android_kernel_xiaomi_sm8350/arch/powerpc/lib/rheap.c

694 lines
15 KiB
C
Raw Normal View History

/*
* arch/ppc/syslib/rheap.c
*
* A Remote Heap. Remote means that we don't touch the memory that the
* heap points to. Normal heap implementations use the memory they manage
* to place their list. We cannot do that because the memory we manage may
* have special properties, for example it is uncachable or of different
* endianess.
*
* Author: Pantelis Antoniou <panto@intracom.gr>
*
* 2004 (c) INTRACOM S.A. Greece. This file is licensed under
* the terms of the GNU General Public License version 2. This program
* is licensed "as is" without any warranty of any kind, whether express
* or implied.
*/
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <asm/rheap.h>
/*
* Fixup a list_head, needed when copying lists. If the pointers fall
* between s and e, apply the delta. This assumes that
* sizeof(struct list_head *) == sizeof(unsigned long *).
*/
static inline void fixup(unsigned long s, unsigned long e, int d,
struct list_head *l)
{
unsigned long *pp;
pp = (unsigned long *)&l->next;
if (*pp >= s && *pp < e)
*pp += d;
pp = (unsigned long *)&l->prev;
if (*pp >= s && *pp < e)
*pp += d;
}
/* Grow the allocated blocks */
static int grow(rh_info_t * info, int max_blocks)
{
rh_block_t *block, *blk;
int i, new_blocks;
int delta;
unsigned long blks, blke;
if (max_blocks <= info->max_blocks)
return -EINVAL;
new_blocks = max_blocks - info->max_blocks;
block = kmalloc(sizeof(rh_block_t) * max_blocks, GFP_KERNEL);
if (block == NULL)
return -ENOMEM;
if (info->max_blocks > 0) {
/* copy old block area */
memcpy(block, info->block,
sizeof(rh_block_t) * info->max_blocks);
delta = (char *)block - (char *)info->block;
/* and fixup list pointers */
blks = (unsigned long)info->block;
blke = (unsigned long)(info->block + info->max_blocks);
for (i = 0, blk = block; i < info->max_blocks; i++, blk++)
fixup(blks, blke, delta, &blk->list);
fixup(blks, blke, delta, &info->empty_list);
fixup(blks, blke, delta, &info->free_list);
fixup(blks, blke, delta, &info->taken_list);
/* free the old allocated memory */
if ((info->flags & RHIF_STATIC_BLOCK) == 0)
kfree(info->block);
}
info->block = block;
info->empty_slots += new_blocks;
info->max_blocks = max_blocks;
info->flags &= ~RHIF_STATIC_BLOCK;
/* add all new blocks to the free list */
for (i = 0, blk = block + info->max_blocks; i < new_blocks; i++, blk++)
list_add(&blk->list, &info->empty_list);
return 0;
}
/*
* Assure at least the required amount of empty slots. If this function
* causes a grow in the block area then all pointers kept to the block
* area are invalid!
*/
static int assure_empty(rh_info_t * info, int slots)
{
int max_blocks;
/* This function is not meant to be used to grow uncontrollably */
if (slots >= 4)
return -EINVAL;
/* Enough space */
if (info->empty_slots >= slots)
return 0;
/* Next 16 sized block */
max_blocks = ((info->max_blocks + slots) + 15) & ~15;
return grow(info, max_blocks);
}
static rh_block_t *get_slot(rh_info_t * info)
{
rh_block_t *blk;
/* If no more free slots, and failure to extend. */
/* XXX: You should have called assure_empty before */
if (info->empty_slots == 0) {
printk(KERN_ERR "rh: out of slots; crash is imminent.\n");
return NULL;
}
/* Get empty slot to use */
blk = list_entry(info->empty_list.next, rh_block_t, list);
