This is the 5.4.199 stable release

-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEZH8oZUiU471FcZm+ONu9yGCSaT4FAmKrErgACgkQONu9yGCS
 aT4oixAApxvQFtSBUsZrK0Gp3mVayrE3F/Tio8dNLFHhrtIA5H0eq5UDtYAQmUXi
 YK6PKntKlSzrZMjkzYEIZkYN61i3zJo1qE7KBDAMA0qX8DaHYZ0SNdvuVDUMk71z
 1V4HSqaUUD8G+mhYngTx8G1YH3CnfyUosUGudLEjWbdl+cqnbJe7YcThzhqlwsDl
 6OCQ3kCfrrq7QgQ1y89FVOHqGgFRQpyacOlJgItCjBPBJmtXZ8622N8pL5dNc3WE
 c3jfBLd8iChMU+lr9iDYrb5TnLSslwsmTRtWP9orU9AKsdeD8qHGWX8Ux/hQnZ3U
 LgMPrsVfQ3qeKKvgDEGCT/JKv1hIu1rvahEVYfhW8clEHWgL5DlkZ6p4yulnoI55
 7NwQ3UHJ9/QMG3zwb8yLHcVlfD6ScXUFGbfMI12kUqrW9saDpgS8TkgLa3CD5GZI
 qqp1n39syBUOAU36vcVceqfA4xVb6X418SPgennL/Lce7HGbuOFOWg+sgejxPf5e
 Vrkw+rdefTJ0QHz4zUsY64Vha9KjQ/dxLSBjbXyh2ljs6YPqS/PU1XaZgmzKdcpf
 6TTEaCHr13E9Omqio1yZg24gg8g6KjZW3YaQH0q7OGtcI5n/dl+IWmjfR8usGYVA
 dMG90Dn4o3l9sSFFO5M3aRQ6lkIj1vPooAS5JSvNh8y7hlq5ZL0=
 =JNBl
 -----END PGP SIGNATURE-----

Merge 5.4.199 into android11-5.4-lts

Changes in 5.4.199
	cpu/speculation: Add prototype for cpu_show_srbds()
	x86/cpu: Add Jasper Lake to Intel family
	x86/cpu: Add Lakefield, Alder Lake and Rocket Lake models to the to Intel CPU family
	x86/cpu: Add another Alder Lake CPU to the Intel family
	Documentation: Add documentation for Processor MMIO Stale Data
	x86/speculation/mmio: Enumerate Processor MMIO Stale Data bug
	x86/speculation: Add a common function for MD_CLEAR mitigation update
	x86/speculation/mmio: Add mitigation for Processor MMIO Stale Data
	x86/bugs: Group MDS, TAA & Processor MMIO Stale Data mitigations
	x86/speculation/mmio: Enable CPU Fill buffer clearing on idle
	x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data
	x86/speculation/srbds: Update SRBDS mitigation selection
	x86/speculation/mmio: Reuse SRBDS mitigation for SBDS
	KVM: x86/speculation: Disable Fill buffer clear within guests
	x86/speculation/mmio: Print SMT warning
	Linux 5.4.199

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: I4ed42d2c5e9fd6eb5328661b0be3f992163ca500
This commit is contained in:
Greg Kroah-Hartman 2022-06-22 19:13:12 +02:00
commit 4c5060a549
16 changed files with 663 additions and 41 deletions

View File

@ -489,6 +489,7 @@ What: /sys/devices/system/cpu/vulnerabilities
/sys/devices/system/cpu/vulnerabilities/srbds /sys/devices/system/cpu/vulnerabilities/srbds
/sys/devices/system/cpu/vulnerabilities/tsx_async_abort /sys/devices/system/cpu/vulnerabilities/tsx_async_abort
/sys/devices/system/cpu/vulnerabilities/itlb_multihit /sys/devices/system/cpu/vulnerabilities/itlb_multihit
/sys/devices/system/cpu/vulnerabilities/mmio_stale_data
Date: January 2018 Date: January 2018
Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org> Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
Description: Information about CPU vulnerabilities Description: Information about CPU vulnerabilities

View File

@ -15,3 +15,4 @@ are configurable at compile, boot or run time.
tsx_async_abort tsx_async_abort
multihit.rst multihit.rst
special-register-buffer-data-sampling.rst special-register-buffer-data-sampling.rst
processor_mmio_stale_data.rst

