We currently have 2 commonly used methods for switching ISA within
assembly code, then restoring the original ISA.
1) Using a pair of .set push & .set pop directives. For example:
.set push
.set mips32r2
<some_insn>
.set pop
2) Using .set mips0 to restore the ISA originally specified on the
command line. For example:
.set mips32r2
<some_insn>
.set mips0
Unfortunately method 2 does not work with nanoMIPS toolchains, where the
assembler rejects the .set mips0 directive like so:
Error: cannot change ISA from nanoMIPS to mips0
In preparation for supporting nanoMIPS builds, switch all instances of
method 2 in generic non-platform-specific code to use push & pop as in
method 1 instead. The .set push & .set pop is arguably cleaner anyway,
and if nothing else it's good to consistently use one method.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Patchwork: https://patchwork.linux-mips.org/patch/21037/
Cc: linux-mips@linux-mips.org
Commit 9fef686863 ("MIPS: Make SAVE_SOME more standard") made several
changes to the order in which registers are saved in the SAVE_SOME
macro, used by exception handlers to save the processor state. In
particular, it removed the
move k1, sp
in the delay slot of the branch testing if the processor is already in
kernel mode. This is replaced later in the macro by a
move k0, sp
When CONFIG_EVA is disabled, this instruction actually appears in the
delay slot of the branch. However, when CONFIG_EVA is enabled, instead
the RPS workaround of
MFC0 k0, CP0_ENTRYHI
appears in the delay slot. This results in k0 not containing the stack
pointer, but some unrelated value, which is then saved to the kernel
stack. On exit from the exception, this bogus value is restored to the
stack pointer, resulting in an OOPS.
Fix this by moving the save of SP in k0 explicitly in the delay slot of
the branch, outside of the CONFIG_EVA section, restoring the expected
instruction ordering when CONFIG_EVA is active.
Fixes: 9fef686863 ("MIPS: Make SAVE_SOME more standard")
Signed-off-by: Matt Redfearn <matt.redfearn@mips.com>
Reported-by: Vladimir Kondratiev <vladimir.kondratiev@intel.com>
Reviewed-by: Corey Minyard <cminyard@mvista.com>
Reviewed-by: James Hogan <jhogan@kernel.org>
Patchwork: https://patchwork.linux-mips.org/patch/17471/
Signed-off-by: James Hogan <jhogan@kernel.org>
Modify the SAVE_SOME macro to look more like a standard
function, doing the arithmetic for the frame on the SP
register instead of copying it from K1, and by saving
the stored EPC from the RA. This lets the get_frame_info()
function process this function like any other. It also
remove an instruction or two from the kernel entry,
making it more efficient.
unwind_stack_by_address() has special handling for
the top of the interrupt stack, but without this change
unwinding will still fail if you get an interrupt while
handling an interrupt and try to do a traceback from
the second interrupt.
This change modifies the get_saved_sp macro to
optionally store the fetched value right into sp and store the
old SP value into K0. Then it's just a matter of subtracting
the frame from SP and storing the old SP from K0.
This required changing the DADDI workaround a bit, since K0
holds the SP, we had to use K1 for AT. But it eliminated
some of the special handling for the DADDI workaround.
Saving the RA register was moved up to before fetching the
CP0_EPC register, so the CP0_EPC register could be stored
into RA and the saved. This lets the traceback code know
where RA is actually stored.
Signed-off-by: Corey Minyard <cminyard@mvista.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/16991/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
The r2_emul_return field in struct thread_info was used in order to take
an alternate codepath when returning to userland, which (besides not
implementing certain features) effectively used the eretnc instruction
in place of eret. The difference is that eretnc doesn't clear LLBit, and
therefore doesn't cause a linked load & store sequence to fail due to
emulation like eret would.
The reason eret would usually be used to clear LLBit is so that after
context switching we ensure that a load performed by one task doesn't
influence another task. However commit 7c151d3d5d ("MIPS: Make use of
the ERETNC instruction on MIPS R6") which introduced the r2_emul_return
field and conditional use of eretnc also for some reason began
explicitly clearing LLBit during context switches - despite retaining
the use of eret for everything but returns from the pre-r6 instruction
emulation code.
As LLBit is cleared upon context switches anyway, simplify this by using
eretnc unconditionally for MIPSr6 kernels. This allows us to remove the
4 byte r2_emul_return boolean from struct thread_info, simplify the
return to user code in entry.S and avoid the overhead of tracking &
checking state which we don't need.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/14408/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
The SAVE_SOME macro is used to save the execution context on all
exceptions.
If an exception occurs while executing user code, the stack is switched
to the kernel's stack for the current task, and register $28 is switched
to point to the current_thread_info, which is at the bottom of the stack
region.
If the exception occurs while executing kernel code, the stack is left,
and this change ensures that register $28 is not updated. This is the
correct behaviour when the kernel can be executing on the separate irq
stack, because the thread_info will not be at the base of it.
With this change, register $28 is only switched to it's kernel
conventional usage of the currrent thread info pointer at the point at
which execution enters kernel space. Doing it on every exception was
redundant, but OK without an IRQ stack, but will be erroneous once that
is introduced.
Signed-off-by: Matt Redfearn <matt.redfearn@imgtec.com>
Acked-by: Jason A. Donenfeld <jason@zx2c4.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/14742/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
The FPU should not be left enabled after a task context switch. This
isn't usually a problem as the FPU enable bit is updated before
returning to userland, however it can potentially mask kernel bugs, and
in fact KVM assumes it won't happen and won't clear the FPU enable bit
before returning to the guest, which allows the guest to use stale FPU
context.
Interrupts and exceptions save and restore most bits of the CP0 Status
register which contains the FPU enable bit (CU1). When the kernel needs
to enable or disable the FPU (for example due to attempted FPU use by
userland, or the scheduler being invoked) both the actual Status
register and the saved value in the userland context are updated.