list_del_init(&blk->list);
info->empty_slots--;
/* Initialize */
blk->start = NULL;
blk->size = 0;
blk->owner = NULL;
return blk;
}
static inline void release_slot(rh_info_t * info, rh_block_t * blk)
{
list_add(&blk->list, &info->empty_list);
info->empty_slots++;
}
static void attach_free_block(rh_info_t * info, rh_block_t * blkn)
{
rh_block_t *blk;
rh_block_t *before;
rh_block_t *after;
rh_block_t *next;
int size;
unsigned long s, e, bs, be;
struct list_head *l;
/* We assume that they are aligned properly */
size = blkn->size;
s = (unsigned long)blkn->start;
e = s + size;
/* Find the blocks immediately before and after the given one
* (if any) */
before = NULL;
after = NULL;
next = NULL;
list_for_each(l, &info->free_list) {
blk = list_entry(l, rh_block_t, list);
bs = (unsigned long)blk->start;
be = bs + blk->size;
if (next == NULL && s >= bs)
next = blk;
if (be == s)
before = blk;
if (e == bs)
after = blk;
/* If both are not null, break now */
if (before != NULL && after != NULL)
break;
}
/* Now check if they are really adjacent */
if (before != NULL && s != (unsigned long)before->start + before->size)
before = NULL;
if (after != NULL && e != (unsigned long)after->start)
after = NULL;
/* No coalescing; list insert and return */
if (before == NULL && after == NULL) {
if (next != NULL)
list_add(&blkn->list, &next->list);
else
list_add(&blkn->list, &info->free_list);
return;
}
/* We don't need it anymore */
release_slot(info, blkn);
/* Grow the before block */
if (before != NULL && after == NULL) {
before->size += size;
return;
}
/* Grow the after block backwards */
if (before == NULL && after != NULL) {
after->start = (int8_t *)after->start - size;
after->size += size;
return;
}
/* Grow the before block, and release the after block */
before->size += size + after->size;
list_del(&after->list);
release_slot(info, after);
}
static void attach_taken_block(rh_info_t * info, rh_block_t * blkn)
{
rh_block_t *blk;
struct list_head *l;
/* Find the block immediately before the given one (if any) */
list_for_each(l, &info->taken_list) {
blk = list_entry(l, rh_block_t, list);
if (blk->start > blkn->start) {
list_add_tail(&blkn->list, &blk->list);
return;
}
}
list_add_tail(&blkn->list, &info->taken_list);
}
/*
* Create a remote heap dynamically. Note that no memory for the blocks
* are allocated. It will upon the first allocation
*/
rh_info_t *rh_create(unsigned int alignment)
{
rh_info_t *info;
/* Alignment must be a power of two */
if ((alignment & (alignment - 1)) != 0)
return ERR_PTR(-EINVAL);
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (info == NULL)
return ERR_PTR(-ENOMEM);
info->alignment = alignment;
/* Initially everything as empty */
info->block = NULL;
info->max_blocks = 0;
info->empty_slots = 0;
info->flags = 0;
INIT_LIST_HEAD(&info->empty_list);
INIT_LIST_HEAD(&info->free_list);
INIT_LIST_HEAD(&info->taken_list);
return info;
}
/*
* Destroy a dynamically created remote heap. Deallocate only if the areas
* are not static
*/
void rh_destroy(rh_info_t * info)
{
if ((info->flags & RHIF_STATIC_BLOCK) == 0 && info->block != NULL)
kfree(info->block);
if ((info->flags & RHIF_STATIC_INFO) == 0)
kfree(info);
}
/*
* Initialize in place a remote heap info block. This is needed to support
* operation very early in the startup of the kernel, when it is not yet safe
* to call kmalloc.