View File

@ -0,0 +1,246 @@
=========================================
Processor MMIO Stale Data Vulnerabilities
=========================================
Processor MMIO Stale Data Vulnerabilities are a class of memory-mapped I/O
(MMIO) vulnerabilities that can expose data. The sequences of operations for
exposing data range from simple to very complex. Because most of the
vulnerabilities require the attacker to have access to MMIO, many environments
are not affected. System environments using virtualization where MMIO access is
provided to untrusted guests may need mitigation. These vulnerabilities are
not transient execution attacks. However, these vulnerabilities may propagate
stale data into core fill buffers where the data can subsequently be inferred
by an unmitigated transient execution attack. Mitigation for these
vulnerabilities includes a combination of microcode update and software
changes, depending on the platform and usage model. Some of these mitigations
are similar to those used to mitigate Microarchitectural Data Sampling (MDS) or
those used to mitigate Special Register Buffer Data Sampling (SRBDS).
Data Propagators
================
Propagators are operations that result in stale data being copied or moved from
one microarchitectural buffer or register to another. Processor MMIO Stale Data
Vulnerabilities are operations that may result in stale data being directly
read into an architectural, software-visible state or sampled from a buffer or
register.
Fill Buffer Stale Data Propagator (FBSDP)
-----------------------------------------
Stale data may propagate from fill buffers (FB) into the non-coherent portion
of the uncore on some non-coherent writes. Fill buffer propagation by itself
does not make stale data architecturally visible. Stale data must be propagated
to a location where it is subject to reading or sampling.
Sideband Stale Data Propagator (SSDP)
-------------------------------------
The sideband stale data propagator (SSDP) is limited to the client (including
Intel Xeon server E3) uncore implementation. The sideband response buffer is
shared by all client cores. For non-coherent reads that go to sideband
destinations, the uncore logic returns 64 bytes of data to the core, including
both requested data and unrequested stale data, from a transaction buffer and
the sideband response buffer. As a result, stale data from the sideband
response and transaction buffers may now reside in a core fill buffer.
Primary Stale Data Propagator (PSDP)
------------------------------------
The primary stale data propagator (PSDP) is limited to the client (including
Intel Xeon server E3) uncore implementation. Similar to the sideband response
buffer, the primary response buffer is shared by all client cores. For some
processors, MMIO primary reads will return 64 bytes of data to the core fill
buffer including both requested data and unrequested stale data. This is
similar to the sideband stale data propagator.
Vulnerabilities
===============
Device Register Partial Write (DRPW) (CVE-2022-21166)
-----------------------------------------------------
Some endpoint MMIO registers incorrectly handle writes that are smaller than
the register size. Instead of aborting the write or only copying the correct
subset of bytes (for example, 2 bytes for a 2-byte write), more bytes than
specified by the write transaction may be written to the register. On
processors affected by FBSDP, this may expose stale data from the fill buffers
of the core that created the write transaction.
Shared Buffers Data Sampling (SBDS) (CVE-2022-21125)
----------------------------------------------------
After propagators may have moved data around the uncore and copied stale data
into client core fill buffers, processors affected by MFBDS can leak data from
the fill buffer. It is limited to the client (including Intel Xeon server E3)
uncore implementation.
Shared Buffers Data Read (SBDR) (CVE-2022-21123)
------------------------------------------------
It is similar to Shared Buffer Data Sampling (SBDS) except that the data is
directly read into the architectural software-visible state. It is limited to
the client (including Intel Xeon server E3) uncore implementation.
Affected Processors
===================
Not all the CPUs are affected by all the variants. For instance, most
processors for the server market (excluding Intel Xeon E3 processors) are
impacted by only Device Register Partial Write (DRPW).
Below is the list of affected Intel processors [#f1]_:
=================== ============ =========
Common name Family_Model Steppings
=================== ============ =========
HASWELL_X 06_3FH 2,4
SKYLAKE_L 06_4EH 3
BROADWELL_X 06_4FH All
SKYLAKE_X 06_55H 3,4,6,7,11
BROADWELL_D 06_56H 3,4,5
SKYLAKE 06_5EH 3
ICELAKE_X 06_6AH 4,5,6
ICELAKE_D 06_6CH 1
ICELAKE_L 06_7EH 5
ATOM_TREMONT_D 06_86H All
LAKEFIELD 06_8AH 1
KABYLAKE_L 06_8EH 9 to 12
ATOM_TREMONT 06_96H 1
ATOM_TREMONT_L 06_9CH 0
KABYLAKE 06_9EH 9 to 13
COMETLAKE 06_A5H 2,3,5
COMETLAKE_L 06_A6H 0,1
ROCKETLAKE 06_A7H 1
=================== ============ =========
If a CPU is in the affected processor list, but not affected by a variant, it
is indicated by new bits in MSR IA32_ARCH_CAPABILITIES. As described in a later
section, mitigation largely remains the same for all the variants, i.e. to
clear the CPU fill buffers via VERW instruction.
New bits in MSRs
================
Newer processors and microcode update on existing affected processors added new
bits to IA32_ARCH_CAPABILITIES MSR. These bits can be used to enumerate
specific variants of Processor MMIO Stale Data vulnerabilities and mitigation
capability.
MSR IA32_ARCH_CAPABILITIES
--------------------------
Bit 13 - SBDR_SSDP_NO - When set, processor is not affected by either the
Shared Buffers Data Read (SBDR) vulnerability or the sideband stale
data propagator (SSDP).
Bit 14 - FBSDP_NO - When set, processor is not affected by the Fill Buffer
Stale Data Propagator (FBSDP).
Bit 15 - PSDP_NO - When set, processor is not affected by Primary Stale Data
Propagator (PSDP).
Bit 17 - FB_CLEAR - When set, VERW instruction will overwrite CPU fill buffer
values as part of MD_CLEAR operations. Processors that do not
enumerate MDS_NO (meaning they are affected by MDS) but that do
enumerate support for both L1D_FLUSH and MD_CLEAR implicitly enumerate
FB_CLEAR as part of their MD_CLEAR support.
Bit 18 - FB_CLEAR_CTRL - Processor supports read and write to MSR
IA32_MCU_OPT_CTRL[FB_CLEAR_DIS]. On such processors, the FB_CLEAR_DIS
bit can be set to cause the VERW instruction to not perform the
FB_CLEAR action. Not all processors that support FB_CLEAR will support
FB_CLEAR_CTRL.
MSR IA32_MCU_OPT_CTRL
---------------------
Bit 3 - FB_CLEAR_DIS - When set, VERW instruction does not perform the FB_CLEAR
action. This may be useful to reduce the performance impact of FB_CLEAR in
cases where system software deems it warranted (for example, when performance
is more critical, or the untrusted software has no MMIO access). Note that
FB_CLEAR_DIS has no impact on enumeration (for example, it does not change
FB_CLEAR or MD_CLEAR enumeration) and it may not be supported on all processors
that enumerate FB_CLEAR.
Mitigation
==========
Like MDS, all variants of Processor MMIO Stale Data vulnerabilities have the
same mitigation strategy to force the CPU to clear the affected buffers before
an attacker can extract the secrets.
This is achieved by using the otherwise unused and obsolete VERW instruction in
combination with a microcode update. The microcode clears the affected CPU
buffers when the VERW instruction is executed.
Kernel reuses the MDS function to invoke the buffer clearing:
mds_clear_cpu_buffers()
On MDS affected CPUs, the kernel already invokes CPU buffer clear on
kernel/userspace, hypervisor/guest and C-state (idle) transitions. No
additional mitigation is needed on such CPUs.
For CPUs not affected by MDS or TAA, mitigation is needed only for the attacker
with MMIO capability. Therefore, VERW is not required for kernel/userspace. For
virtualization case, VERW is only needed at VMENTER for a guest with MMIO
capability.
Mitigation points
-----------------
Return to user space
^^^^^^^^^^^^^^^^^^^^
Same mitigation as MDS when affected by MDS/TAA, otherwise no mitigation
needed.
C-State transition
^^^^^^^^^^^^^^^^^^
Control register writes by CPU during C-state transition can propagate data
from fill buffer to uncore buffers. Execute VERW before C-state transition to
clear CPU fill buffers.
Guest entry point
^^^^^^^^^^^^^^^^^
Same mitigation as MDS when processor is also affected by MDS/TAA, otherwise
execute VERW at VMENTER only for MMIO capable guests. On CPUs not affected by
MDS/TAA, guest without MMIO access cannot extract secrets using Processor MMIO
Stale Data vulnerabilities, so there is no need to execute VERW for such guests.
Mitigation control on the kernel command line
---------------------------------------------
The kernel command line allows to control the Processor MMIO Stale Data
mitigations at boot time with the option "mmio_stale_data=". The valid
arguments for this option are:
========== =================================================================
full If the CPU is vulnerable, enable mitigation; CPU buffer clearing
on exit to userspace and when entering a VM. Idle transitions are
protected as well. It does not automatically disable SMT.
full,nosmt Same as full, with SMT disabled on vulnerable CPUs. This is the
complete mitigation.
off Disables mitigation completely.
========== =================================================================
If the CPU is affected and mmio_stale_data=off is not supplied on the kernel
command line, then the kernel selects the appropriate mitigation.
Mitigation status information
-----------------------------
The Linux kernel provides a sysfs interface to enumerate the current
vulnerability status of the system: whether the system is vulnerable, and
which mitigations are active. The relevant sysfs file is:
/sys/devices/system/cpu/vulnerabilities/mmio_stale_data
The possible values in this file are:
.. list-table::
* - 'Not affected'
- The processor is not vulnerable
* - 'Vulnerable'
- The processor is vulnerable, but no mitigation enabled
* - 'Vulnerable: Clear CPU buffers attempted, no microcode'
- The processor is vulnerable, but microcode is not updated. The
mitigation is enabled on a best effort basis.
* - 'Mitigation: Clear CPU buffers'
- The processor is vulnerable and the CPU buffer clearing mitigation is
enabled.
If the processor is vulnerable then the following information is appended to
the above information:
======================== ===========================================
'SMT vulnerable' SMT is enabled
'SMT disabled' SMT is disabled
'SMT Host state unknown' Kernel runs in a VM, Host SMT state unknown
======================== ===========================================
References
----------
.. [#f1] Affected Processors
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html

