android_kernel_xiaomi_sm8350/kernel/sched/walt/sched_avg.c

261 lines
7.2 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012, 2015-2021, The Linux Foundation. All rights reserved.
*/
/*
* Scheduler hook for average runqueue determination
*/
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/sched.h>
#include <linux/math64.h>
#include "qc_vas.h"
#include <trace/events/sched.h>
static DEFINE_PER_CPU(u64, nr_prod_sum);
static DEFINE_PER_CPU(u64, last_time);
static DEFINE_PER_CPU(u64, nr_big_prod_sum);
static DEFINE_PER_CPU(u64, nr);
static DEFINE_PER_CPU(u64, nr_max);
static DEFINE_PER_CPU(spinlock_t, nr_lock) = __SPIN_LOCK_UNLOCKED(nr_lock);
static s64 last_get_time;
unsigned int sysctl_sched_busy_hyst_enable_cpus;
unsigned int sysctl_sched_busy_hyst;
unsigned int sysctl_sched_coloc_busy_hyst_enable_cpus = 112;
unsigned int sysctl_sched_coloc_busy_hyst_cpu[NR_CPUS] = {
[0 ... NR_CPUS-1] = 39000000 };
unsigned int sysctl_sched_coloc_busy_hyst_max_ms = 5000;
unsigned int sysctl_sched_coloc_busy_hyst_cpu_busy_pct[NR_CPUS] = {
[0 ... NR_CPUS-1] = 10 };
static DEFINE_PER_CPU(atomic64_t, busy_hyst_end_time) = ATOMIC64_INIT(0);
static DEFINE_PER_CPU(u64, hyst_time);
static DEFINE_PER_CPU(u64, coloc_hyst_busy);
static DEFINE_PER_CPU(u64, coloc_hyst_time);
#define NR_THRESHOLD_PCT 15
#define MAX_RTGB_TIME (sysctl_sched_coloc_busy_hyst_max_ms * NSEC_PER_MSEC)
/**
* sched_get_nr_running_avg
* @return: Average nr_running, iowait and nr_big_tasks value since last poll.
* Returns the avg * 100 to return up to two decimal points
* of accuracy.
*
* Obtains the average nr_running value since the last poll.
* This function may not be called concurrently with itself
*/
void sched_get_nr_running_avg(struct sched_avg_stats *stats)
{
int cpu;
u64 curr_time = sched_clock();
u64 period = curr_time - last_get_time;
u64 tmp_nr, tmp_misfit;
bool any_hyst_time = false;
if (!period)
return;
/* read and reset nr_running counts */
for_each_possible_cpu(cpu) {
unsigned long flags;
u64 diff;
spin_lock_irqsave(&per_cpu(nr_lock, cpu), flags);
curr_time = sched_clock();
diff = curr_time - per_cpu(last_time, cpu);
BUG_ON((s64)diff < 0);
tmp_nr = per_cpu(nr_prod_sum, cpu);
tmp_nr += per_cpu(nr, cpu) * diff;
tmp_nr = div64_u64((tmp_nr * 100), period);
tmp_misfit = per_cpu(nr_big_prod_sum, cpu);
tmp_misfit += walt_big_tasks(cpu) * diff;
tmp_misfit = div64_u64((tmp_misfit * 100), period);
/*
* NR_THRESHOLD_PCT is to make sure that the task ran
* at least 85% in the last window to compensate any
* over estimating being done.
*/
stats[cpu].nr = (int)div64_u64((tmp_nr + NR_THRESHOLD_PCT),
100);
stats[cpu].nr_misfit = (int)div64_u64((tmp_misfit +
NR_THRESHOLD_PCT), 100);
stats[cpu].nr_max = per_cpu(nr_max, cpu);
stats[cpu].nr_scaled = tmp_nr;
trace_sched_get_nr_running_avg(cpu, stats[cpu].nr,
stats[cpu].nr_misfit, stats[cpu].nr_max,
stats[cpu].nr_scaled);
per_cpu(last_time, cpu) = curr_time;
per_cpu(nr_prod_sum, cpu) = 0;
per_cpu(nr_big_prod_sum, cpu) = 0;
per_cpu(nr_max, cpu) = per_cpu(nr, cpu);
spin_unlock_irqrestore(&per_cpu(nr_lock, cpu), flags);
}
for_each_possible_cpu(cpu) {
if (per_cpu(coloc_hyst_time, cpu)) {
any_hyst_time = true;
break;
}
}
if (any_hyst_time && get_rtgb_active_time() >= MAX_RTGB_TIME)
sched_update_hyst_times();
last_get_time = curr_time;
}
EXPORT_SYMBOL(sched_get_nr_running_avg);
void sched_update_hyst_times(void)
{
bool rtgb_active;
int cpu;
unsigned long cpu_cap, coloc_busy_pct;
rtgb_active = is_rtgb_active() && (sched_boost() != CONSERVATIVE_BOOST)
&& (get_rtgb_active_time() < MAX_RTGB_TIME);
for_each_possible_cpu(cpu) {
cpu_cap = arch_scale_cpu_capacity(cpu);
coloc_busy_pct = sysctl_sched_coloc_busy_hyst_cpu_busy_pct[cpu];
per_cpu(hyst_time, cpu) = (BIT(cpu)
& sysctl_sched_busy_hyst_enable_cpus) ?
