battery_timer);
battery_timer.function = check_all_batteries;
battery_timer.expires = jiffies + (HZ * 60);
add_timer(&battery_timer);
}
/*
-----------------------------------------------------------------------------------
-- del_battery_timer
-----------------------------------------------------------------------------------
*/
static void del_battery_timer(void)
{
del_timer(&battery_timer);
}
/*
-----------------------------------------------------------------------------------
-- mm_revalidate
-----------------------------------------------------------------------------------
*/
/*
* Note no locks taken out here. In a worst case scenario, we could drop
* a chunk of system memory. But that should never happen, since validation
* happens at open or mount time, when locks are held.
*
* That's crap, since doing that while some partitions are opened
* or mounted will give you really nasty results.
*/
static int mm_revalidate(struct gendisk *disk)
{
struct cardinfo *card = disk->private_data;
set_capacity(disk, card->mm_size << 1);
return 0;
}
static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct cardinfo *card = bdev->bd_disk->private_data;
int size = card->mm_size * (1024 / MM_HARDSECT);
/*
* get geometry: we have to fake one... trim the size to a
* multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
* whatever cylinders.
*/
geo->heads = 64;
geo->sectors = 32;
geo->cylinders = size / (geo->heads * geo->sectors);
return 0;
}
/*
-----------------------------------------------------------------------------------
-- mm_check_change
-----------------------------------------------------------------------------------
Future support for removable devices
*/
static int mm_check_change(struct gendisk *disk)
{
/* struct cardinfo *dev = disk->private_data; */
return 0;
}
/*
-----------------------------------------------------------------------------------
-- mm_fops
-----------------------------------------------------------------------------------
*/
static struct block_device_operations mm_fops = {
.owner = THIS_MODULE,
.getgeo = mm_getgeo,
.revalidate_disk= mm_revalidate,
.media_changed = mm_check_change,
};
/*
-----------------------------------------------------------------------------------
-- mm_pci_probe
-----------------------------------------------------------------------------------
*/
static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
int ret = -ENODEV;
struct cardinfo *card = &cards[num_cards];
unsigned char mem_present;
unsigned char batt_status;
unsigned int saved_bar, data;
int magic_number;
if (pci_enable_device(dev) < 0)
return -ENODEV;
pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
pci_set_master(dev);
card->dev = dev;
card->card_number = num_cards;
card->csr_base = pci_resource_start(dev, 0);
card->csr_len = pci_resource_len(dev, 0);
#ifdef CONFIG_MM_MAP_MEMORY
card->mem_base = pci_resource_start(dev, 1);
card->mem_len = pci_resource_len(dev, 1);
#endif
printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
card->card_number, dev->bus->number, dev->devfn);
if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
return -ENOMEM;
}
if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
ret = -ENOMEM;
goto failed_req_csr;
}
card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
if (!card->csr_remap) {
printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
ret = -ENOMEM;
goto failed_remap_csr;
}
printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
card->csr_base, card->csr_remap, card->csr_len);
#ifdef CONFIG_MM_MAP_MEMORY
if (!request_mem_region(card->mem_base, card->mem_len, "Micro Memory")) {
printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
ret = -ENOMEM;
goto failed_req_mem;
}
if (!(card->mem_remap = ioremap(card->mem_base, cards->mem_len))) {
printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
ret = -ENOMEM;
goto failed_remap_mem;
}
printk(KERN_INFO "MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)\n", card->card_number,
card->mem_base, card->mem_remap, card->mem_len);
#else
printk(KERN_INFO "MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)\n",
card->card_number);
#endif
switch(card->dev->device) {
case 0x5415:
card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
magic_number = 0x59;
break;
case 0x5425:
card->flags |= UM_FLAG_NO_BYTE_STATUS;
magic_number = 0x5C;
break;
case 0x6155:
card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
magic_number = 0x99;
break;
default:
magic_number = 0x100;
break;
}
if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
ret = -ENOMEM;
goto failed_magic;
}
card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
PAGE_SIZE*2,
&card->mm_pages[0].page_dma);
card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
PAGE_SIZE*2,
&card->mm_pages[1].page_dma);
if (card->mm_pages[0].desc == NULL ||
card->mm_pages[1].desc == NULL) {
printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
goto failed_alloc;
}
reset_page(&card->mm_pages[0]);
reset_page(&card->mm_pages[1]);
card->Ready = 0; /* page 0 is ready */
card->Active = -1; /* no page is active */
card->bio = NULL;
card->biotail = &card->bio;
card->queue = blk_alloc_queue(GFP_KERNEL);
if (!card->queue)
goto failed_alloc;
blk_queue_make_request(card->queue, mm_make_request);
card->queue->queuedata = card;
card->queue->unplug_fn = mm_unplug_device;
tasklet_init(&card->tasklet, process_page, (unsigned long)card);
card->check_batteries = 0;
mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
switch (mem_present) {
case MEM_128_MB:
card->mm_size = 1024 * 128;
break;
case MEM_256_MB:
card->mm_size = 1024 * 256;
break;
case MEM_512_MB:
card->mm_size = 1024 * 512;
break;
case MEM_1_GB:
card->mm_size = 1024 * 1024;
break;
case MEM_2_GB:
card->mm_size = 1024 * 2048;
break;
default:
card->mm_size = 0;
break;
}
/* Clear the LED's we control */
set_led(card, LED_REMOVE, LED_OFF);
set_led(card, LED_FAULT, LED_OFF);
batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
card->battery[0].last_change = card->battery[1].last_change = jiffies;
if (card->flags & UM_FLAG_NO_BATT)
printk(KERN_INFO "MM%d: Size %d KB\n",
card->card_number, card->mm_size);
else {
printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
card->card_number, card->mm_size,
(batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
card->battery[0].good ? "OK" : "FAILURE",
(batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
card->battery[1].good ? "OK" : "FAILURE");
set_fault_to_battery_status(card);
}
pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
data = 0xffffffff;
pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
data &= 0xfffffff0;
data = ~data;
data += 1;
card->win_size = data;
if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, "pci-umem", card)) {
printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
ret = -ENODEV;
goto failed_req_irq;
}
card->irq = dev->irq;
printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
card->win_size, card->irq);
spin_lock_init(&card->lock);
pci_set_drvdata(dev, card);
if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
pci_write_cmd = 0x07; /* then Memory Write command */
if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
unsigned short cfg_command;
pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
pci_write_config_word(dev, PCI_COMMAND, cfg_command);
}
pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
num_cards++;
if (!get_userbit(card, MEMORY_INITIALIZED)) {
printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
card->init_size = 0;
} else {
printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
card->init_size = card->mm_size;
}
/* Enable ECC */
writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
return 0;
failed_req_irq:
failed_alloc:
if (card->mm_pages[0].desc)
pci_free_consistent(card->dev, PAGE_SIZE*2,
card->mm_pages[0].desc,
card->mm_pages[0].page_dma);
if (card->mm_pages[1].desc)
pci_free_consistent(card->dev, PAGE_SIZE*2,
card->mm_pages[1].desc,
card->mm_pages[1].page_dma);
failed_magic:
#ifdef CONFIG_MM_MAP_MEMORY
iounmap(card->mem_remap);
failed_remap_mem:
release_mem_region(card->mem_base, card->mem_len);
failed_req_mem:
#endif
iounmap(card->csr_remap);
failed_remap_csr:
release_mem_region(card->csr_base, card->csr_len);
failed_req_csr:
return ret;
}
/*
-----------------------------------------------------------------------------------
-- mm_pci_remove
-----------------------------------------------------------------------------------
*/
static void mm_pci_remove(struct pci_dev *dev)
{
struct cardinfo *card = pci_get_drvdata(dev);
tasklet_kill(&card->tasklet);
iounmap(card->csr_remap);
release_mem_region(card->csr_base, card->csr_len);
#ifdef CONFIG_MM_MAP_MEMORY
iounmap(card->mem_remap);
release_mem_region(card->mem_base, card->mem_len);
#endif
free_irq(card->irq, card);
if (card->mm_pages[0].desc)
pci_free_consistent(card->dev, PAGE_SIZE*2,
card->mm_pages[0].desc,
card->mm_pages[0].page_dma);
if (card->mm_pages[1].desc)
pci_free_consistent(card->dev, PAGE_SIZE*2,
card->mm_pages[1].desc,
card->mm_pages[1].page_dma);
blk_cleanup_queue(card->queue);
}
static const struct pci_device_id mm_pci_ids[] = { {
.vendor = PCI_VENDOR_ID_MICRO_MEMORY,
.device = PCI_DEVICE_ID_MICRO_MEMORY_5415CN,
}, {
.vendor = PCI_VENDOR_ID_MICRO_MEMORY,
.device = PCI_DEVICE_ID_MICRO_MEMORY_5425CN,
}, {
.vendor = PCI_VENDOR_ID_MICRO_MEMORY,
.device = PCI_DEVICE_ID_MICRO_MEMORY_6155,
}, {
.vendor = 0x8086,
.device = 0xB555,
.subvendor= 0x1332,
.subdevice= 0x5460,
.class = 0x050000,
.class_mask= 0,
}, { /* end: all zeroes */ }
};
MODULE_DEVICE_TABLE(pci, mm_pci_ids);
static struct pci_driver mm_pci_driver = {
.name = "umem",
.id_table = mm_pci_ids,
.probe = mm_pci_probe,
.remove = mm_pci_remove,
};
/*
-----------------------------------------------------------------------------------
-- mm_init
-----------------------------------------------------------------------------------
*/
static int __init mm_init(void)
{
int retval, i;
int err;
printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
retval = pci_register_driver(&mm_pci_driver);
if (retval)
return -ENOMEM;
err = major_nr = register_blkdev(0, "umem");
if (err < 0) {
pci_unregister_driver(&mm_pci_driver);
return -EIO;
}
for (i = 0; i < num_cards; i++) {
mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
if (!mm_gendisk[i])
goto out;
}
for (i = 0; i < num_cards; i++) {
struct gendisk *disk = mm_gendisk[i];
sprintf(disk->disk_name, "umem%c", 'a'+i);
spin_lock_init(&cards[i].lock);
disk->major = major_nr;
disk->first_minor = i << MM_SHIFT;
disk->fops = &mm_fops;
disk->private_data = &cards[i];
disk->queue = cards[i].queue;
set_capacity(disk, cards[i].mm_size << 1);
add_disk(disk);
}
init_battery_timer();
printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
/* printk("mm_init: Done. 10-19-01 9:00\n"); */
return 0;
out:
pci_unregister_driver(&mm_pci_driver);
unregister_blkdev(major_nr, "umem");
while (i--)
put_disk(mm_gendisk[i]);
return -ENOMEM;
}
/*
-----------------------------------------------------------------------------------
-- mm_cleanup
-----------------------------------------------------------------------------------
*/
static void __exit mm_cleanup(void)
{
int i;
del_battery_timer();
for (i=0; i < num_cards ; i++) {
del_gendisk(mm_gendisk[i]);
put_disk(mm_gendisk[i]);
}
pci_unregister_driver(&mm_pci_driver);
unregister_blkdev(major_nr, "umem");
}
module_init(mm_init);
module_exit(mm_cleanup);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");