View File

@ -2681,6 +2681,7 @@
kvm.nx_huge_pages=off [X86] kvm.nx_huge_pages=off [X86]
no_entry_flush [PPC] no_entry_flush [PPC]
no_uaccess_flush [PPC] no_uaccess_flush [PPC]
mmio_stale_data=off [X86]
Exceptions: Exceptions:
This does not have any effect on This does not have any effect on
@ -2702,6 +2703,7 @@
Equivalent to: l1tf=flush,nosmt [X86] Equivalent to: l1tf=flush,nosmt [X86]
mds=full,nosmt [X86] mds=full,nosmt [X86]
tsx_async_abort=full,nosmt [X86] tsx_async_abort=full,nosmt [X86]
mmio_stale_data=full,nosmt [X86]
mminit_loglevel= mminit_loglevel=
[KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this [KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this
@ -2711,6 +2713,40 @@
log everything. Information is printed at KERN_DEBUG log everything. Information is printed at KERN_DEBUG
so loglevel=8 may also need to be specified. so loglevel=8 may also need to be specified.
mmio_stale_data=
[X86,INTEL] Control mitigation for the Processor
MMIO Stale Data vulnerabilities.
Processor MMIO Stale Data is a class of
vulnerabilities that may expose data after an MMIO
operation. Exposed data could originate or end in
the same CPU buffers as affected by MDS and TAA.
Therefore, similar to MDS and TAA, the mitigation
is to clear the affected CPU buffers.
This parameter controls the mitigation. The
options are:
full - Enable mitigation on vulnerable CPUs
full,nosmt - Enable mitigation and disable SMT on
vulnerable CPUs.
off - Unconditionally disable mitigation
On MDS or TAA affected machines,
mmio_stale_data=off can be prevented by an active
MDS or TAA mitigation as these vulnerabilities are
mitigated with the same mechanism so in order to
disable this mitigation, you need to specify
mds=off and tsx_async_abort=off too.
Not specifying this option is equivalent to
mmio_stale_data=full.
For details see:
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst
module.sig_enforce module.sig_enforce
[KNL] When CONFIG_MODULE_SIG is set, this means that [KNL] When CONFIG_MODULE_SIG is set, this means that
modules without (valid) signatures will fail to load. modules without (valid) signatures will fail to load.