*/
void rh_init(rh_info_t * info, unsigned int alignment, int max_blocks,
rh_block_t * block)
{
int i;
rh_block_t *blk;
/* Alignment must be a power of two */
if ((alignment & (alignment - 1)) != 0)
return;
info->alignment = alignment;
/* Initially everything as empty */
info->block = block;
info->max_blocks = max_blocks;
info->empty_slots = max_blocks;
info->flags = RHIF_STATIC_INFO | RHIF_STATIC_BLOCK;
INIT_LIST_HEAD(&info->empty_list);
INIT_LIST_HEAD(&info->free_list);
INIT_LIST_HEAD(&info->taken_list);
/* Add all new blocks to the free list */
for (i = 0, blk = block; i < max_blocks; i++, blk++)
list_add(&blk->list, &info->empty_list);
}
/* Attach a free memory region, coalesces regions if adjuscent */
int rh_attach_region(rh_info_t * info, void *start, int size)
{
rh_block_t *blk;
unsigned long s, e, m;
int r;
/* The region must be aligned */
s = (unsigned long)start;
e = s + size;
m = info->alignment - 1;
/* Round start up */
s = (s + m) & ~m;
/* Round end down */
e = e & ~m;
/* Take final values */
start = (void *)s;
size = (int)(e - s);
/* Grow the blocks, if needed */
r = assure_empty(info, 1);
if (r < 0)
return r;
blk = get_slot(info);
blk->start = start;
blk->size = size;
blk->owner = NULL;
attach_free_block(info, blk);
return 0;
}
/* Detatch given address range, splits free block if needed. */
void *rh_detach_region(rh_info_t * info, void *start, int size)
{
struct list_head *l;
rh_block_t *blk, *newblk;
unsigned long s, e, m, bs, be;
/* Validate size */
if (size <= 0)
return ERR_PTR(-EINVAL);
/* The region must be aligned */
s = (unsigned long)start;
e = s + size;
m = info->alignment - 1;
/* Round start up */
s = (s + m) & ~m;
/* Round end down */
e = e & ~m;
if (assure_empty(info, 1) < 0)
return ERR_PTR(-ENOMEM);
blk = NULL;
list_for_each(l, &info->free_list) {
blk = list_entry(l, rh_block_t, list);
/* The range must lie entirely inside one free block */
bs = (unsigned long)blk->start;
be = (unsigned long)blk->start + blk->size;
if (s >= bs && e <= be)
break;
blk = NULL;
}
if (blk == NULL)
return ERR_PTR(-ENOMEM);
/* Perfect fit */
if (bs == s && be == e) {
/* Delete from free list, release slot */
list_del(&blk->list);
release_slot(info, blk);
return (void *)s;
}
/* blk still in free list, with updated start and/or size */
if (bs == s || be == e) {
if (bs == s)
blk->start = (int8_t *)blk->start + size;
blk->size -= size;
} else {
/* The front free fragment */
blk->size = s - bs;
/* the back free fragment */
newblk = get_slot(info);
newblk->start = (void *)e;
newblk->size = be - e;
list_add(&newblk->list, &blk->list);
}
return (void *)s;
}
void *rh_alloc(rh_info_t * info, int size, const char *owner)
{
struct list_head *l;
rh_block_t *blk;
rh_block_t *newblk;
void *start;
/* Validate size */
if (size <= 0)
return ERR_PTR(-EINVAL);
/* Align to configured alignment */
size = (size + (info->alignment - 1)) & ~(info->alignment - 1);
if (assure_empty(info, 1) < 0)
return ERR_PTR(-ENOMEM);
blk = NULL;
list_for_each(l, &info->free_list) {
blk = list_entry(l, rh_block_t, list);
if (size <= blk->size)
break;
blk = NULL;
}
if (blk == NULL)
return ERR_PTR(-ENOMEM);
/* Just fits */
if (blk->size == size) {
/* Move from free list to taken list */
list_del(&blk->list);
blk->owner = owner;
start = blk->start;
attach_taken_block(info, blk);
return start;
}
newblk = get_slot(info);
newblk->start = blk->start;
newblk->size = size;
newblk->owner = owner;
/* blk still in free list, with updated start, size */
blk->start = (int8_t *)blk->start + size;
blk->size -= size;
start = newblk->start;
attach_taken_block(info, newblk);
return start;
}
/* allocate at precisely the given address */
void *rh_alloc_fixed(rh_info_t * info, void *start, int size, const char *owner)
{
struct list_head *l;