However this doesn't work correctly with full kernel preemption enabled,
since the FPU enable bit can be cleared from within an interrupt when
the scheduler is invoked, and only the userland context is updated, not
the interrupt context.
For example:
1) Enter kernel with FPU already enabled, TIF_USEDFPU=1, Status.CU1=1
saved.
2) Take a timer interrupt while in kernel mode, Status.CU1=1 saved.
3) Timer interrupt invokes scheduler to preempt the task, which clears
TIF_USEDFPU, disables the FPU in Status register (Status.CU1=0), and
the value stored in user context from step (1), but not the interrupt
context from step (2).
4) When the process is scheduled back in again Status.CU1=0.
5) The interrupt context from step (2) is restored, which sets
Status.CU1=1. So from user context point of view, preemption has
re-enabled FPU!
6) If the scheduler is invoked again (via preemption or voluntarily)
before returning to userland, TIF_USEDFPU=0 so the FPU is not
disabled before the task context switch.
7) The next task resumes from the context switch with FPU enabled!
The restoring of the Status register on return from interrupt/exception
is already selective about which bits to restore, leaving the interrupt
mask bits alone so enabling/disabling of CPU interrupt lines can
persist. Extend this to also leave both the CU1 bit (FPU enable) and the
FR bit (which specifies the FPU mode and gets changed with CU1). This
prevents a stale Status value being restored in step (5) above and
persisting through subsequent context switches.
Also switch to the use of definitions from asm/mipsregs.h while we're at
it.
Since this change also affects the restoration of Status register on the
path back to userland, it increases the sensitivity of the kernel to the
problem of the FPU being left enabled, allowing it to propagate to
userland, therefore a warning is also added to lose_fpu_inatomic() to
point out any future reoccurances before they do any damage.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Reviewed-by: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/12303/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
When EVA is enabled, flush the Return Prediction Stack (RPS) present on
some MIPS cores on entry to the kernel from user mode.
This is important specifically for interAptiv with EVA enabled,
otherwise kernel mode RPS mispredicts may trigger speculative fetches of
user return addresses, which may be sensitive in the kernel address
space due to EVA's overlapping user/kernel address spaces.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Markos Chandras <markos.chandras@imgtec.com>
Cc: Leonid Yegoshin <leonid.yegoshin@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: <stable@vger.kernel.org> # 3.15.x-
Patchwork: https://patchwork.linux-mips.org/patch/10812/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
The HI/LO registers have been removed from MIPS R6. Instructions
such as MULT and DIV have been replaced with a new pair of
instructions for the HI/LO operations for example:
MULT -> MUL, MUH
DIV -> DIV, MOD
So we avoid preserving the pre-R6 HI/LO registers in MIPS R6
Signed-off-by: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Nobody is maintaining SMTC anymore and there also seems to be no userbase.
Which is a pity - the SMTC technology primarily developed by Kevin D.
Kissell <kevink@paralogos.com> is an ingenious demonstration for the MT
ASE's power and elegance.
Based on Markos Chandras <Markos.Chandras@imgtec.com> patch
https://patchwork.linux-mips.org/patch/6719/ which while very similar did
no longer apply cleanly when I tried to merge it plus some additional
post-SMTC cleanup - SMTC was a feature as tricky to remove as it was to
merge once upon a time.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
With binutils 2.24 the attempt to switch with microMIPS mode to MIPS III
mode through .set mips3 results in *lots* of warnings like
{standard input}: Assembler messages:
{standard input}:397: Warning: the 64-bit MIPS architecture does not support the `smartmips' extension
during a kernel build. Fixed by using .set arch=r4000 instead.
This breaks support for building the kernel with binutils 2.13 which
was supported for 32 bit kernels only anyway and 2.14 which was a bad
vintage for MIPS anyway.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
The definition of the CP0 register used to save the smp processor
id is repicated in many files, move them all to thread_info.h.
Signed-off-by: Jayachandran C <jchandra@broadcom.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/5708/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
The ABI allows these to be clobbered on syscalls, so only save and
restore the multiplier state when the temporary registers need to be
preserved.
Signed-off-by: David Daney <david.daney@cavium.com>
Cc: linux-mips@linux-mips.org
Cc: David Daney <david.daney@cavium.com>
Patchwork: https://patchwork.linux-mips.org/patch/5540/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
All exceptions must be taken in microMIPS mode, never in classic
MIPS mode or the kernel falls apart. A few NOP instructions are
used to maintain the correct alignment of microMIPS versions of
the exception vectors.
Signed-off-by: Steven J. Hill <Steven.Hill@imgtec.com>
Having received another series of whitespace patches I decided to do this
once and for all rather than dealing with this kind of patches trickling
in forever.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Reported-by: Edgar E. Iglesias <edgar.iglesias@gmail.com>
Signed-off-by: David Daney <david.daney@cavium.com>
Patchwork: https://patchwork.linux-mips.org/patch/2753/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Processors that support the mips64r2 ISA can in four instructions
convert a shifted PGD pointer stored in the upper bits of c0_context
into a usable pointer. By doing this we save a memory load and
associated potential cache miss in the TLB exception handlers.
Since the upper bits of c0_context were holding the CPU number, we
move this to the upper bits of c0_xcontext which doesn't have enough
bits to hold the PGD pointer, but has plenty for the CPU number.
Signed-off-by: David Daney <ddaney@caviumnetworks.com>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
For OCTEON, implement a save and restore of the multiplier state
across context switches.
Signed-off-by: Tomaso Paoletti <tpaoletti@caviumnetworks.com>
Signed-off-by: David Daney <ddaney@caviumnetworks.com>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>