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: GPL-2.0 # SPDX-License-Identifier: GPL-2.0
VERSION = 5 VERSION = 5
PATCHLEVEL = 4 PATCHLEVEL = 4
SUBLEVEL = 198 SUBLEVEL = 199
EXTRAVERSION = EXTRAVERSION =
NAME = Kleptomaniac Octopus NAME = Kleptomaniac Octopus

View File

@ -405,5 +405,6 @@
#define X86_BUG_TAA X86_BUG(22) /* CPU is affected by TSX Async Abort(TAA) */ #define X86_BUG_TAA X86_BUG(22) /* CPU is affected by TSX Async Abort(TAA) */
#define X86_BUG_ITLB_MULTIHIT X86_BUG(23) /* CPU may incur MCE during certain page attribute changes */ #define X86_BUG_ITLB_MULTIHIT X86_BUG(23) /* CPU may incur MCE during certain page attribute changes */
#define X86_BUG_SRBDS X86_BUG(24) /* CPU may leak RNG bits if not mitigated */ #define X86_BUG_SRBDS X86_BUG(24) /* CPU may leak RNG bits if not mitigated */
#define X86_BUG_MMIO_STALE_DATA X86_BUG(25) /* CPU is affected by Processor MMIO Stale Data vulnerabilities */
#endif /* _ASM_X86_CPUFEATURES_H */ #endif /* _ASM_X86_CPUFEATURES_H */

View File

@ -86,6 +86,14 @@
#define INTEL_FAM6_COMETLAKE 0xA5 #define INTEL_FAM6_COMETLAKE 0xA5
#define INTEL_FAM6_COMETLAKE_L 0xA6 #define INTEL_FAM6_COMETLAKE_L 0xA6
#define INTEL_FAM6_ROCKETLAKE 0xA7
/* Hybrid Core/Atom Processors */
#define INTEL_FAM6_LAKEFIELD 0x8A
#define INTEL_FAM6_ALDERLAKE 0x97
#define INTEL_FAM6_ALDERLAKE_L 0x9A
/* "Small Core" Processors (Atom) */ /* "Small Core" Processors (Atom) */
#define INTEL_FAM6_ATOM_BONNELL 0x1C /* Diamondville, Pineview */ #define INTEL_FAM6_ATOM_BONNELL 0x1C /* Diamondville, Pineview */
@ -111,6 +119,7 @@
#define INTEL_FAM6_ATOM_TREMONT_D 0x86 /* Jacobsville */ #define INTEL_FAM6_ATOM_TREMONT_D 0x86 /* Jacobsville */
#define INTEL_FAM6_ATOM_TREMONT 0x96 /* Elkhart Lake */ #define INTEL_FAM6_ATOM_TREMONT 0x96 /* Elkhart Lake */
#define INTEL_FAM6_ATOM_TREMONT_L 0x9C /* Jasper Lake */
/* Xeon Phi */ /* Xeon Phi */

View File

@ -105,6 +105,30 @@
* Not susceptible to * Not susceptible to
* TSX Async Abort (TAA) vulnerabilities. * TSX Async Abort (TAA) vulnerabilities.
*/ */
#define ARCH_CAP_SBDR_SSDP_NO BIT(13) /*
* Not susceptible to SBDR and SSDP
* variants of Processor MMIO stale data
* vulnerabilities.
*/
#define ARCH_CAP_FBSDP_NO BIT(14) /*
* Not susceptible to FBSDP variant of
* Processor MMIO stale data
* vulnerabilities.
*/
#define ARCH_CAP_PSDP_NO BIT(15) /*
* Not susceptible to PSDP variant of
* Processor MMIO stale data
* vulnerabilities.
*/
#define ARCH_CAP_FB_CLEAR BIT(17) /*
* VERW clears CPU fill buffer
* even on MDS_NO CPUs.
*/
#define ARCH_CAP_FB_CLEAR_CTRL BIT(18) /*
* MSR_IA32_MCU_OPT_CTRL[FB_CLEAR_DIS]
* bit available to control VERW
* behavior.
*/
#define MSR_IA32_FLUSH_CMD 0x0000010b #define MSR_IA32_FLUSH_CMD 0x0000010b
#define L1D_FLUSH BIT(0) /* #define L1D_FLUSH BIT(0) /*
@ -122,6 +146,7 @@
/* SRBDS support */ /* SRBDS support */
#define MSR_IA32_MCU_OPT_CTRL 0x00000123 #define MSR_IA32_MCU_OPT_CTRL 0x00000123
#define RNGDS_MITG_DIS BIT(0) #define RNGDS_MITG_DIS BIT(0)
#define FB_CLEAR_DIS BIT(3) /* CPU Fill buffer clear disable */
#define MSR_IA32_SYSENTER_CS 0x00000174 #define MSR_IA32_SYSENTER_CS 0x00000174
#define MSR_IA32_SYSENTER_ESP 0x00000175 #define MSR_IA32_SYSENTER_ESP 0x00000175

View File

@ -313,6 +313,8 @@ DECLARE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
DECLARE_STATIC_KEY_FALSE(mds_user_clear); DECLARE_STATIC_KEY_FALSE(mds_user_clear);
DECLARE_STATIC_KEY_FALSE(mds_idle_clear); DECLARE_STATIC_KEY_FALSE(mds_idle_clear);
DECLARE_STATIC_KEY_FALSE(mmio_stale_data_clear);
#include <asm/segment.h> #include <asm/segment.h>
/** /**