sysctl_sched_busy_hyst : 0;
per_cpu(coloc_hyst_time, cpu) = ((BIT(cpu)
& sysctl_sched_coloc_busy_hyst_enable_cpus)
&& rtgb_active) ?
sysctl_sched_coloc_busy_hyst_cpu[cpu] : 0;
per_cpu(coloc_hyst_busy, cpu) = mult_frac(cpu_cap,
coloc_busy_pct, 100);
}
}
#define BUSY_NR_RUN 3
#define BUSY_LOAD_FACTOR 10
static inline void update_busy_hyst_end_time(int cpu, bool dequeue,
unsigned long prev_nr_run, u64 curr_time)
{
bool nr_run_trigger = false;
bool load_trigger = false, coloc_load_trigger = false;
u64 agg_hyst_time;
if (!per_cpu(hyst_time, cpu) && !per_cpu(coloc_hyst_time, cpu))
return;
if (prev_nr_run >= BUSY_NR_RUN && per_cpu(nr, cpu) < BUSY_NR_RUN)
nr_run_trigger = true;
if (dequeue && (cpu_util(cpu) * BUSY_LOAD_FACTOR) >
capacity_orig_of(cpu))
load_trigger = true;
if (dequeue && cpu_util(cpu) > per_cpu(coloc_hyst_busy, cpu))
coloc_load_trigger = true;
agg_hyst_time = max((nr_run_trigger || load_trigger) ?
per_cpu(hyst_time, cpu) : 0,
(nr_run_trigger || coloc_load_trigger) ?
per_cpu(coloc_hyst_time, cpu) : 0);
if (agg_hyst_time)
atomic64_set(&per_cpu(busy_hyst_end_time, cpu),
curr_time + agg_hyst_time);
}
int sched_busy_hyst_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
int ret;
if (table->maxlen > (sizeof(unsigned int) * num_possible_cpus()))
table->maxlen = sizeof(unsigned int) * num_possible_cpus();
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (!ret && write)
sched_update_hyst_times();
return ret;
}
/**
* sched_update_nr_prod
* @cpu: The core id of the nr running driver.
* @delta: Adjust nr by 'delta' amount
* @inc: Whether we are increasing or decreasing the count
* @return: N/A
*
* Update average with latest nr_running value for CPU
*/
void sched_update_nr_prod(int cpu, long delta, bool inc)
{
u64 diff;
u64 curr_time;
unsigned long flags, nr_running;
spin_lock_irqsave(&per_cpu(nr_lock, cpu), flags);
nr_running = per_cpu(nr, cpu);
curr_time = sched_clock();
diff = curr_time - per_cpu(last_time, cpu);
BUG_ON((s64)diff < 0);
per_cpu(last_time, cpu) = curr_time;
per_cpu(nr, cpu) = nr_running + (inc ? delta : -delta);
BUG_ON((s64)per_cpu(nr, cpu) < 0);
if (per_cpu(nr, cpu) > per_cpu(nr_max, cpu))
per_cpu(nr_max, cpu) = per_cpu(nr, cpu);
update_busy_hyst_end_time(cpu, !inc, nr_running, curr_time);
per_cpu(nr_prod_sum, cpu) += nr_running * diff;
per_cpu(nr_big_prod_sum, cpu) += walt_big_tasks(cpu) * diff;
spin_unlock_irqrestore(&per_cpu(nr_lock, cpu), flags);
}
EXPORT_SYMBOL(sched_update_nr_prod);
/*
* Returns the CPU utilization % in the last window.
*
*/
unsigned int sched_get_cpu_util(int cpu)
{
struct rq *rq = cpu_rq(cpu);
u64 util;
unsigned long capacity, flags;
unsigned int busy;
raw_spin_lock_irqsave(&rq->lock, flags);
capacity = capacity_orig_of(cpu);
util = rq->wrq.prev_runnable_sum + rq->wrq.grp_time.prev_runnable_sum;
util = div64_u64(util, sched_ravg_window >> SCHED_CAPACITY_SHIFT);
raw_spin_unlock_irqrestore(&rq->lock, flags);
util = (util >= capacity) ? capacity : util;
busy = div64_ul((util * 100), capacity);
return busy;
}
u64 sched_lpm_disallowed_time(int cpu)
{
u64 now = sched_clock();
u64 bias_end_time = atomic64_read(&per_cpu(busy_hyst_end_time, cpu));
if (now < bias_end_time)
return bias_end_time - now;
return 0;
}