rh_block_t *blk, *newblk1, *newblk2;
unsigned long s, e, m, bs, be;
/* Validate size */
if (size <= 0)
return ERR_PTR(-EINVAL);
/* The region must be aligned */
s = (unsigned long)start;
e = s + size;
m = info->alignment - 1;
/* Round start up */
s = (s + m) & ~m;
/* Round end down */
e = e & ~m;
if (assure_empty(info, 2) < 0)
return ERR_PTR(-ENOMEM);
blk = NULL;
list_for_each(l, &info->free_list) {
blk = list_entry(l, rh_block_t, list);
/* The range must lie entirely inside one free block */
bs = (unsigned long)blk->start;
be = (unsigned long)blk->start + blk->size;
if (s >= bs && e <= be)
break;
}
if (blk == NULL)
return ERR_PTR(-ENOMEM);
/* Perfect fit */
if (bs == s && be == e) {
/* Move from free list to taken list */
list_del(&blk->list);
blk->owner = owner;
start = blk->start;
attach_taken_block(info, blk);
return start;
}
/* blk still in free list, with updated start and/or size */
if (bs == s || be == e) {
if (bs == s)
blk->start = (int8_t *)blk->start + size;
blk->size -= size;
} else {
/* The front free fragment */
blk->size = s - bs;
/* The back free fragment */
newblk2 = get_slot(info);
newblk2->start = (void *)e;
newblk2->size = be - e;
list_add(&newblk2->list, &blk->list);
}
newblk1 = get_slot(info);
newblk1->start = (void *)s;
newblk1->size = e - s;
newblk1->owner = owner;
start = newblk1->start;
attach_taken_block(info, newblk1);
return start;
}
int rh_free(rh_info_t * info, void *start)
{
rh_block_t *blk, *blk2;
struct list_head *l;
int size;
/* Linear search for block */
blk = NULL;
list_for_each(l, &info->taken_list) {
blk2 = list_entry(l, rh_block_t, list);
if (start < blk2->start)
break;
blk = blk2;
}
if (blk == NULL || start > (blk->start + blk->size))
return -EINVAL;
/* Remove from taken list */
list_del(&blk->list);
/* Get size of freed block */
size = blk->size;
attach_free_block(info, blk);
return size;
}
int rh_get_stats(rh_info_t * info, int what, int max_stats, rh_stats_t * stats)
{
rh_block_t *blk;
struct list_head *l;
struct list_head *h;
int nr;
switch (what) {
case RHGS_FREE:
h = &info->free_list;
break;
case RHGS_TAKEN:
h = &info->taken_list;
break;
default:
return -EINVAL;
}
/* Linear search for block */
nr = 0;
list_for_each(l, h) {
blk = list_entry(l, rh_block_t, list);
if (stats != NULL && nr < max_stats) {
stats->start = blk->start;
stats->size = blk->size;
stats->owner = blk->owner;
stats++;
}
nr++;
}
return nr;
}
int rh_set_owner(rh_info_t * info, void *start, const char *owner)
{
rh_block_t *blk, *blk2;
struct list_head *l;
int size;
/* Linear search for block */
blk = NULL;
list_for_each(l, &info->taken_list) {
blk2 = list_entry(l, rh_block_t, list);
if (start < blk2->start)
break;
blk = blk2;
}
if (blk == NULL || start > (blk->start + blk->size))
return -EINVAL;
blk->owner = owner;
size = blk->size;
return size;
}
void rh_dump(rh_info_t * info)
{
static rh_stats_t st[32]; /* XXX maximum 32 blocks */
int maxnr;
int i, nr;
maxnr = sizeof(st) / sizeof(st[0]);
printk(KERN_INFO
"info @0x%p (%d slots empty / %d max)\n",
info, info->empty_slots, info->max_blocks);
printk(KERN_INFO " Free:\n");
nr = rh_get_stats(info, RHGS_FREE, maxnr, st);
if (nr > maxnr)
nr = maxnr;
for (i = 0; i < nr; i++)
printk(KERN_INFO
" 0x%p-0x%p (%u)\n",
st[i].start, (int8_t *) st[i].start + st[i].size,
st[i].size);
printk(KERN_INFO "\n");
printk(KERN_INFO " Taken:\n");
nr = rh_get_stats(info, RHGS_TAKEN, maxnr, st);
if (nr > maxnr)
nr = maxnr;
for (i = 0; i < nr; i++)
printk(KERN_INFO
" 0x%p-0x%p (%u) %s\n",
st[i].start, (int8_t *) st[i].start + st[i].size,
st[i].size, st[i].owner != NULL ? st[i].owner : "");
printk(KERN_INFO "\n");
}
void rh_dump_blk(rh_info_t * info, rh_block_t * blk)
{
printk(KERN_INFO
"blk @0x%p: 0x%p-0x%p (%u)\n",
blk, blk->start, (int8_t *) blk->start + blk->size, blk->size);
}