View File

@ -40,8 +40,10 @@ static void __init spectre_v2_select_mitigation(void);
static void __init ssb_select_mitigation(void); static void __init ssb_select_mitigation(void);
static void __init l1tf_select_mitigation(void); static void __init l1tf_select_mitigation(void);
static void __init mds_select_mitigation(void); static void __init mds_select_mitigation(void);
static void __init mds_print_mitigation(void); static void __init md_clear_update_mitigation(void);
static void __init md_clear_select_mitigation(void);
static void __init taa_select_mitigation(void); static void __init taa_select_mitigation(void);
static void __init mmio_select_mitigation(void);
static void __init srbds_select_mitigation(void); static void __init srbds_select_mitigation(void);
/* The base value of the SPEC_CTRL MSR that always has to be preserved. */ /* The base value of the SPEC_CTRL MSR that always has to be preserved. */
@ -76,6 +78,10 @@ EXPORT_SYMBOL_GPL(mds_user_clear);
DEFINE_STATIC_KEY_FALSE(mds_idle_clear); DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
EXPORT_SYMBOL_GPL(mds_idle_clear); EXPORT_SYMBOL_GPL(mds_idle_clear);
/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
void __init check_bugs(void) void __init check_bugs(void)
{ {
identify_boot_cpu(); identify_boot_cpu();
@ -108,16 +114,9 @@ void __init check_bugs(void)
spectre_v2_select_mitigation(); spectre_v2_select_mitigation();
ssb_select_mitigation(); ssb_select_mitigation();
l1tf_select_mitigation(); l1tf_select_mitigation();
mds_select_mitigation(); md_clear_select_mitigation();
taa_select_mitigation();
srbds_select_mitigation(); srbds_select_mitigation();
/*
* As MDS and TAA mitigations are inter-related, print MDS
* mitigation until after TAA mitigation selection is done.
*/
mds_print_mitigation();
arch_smt_update(); arch_smt_update();
#ifdef CONFIG_X86_32 #ifdef CONFIG_X86_32
@ -257,14 +256,6 @@ static void __init mds_select_mitigation(void)
} }
} }
static void __init mds_print_mitigation(void)
{
if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off())
return;
pr_info("%s\n", mds_strings[mds_mitigation]);
}
static int __init mds_cmdline(char *str) static int __init mds_cmdline(char *str)
{ {
if (!boot_cpu_has_bug(X86_BUG_MDS)) if (!boot_cpu_has_bug(X86_BUG_MDS))
@ -312,7 +303,7 @@ static void __init taa_select_mitigation(void)
/* TSX previously disabled by tsx=off */ /* TSX previously disabled by tsx=off */
if (!boot_cpu_has(X86_FEATURE_RTM)) { if (!boot_cpu_has(X86_FEATURE_RTM)) {
taa_mitigation = TAA_MITIGATION_TSX_DISABLED; taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
goto out; return;
} }
if (cpu_mitigations_off()) { if (cpu_mitigations_off()) {
@ -326,7 +317,7 @@ static void __init taa_select_mitigation(void)
*/ */
if (taa_mitigation == TAA_MITIGATION_OFF && if (taa_mitigation == TAA_MITIGATION_OFF &&
mds_mitigation == MDS_MITIGATION_OFF) mds_mitigation == MDS_MITIGATION_OFF)
goto out; return;
if (boot_cpu_has(X86_FEATURE_MD_CLEAR)) if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
taa_mitigation = TAA_MITIGATION_VERW; taa_mitigation = TAA_MITIGATION_VERW;
@ -358,18 +349,6 @@ static void __init taa_select_mitigation(void)
if (taa_nosmt || cpu_mitigations_auto_nosmt()) if (taa_nosmt || cpu_mitigations_auto_nosmt())
cpu_smt_disable(false); cpu_smt_disable(false);
/*
* Update MDS mitigation, if necessary, as the mds_user_clear is
* now enabled for TAA mitigation.
*/
if (mds_mitigation == MDS_MITIGATION_OFF &&
boot_cpu_has_bug(X86_BUG_MDS)) {
mds_mitigation = MDS_MITIGATION_FULL;
mds_select_mitigation();
}
out:
pr_info("%s\n", taa_strings[taa_mitigation]);
} }
static int __init tsx_async_abort_parse_cmdline(char *str) static int __init tsx_async_abort_parse_cmdline(char *str)
@ -393,6 +372,151 @@ static int __init tsx_async_abort_parse_cmdline(char *str)
} }
early_param("tsx_async_abort", tsx_async_abort_parse_cmdline); early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
#undef pr_fmt
#define pr_fmt(fmt) "MMIO Stale Data: " fmt
enum mmio_mitigations {
MMIO_MITIGATION_OFF,
MMIO_MITIGATION_UCODE_NEEDED,
MMIO_MITIGATION_VERW,
};
/* Default mitigation for Processor MMIO Stale Data vulnerabilities */
static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
static bool mmio_nosmt __ro_after_init = false;
static const char * const mmio_strings[] = {
[MMIO_MITIGATION_OFF] = "Vulnerable",
[MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
[MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
};
static void __init mmio_select_mitigation(void)
{
u64 ia32_cap;
if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
cpu_mitigations_off()) {
mmio_mitigation = MMIO_MITIGATION_OFF;
return;
}
if (mmio_mitigation == MMIO_MITIGATION_OFF)
return;
ia32_cap = x86_read_arch_cap_msr();
/*
* Enable CPU buffer clear mitigation for host and VMM, if also affected
* by MDS or TAA. Otherwise, enable mitigation for VMM only.
*/
if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
boot_cpu_has(X86_FEATURE_RTM)))
static_branch_enable(&mds_user_clear);
else
static_branch_enable(&mmio_stale_data_clear);
/*
* If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
* be propagated to uncore buffers, clearing the Fill buffers on idle
* is required irrespective of SMT state.
*/
if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
static_branch_enable(&mds_idle_clear);
/*
* Check if the system has the right microcode.
*
* CPU Fill buffer clear mitigation is enumerated by either an explicit
* FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
* affected systems.
*/
if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
(boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
!(ia32_cap & ARCH_CAP_MDS_NO)))
mmio_mitigation = MMIO_MITIGATION_VERW;
else
mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
if (mmio_nosmt || cpu_mitigations_auto_nosmt())
cpu_smt_disable(false);
}
static int __init mmio_stale_data_parse_cmdline(char *str)
{
if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
return 0;
if (!str)
return -EINVAL;
if (!strcmp(str, "off")) {
mmio_mitigation = MMIO_MITIGATION_OFF;
} else if (!strcmp(str, "full")) {
mmio_mitigation = MMIO_MITIGATION_VERW;
} else if (!strcmp(str, "full,nosmt")) {
mmio_mitigation = MMIO_MITIGATION_VERW;
mmio_nosmt = true;
}
return 0;
}
early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
#undef pr_fmt
#define pr_fmt(fmt) "" fmt
static void __init md_clear_update_mitigation(void)
{
if (cpu_mitigations_off())
return;
if (!static_key_enabled(&mds_user_clear))
goto out;
/*
* mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
* mitigation, if necessary.
*/
if (mds_mitigation == MDS_MITIGATION_OFF &&
boot_cpu_has_bug(X86_BUG_MDS)) {
mds_mitigation = MDS_MITIGATION_FULL;
mds_select_mitigation();
}
if (taa_mitigation == TAA_MITIGATION_OFF &&
boot_cpu_has_bug(X86_BUG_TAA)) {
taa_mitigation = TAA_MITIGATION_VERW;
taa_select_mitigation();
}
if (mmio_mitigation == MMIO_MITIGATION_OFF &&
boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
mmio_mitigation = MMIO_MITIGATION_VERW;
mmio_select_mitigation();
}
out:
if (boot_cpu_has_bug(X86_BUG_MDS))
pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
if (boot_cpu_has_bug(X86_BUG_TAA))
pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
}
static void __init md_clear_select_mitigation(void)
{
mds_select_mitigation();
taa_select_mitigation();
mmio_select_mitigation();
/*
* As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
* and print their mitigation after MDS, TAA and MMIO Stale Data
* mitigation selection is done.
*/
md_clear_update_mitigation();
}
#undef pr_fmt #undef pr_fmt
#define pr_fmt(fmt) "SRBDS: " fmt #define pr_fmt(fmt) "SRBDS: " fmt
@ -454,11 +578,13 @@ static void __init srbds_select_mitigation(void)
return; return;
/* /*
* Check to see if this is one of the MDS_NO systems supporting * Check to see if this is one of the MDS_NO systems supporting TSX that
* TSX that are only exposed to SRBDS when TSX is enabled. * are only exposed to SRBDS when TSX is enabled or when CPU is affected
* by Processor MMIO Stale Data vulnerability.
*/ */
ia32_cap = x86_read_arch_cap_msr(); ia32_cap = x86_read_arch_cap_msr();
if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM)) if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
srbds_mitigation = SRBDS_MITIGATION_TSX_OFF; srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
else if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR; srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
@ -1066,6 +1192,8 @@ static void update_indir_branch_cond(void)
/* Update the static key controlling the MDS CPU buffer clear in idle */ /* Update the static key controlling the MDS CPU buffer clear in idle */
static void update_mds_branch_idle(void) static void update_mds_branch_idle(void)
{ {
u64 ia32_cap = x86_read_arch_cap_msr();
/* /*
* Enable the idle clearing if SMT is active on CPUs which are * Enable the idle clearing if SMT is active on CPUs which are
* affected only by MSBDS and not any other MDS variant. * affected only by MSBDS and not any other MDS variant.
@ -1077,14 +1205,17 @@ static void update_mds_branch_idle(void)
if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY)) if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
return; return;
if (sched_smt_active()) if (sched_smt_active()) {
static_branch_enable(&mds_idle_clear); static_branch_enable(&mds_idle_clear);
else } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
(ia32_cap & ARCH_CAP_FBSDP_NO)) {
static_branch_disable(&mds_idle_clear); static_branch_disable(&mds_idle_clear);
}
} }
#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n" #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n" #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
void cpu_bugs_smt_update(void) void cpu_bugs_smt_update(void)
{ {
@ -1129,6 +1260,16 @@ void cpu_bugs_smt_update(void)
break; break;
} }
switch (mmio_mitigation) {
case MMIO_MITIGATION_VERW:
case MMIO_MITIGATION_UCODE_NEEDED:
if (sched_smt_active())
pr_warn_once(MMIO_MSG_SMT);
break;
case MMIO_MITIGATION_OFF:
break;
}
mutex_unlock(&spec_ctrl_mutex); mutex_unlock(&spec_ctrl_mutex);
} }
@ -1692,6 +1833,20 @@ static ssize_t tsx_async_abort_show_state(char *buf)
sched_smt_active() ? "vulnerable" : "disabled"); sched_smt_active() ? "vulnerable" : "disabled");
} }
static ssize_t mmio_stale_data_show_state(char *buf)
{
if (mmio_mitigation == MMIO_MITIGATION_OFF)
return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
return sysfs_emit(buf, "%s; SMT Host state unknown\n",
mmio_strings[mmio_mitigation]);
}
return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
sched_smt_active() ? "vulnerable" : "disabled");
}
static char *stibp_state(void) static char *stibp_state(void)
{ {
if (spectre_v2_in_eibrs_mode(spectre_v2_enabled)) if (spectre_v2_in_eibrs_mode(spectre_v2_enabled))
@ -1792,6 +1947,9 @@ static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr
case X86_BUG_SRBDS: case X86_BUG_SRBDS:
return srbds_show_state(buf); return srbds_show_state(buf);
case X86_BUG_MMIO_STALE_DATA:
return mmio_stale_data_show_state(buf);
default: default:
break; break;
} }
@ -1843,4 +2001,9 @@ ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *
{ {
return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS); return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
} }
ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
{
return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
}
#endif #endif

View File

@ -1099,18 +1099,42 @@ static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
X86_FEATURE_ANY, issues) X86_FEATURE_ANY, issues)
#define SRBDS BIT(0) #define SRBDS BIT(0)
/* CPU is affected by X86_BUG_MMIO_STALE_DATA */
#define MMIO BIT(1)
/* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
#define MMIO_SBDS BIT(2)
static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = { static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
VULNBL_INTEL_STEPPINGS(HASWELL_X, BIT(2) | BIT(4), MMIO),
VULNBL_INTEL_STEPPINGS(BROADWELL_D, X86_STEPPINGS(0x3, 0x5), MMIO),
VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
VULNBL_INTEL_STEPPINGS(BROADWELL_X, X86_STEPPING_ANY, MMIO),
VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPINGS(0x3, 0x3), SRBDS | MMIO),
VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS),
VULNBL_INTEL_STEPPINGS(SKYLAKE_X, BIT(3) | BIT(4) | BIT(6) |
BIT(7) | BIT(0xB), MMIO),
VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPINGS(0x3, 0x3), SRBDS | MMIO),
VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS), VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS),
VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPINGS(0x0, 0xC), SRBDS), VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPINGS(0x9, 0xC), SRBDS | MMIO),
VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPINGS(0x0, 0xD), SRBDS), VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPINGS(0x0, 0x8), SRBDS),
VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPINGS(0x9, 0xD), SRBDS | MMIO),
VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPINGS(0x0, 0x8), SRBDS),
VULNBL_INTEL_STEPPINGS(ICELAKE_L, X86_STEPPINGS(0x5, 0x5), MMIO | MMIO_SBDS),
VULNBL_INTEL_STEPPINGS(ICELAKE_D, X86_STEPPINGS(0x1, 0x1), MMIO),
VULNBL_INTEL_STEPPINGS(ICELAKE_X, X86_STEPPINGS(0x4, 0x6), MMIO),
VULNBL_INTEL_STEPPINGS(COMETLAKE, BIT(2) | BIT(3) | BIT(5), MMIO | MMIO_SBDS),
VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x1, 0x1), MMIO | MMIO_SBDS),
VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO),
VULNBL_INTEL_STEPPINGS(LAKEFIELD, X86_STEPPINGS(0x1, 0x1), MMIO | MMIO_SBDS),
VULNBL_INTEL_STEPPINGS(ROCKETLAKE, X86_STEPPINGS(0x1, 0x1), MMIO),
VULNBL_INTEL_STEPPINGS(ATOM_TREMONT, X86_STEPPINGS(0x1, 0x1), MMIO | MMIO_SBDS),
VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO),
VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L, X86_STEPPINGS(0x0, 0x0), MMIO | MMIO_SBDS),
{} {}
}; };
@ -1131,6 +1155,13 @@ u64 x86_read_arch_cap_msr(void)
return ia32_cap; return ia32_cap;
} }
static bool arch_cap_mmio_immune(u64 ia32_cap)
{
return (ia32_cap & ARCH_CAP_FBSDP_NO &&
ia32_cap & ARCH_CAP_PSDP_NO &&
ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
}
static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c) static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
{ {
u64 ia32_cap = x86_read_arch_cap_msr(); u64 ia32_cap = x86_read_arch_cap_msr();
@ -1184,12 +1215,27 @@ static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
/* /*
* SRBDS affects CPUs which support RDRAND or RDSEED and are listed * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
* in the vulnerability blacklist. * in the vulnerability blacklist.
*
* Some of the implications and mitigation of Shared Buffers Data
* Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
* SRBDS.
*/ */
if ((cpu_has(c, X86_FEATURE_RDRAND) || if ((cpu_has(c, X86_FEATURE_RDRAND) ||
cpu_has(c, X86_FEATURE_RDSEED)) && cpu_has(c, X86_FEATURE_RDSEED)) &&
cpu_matches(cpu_vuln_blacklist, SRBDS)) cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
setup_force_cpu_bug(X86_BUG_SRBDS); setup_force_cpu_bug(X86_BUG_SRBDS);
/*
* Processor MMIO Stale Data bug enumeration
*
* Affected CPU list is generally enough to enumerate the vulnerability,
* but for virtualization case check for ARCH_CAP MSR bits also, VMM may
* not want the guest to enumerate the bug.
*/
if (cpu_matches(cpu_vuln_blacklist, MMIO) &&
!arch_cap_mmio_immune(ia32_cap))
setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN)) if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
return; return;

View File

@ -204,6 +204,9 @@ static const struct {
#define L1D_CACHE_ORDER 4 #define L1D_CACHE_ORDER 4
static void *vmx_l1d_flush_pages; static void *vmx_l1d_flush_pages;
/* Control for disabling CPU Fill buffer clear */
static bool __read_mostly vmx_fb_clear_ctrl_available;
static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
{ {
struct page *page; struct page *page;
@ -335,6 +338,60 @@ static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
} }
static void vmx_setup_fb_clear_ctrl(void)
{
u64 msr;
if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
!boot_cpu_has_bug(X86_BUG_MDS) &&
!boot_cpu_has_bug(X86_BUG_TAA)) {
rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
if (msr & ARCH_CAP_FB_CLEAR_CTRL)
vmx_fb_clear_ctrl_available = true;
}
}
static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
{
u64 msr;
if (!vmx->disable_fb_clear)
return;
rdmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
msr |= FB_CLEAR_DIS;
wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
/* Cache the MSR value to avoid reading it later */
vmx->msr_ia32_mcu_opt_ctrl = msr;
}
static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
{
if (!vmx->disable_fb_clear)
return;
vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
}
static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
{
vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
/*
* If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
* at VMEntry. Skip the MSR read/write when a guest has no use case to
* execute VERW.
*/
if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
(vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
(vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
(vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
(vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
vmx->disable_fb_clear = false;
}
static const struct kernel_param_ops vmentry_l1d_flush_ops = { static const struct kernel_param_ops vmentry_l1d_flush_ops = {
.set = vmentry_l1d_flush_set, .set = vmentry_l1d_flush_set,
.get = vmentry_l1d_flush_get, .get = vmentry_l1d_flush_get,
@ -2167,9 +2224,13 @@ static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
} }
break; break;
} }
ret = kvm_set_msr_common(vcpu, msr_info); ret = kvm_set_msr_common(vcpu, msr_info);
} }
/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
vmx_update_fb_clear_dis(vcpu, vmx);
return ret; return ret;
} }
@ -4362,6 +4423,8 @@ static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
vpid_sync_context(vmx->vpid); vpid_sync_context(vmx->vpid);
if (init_event) if (init_event)
vmx_clear_hlt(vcpu); vmx_clear_hlt(vcpu);
vmx_update_fb_clear_dis(vcpu, vmx);
} }
static void enable_irq_window(struct kvm_vcpu *vcpu) static void enable_irq_window(struct kvm_vcpu *vcpu)
@ -6555,6 +6618,11 @@ static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
vmx_l1d_flush(vcpu); vmx_l1d_flush(vcpu);
else if (static_branch_unlikely(&mds_user_clear)) else if (static_branch_unlikely(&mds_user_clear))
mds_clear_cpu_buffers(); mds_clear_cpu_buffers();
else if (static_branch_unlikely(&mmio_stale_data_clear) &&
kvm_arch_has_assigned_device(vcpu->kvm))
mds_clear_cpu_buffers();
vmx_disable_fb_clear(vmx);
if (vcpu->arch.cr2 != read_cr2()) if (vcpu->arch.cr2 != read_cr2())
write_cr2(vcpu->arch.cr2); write_cr2(vcpu->arch.cr2);
@ -6564,6 +6632,8 @@ static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
vcpu->arch.cr2 = read_cr2(); vcpu->arch.cr2 = read_cr2();
vmx_enable_fb_clear(vmx);
/* /*
* We do not use IBRS in the kernel. If this vCPU has used the * We do not use IBRS in the kernel. If this vCPU has used the
* SPEC_CTRL MSR it may have left it on; save the value and * SPEC_CTRL MSR it may have left it on; save the value and
@ -8038,8 +8108,11 @@ static int __init vmx_init(void)
return r; return r;
} }
vmx_setup_fb_clear_ctrl();
for_each_possible_cpu(cpu) { for_each_possible_cpu(cpu) {
INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu)); INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
} }

View File

@ -280,8 +280,11 @@ struct vcpu_vmx {
u64 msr_ia32_feature_control; u64 msr_ia32_feature_control;
u64 msr_ia32_feature_control_valid_bits; u64 msr_ia32_feature_control_valid_bits;
u64 ept_pointer; u64 ept_pointer;
u64 msr_ia32_mcu_opt_ctrl;
bool disable_fb_clear;
struct pt_desc pt_desc; struct pt_desc pt_desc;
}; };
enum ept_pointers_status { enum ept_pointers_status {

View File

@ -1403,6 +1403,10 @@ static u64 kvm_get_arch_capabilities(void)
/* KVM does not emulate MSR_IA32_TSX_CTRL. */ /* KVM does not emulate MSR_IA32_TSX_CTRL. */
data &= ~ARCH_CAP_TSX_CTRL_MSR; data &= ~ARCH_CAP_TSX_CTRL_MSR;
/* Guests don't need to know "Fill buffer clear control" exists */
data &= ~ARCH_CAP_FB_CLEAR_CTRL;
return data; return data;
} }

View File

@ -568,6 +568,12 @@ ssize_t __weak cpu_show_srbds(struct device *dev,
return sysfs_emit(buf, "Not affected\n"); return sysfs_emit(buf, "Not affected\n");
} }
ssize_t __weak cpu_show_mmio_stale_data(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sysfs_emit(buf, "Not affected\n");
}
static DEVICE_ATTR(meltdown, 0444, cpu_show_meltdown, NULL); static DEVICE_ATTR(meltdown, 0444, cpu_show_meltdown, NULL);
static DEVICE_ATTR(spectre_v1, 0444, cpu_show_spectre_v1, NULL); static DEVICE_ATTR(spectre_v1, 0444, cpu_show_spectre_v1, NULL);
static DEVICE_ATTR(spectre_v2, 0444, cpu_show_spectre_v2, NULL); static DEVICE_ATTR(spectre_v2, 0444, cpu_show_spectre_v2, NULL);
@ -577,6 +583,7 @@ static DEVICE_ATTR(mds, 0444, cpu_show_mds, NULL);
static DEVICE_ATTR(tsx_async_abort, 0444, cpu_show_tsx_async_abort, NULL); static DEVICE_ATTR(tsx_async_abort, 0444, cpu_show_tsx_async_abort, NULL);
static DEVICE_ATTR(itlb_multihit, 0444, cpu_show_itlb_multihit, NULL); static DEVICE_ATTR(itlb_multihit, 0444, cpu_show_itlb_multihit, NULL);
static DEVICE_ATTR(srbds, 0444, cpu_show_srbds, NULL); static DEVICE_ATTR(srbds, 0444, cpu_show_srbds, NULL);
static DEVICE_ATTR(mmio_stale_data, 0444, cpu_show_mmio_stale_data, NULL);
static struct attribute *cpu_root_vulnerabilities_attrs[] = { static struct attribute *cpu_root_vulnerabilities_attrs[] = {
&dev_attr_meltdown.attr, &dev_attr_meltdown.attr,
@ -588,6 +595,7 @@ static struct attribute *cpu_root_vulnerabilities_attrs[] = {
&dev_attr_tsx_async_abort.attr, &dev_attr_tsx_async_abort.attr,
&dev_attr_itlb_multihit.attr, &dev_attr_itlb_multihit.attr,
&dev_attr_srbds.attr, &dev_attr_srbds.attr,
&dev_attr_mmio_stale_data.attr,
NULL NULL
}; };

View File

@ -64,6 +64,10 @@ extern ssize_t cpu_show_tsx_async_abort(struct device *dev,
char *buf); char *buf);
extern ssize_t cpu_show_itlb_multihit(struct device *dev, extern ssize_t cpu_show_itlb_multihit(struct device *dev,
struct device_attribute *attr, char *buf); struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf);
extern ssize_t cpu_show_mmio_stale_data(struct device *dev,
struct device_attribute *attr,
char *buf);
extern __printf(4, 5) extern __printf(4, 5)
struct device *cpu_device_create(struct device *parent, void *drvdata, struct device *cpu_device_create(struct device *parent, void *drvdata,