I ported this to sparc64 as per the patch below, tested on UP SunBlade1500 and
24 cpu Niagara T1000.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Andi Kleen <ak@suse.de>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On x86_64 this cuts allocation overhead for page table pages down to a
fraction (kernel compile / editing load. TSC based measurement of times spend
in each function):
no quicklist
pte_alloc 1569048 4.3s(401ns/2.7us/179.7us)
pmd_alloc 780988 2.1s(337ns/2.7us/86.1us)
pud_alloc 780072 2.2s(424ns/2.8us/300.6us)
pgd_alloc 260022 1s(920ns/4us/263.1us)
quicklist:
pte_alloc 452436 573.4ms(8ns/1.3us/121.1us)
pmd_alloc 196204 174.5ms(7ns/889ns/46.1us)
pud_alloc 195688 172.4ms(7ns/881ns/151.3us)
pgd_alloc 65228 9.8ms(8ns/150ns/6.1us)
pgd allocations are the most complex and there we see the most dramatic
improvement (may be we can cut down the amount of pgds cached somewhat?). But
even the pte allocations still see a doubling of performance.
1. Proven code from the IA64 arch.
The method used here has been fine tuned for years and
is NUMA aware. It is based on the knowledge that accesses
to page table pages are sparse in nature. Taking a page
off the freelists instead of allocating a zeroed pages
allows a reduction of number of cachelines touched
in addition to getting rid of the slab overhead. So
performance improves. This is particularly useful if pgds
contain standard mappings. We can save on the teardown
and setup of such a page if we have some on the quicklists.
This includes avoiding lists operations that are otherwise
necessary on alloc and free to track pgds.
2. Light weight alternative to use slab to manage page size pages
Slab overhead is significant and even page allocator use
is pretty heavy weight. The use of a per cpu quicklist
means that we touch only two cachelines for an allocation.
There is no need to access the page_struct (unless arch code
needs to fiddle around with it). So the fast past just
means bringing in one cacheline at the beginning of the
page. That same cacheline may then be used to store the
page table entry. Or a second cacheline may be used
if the page table entry is not in the first cacheline of
the page. The current code will zero the page which means
touching 32 cachelines (assuming 128 byte). We get down
from 32 to 2 cachelines in the fast path.
3. x86_64 gets lightweight page table page management.
This will allow x86_64 arch code to faster repopulate pgds
and other page table entries. The list operations for pgds
are reduced in the same way as for i386 to the point where
a pgd is allocated from the page allocator and when it is
freed back to the page allocator. A pgd can pass through
the quicklists without having to be reinitialized.
64 Consolidation of code from multiple arches
So far arches have their own implementation of quicklist
management. This patch moves that feature into the core allowing
an easier maintenance and consistent management of quicklists.
Page table pages have the characteristics that they are typically zero or in a
known state when they are freed. This is usually the exactly same state as
needed after allocation. So it makes sense to build a list of freed page
table pages and then consume the pages already in use first. Those pages have
already been initialized correctly (thus no need to zero them) and are likely
already cached in such a way that the MMU can use them most effectively. Page
table pages are used in a sparse way so zeroing them on allocation is not too
useful.
Such an implementation already exits for ia64. Howver, that implementation
did not support constructors and destructors as needed by i386 / x86_64. It
also only supported a single quicklist. The implementation here has
constructor and destructor support as well as the ability for an arch to
specify how many quicklists are needed.
Quicklists are defined by an arch defining CONFIG_QUICKLIST. If more than one
quicklist is necessary then we can define NR_QUICK for additional lists. F.e.
i386 needs two and thus has
config NR_QUICK
int
default 2
If an arch has requested quicklist support then pages can be allocated
from the quicklist (or from the page allocator if the quicklist is
empty) via:
quicklist_alloc(<quicklist-nr>, <gfpflags>, <constructor>)
Page table pages can be freed using:
quicklist_free(<quicklist-nr>, <destructor>, <page>)
Pages must have a definite state after allocation and before
they are freed. If no constructor is specified then pages
will be zeroed on allocation and must be zeroed before they are
freed.
If a constructor is used then the constructor will establish
a definite page state. F.e. the i386 and x86_64 pgd constructors
establish certain mappings.
Constructors and destructors can also be used to track the pages.
i386 and x86_64 use a list of pgds in order to be able to dynamically
update standard mappings.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Andi Kleen <ak@suse.de>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the tool which gets reports about slabs to the VM documentation directory.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sure that the check function really only check things and do not perform
activities. Extract the tracing and object seeding out of the two check
functions and place them into slab_alloc and slab_free
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At kmem_cache_shrink check if we have any empty slabs on the partial
if so then remove them.
Also--as an anti-fragmentation measure--sort the partial slabs so that
the most fully allocated ones come first and the least allocated last.
The next allocations may fill up the nearly full slabs. Having the
least allocated slabs last gives them the maximum chance that their
remaining objects may be freed. Thus we can hopefully minimize the
partial slabs.
I think this is the best one can do in terms antifragmentation
measures. Real defragmentation (meaning moving objects out of slabs with
the least free objects to those that are almost full) can be implemted
by reverse scanning through the list produced here but that would mean
that we need to provide a callback at slab cache creation that allows
the deletion or moving of an object. This will involve slab API
changes, so defer for now.
Cc: Mel Gorman <mel@skynet.ie>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch enables listing the callers who allocated or freed objects in a
cache.
For example to list the allocators for kmalloc-128 do
cat /sys/slab/kmalloc-128/alloc_calls
7 sn_io_slot_fixup+0x40/0x700
7 sn_io_slot_fixup+0x80/0x700
9 sn_bus_fixup+0xe0/0x380
6 param_sysfs_setup+0xf0/0x280
276 percpu_populate+0xf0/0x1a0
19 __register_chrdev_region+0x30/0x360
8 expand_files+0x2e0/0x6e0
1 sys_epoll_create+0x60/0x200
1 __mounts_open+0x140/0x2c0
65 kmem_alloc+0x110/0x280
3 alloc_disk_node+0xe0/0x200
33 as_get_io_context+0x90/0x280
74 kobject_kset_add_dir+0x40/0x140
12 pci_create_bus+0x2a0/0x5c0
1 acpi_ev_create_gpe_block+0x120/0x9e0
41 con_insert_unipair+0x100/0x1c0
1 uart_open+0x1c0/0xba0
1 dma_pool_create+0xe0/0x340
2 neigh_table_init_no_netlink+0x260/0x4c0
6 neigh_parms_alloc+0x30/0x200
1 netlink_kernel_create+0x130/0x320
5 fz_hash_alloc+0x50/0xe0
2 sn_common_hubdev_init+0xd0/0x6e0
28 kernel_param_sysfs_setup+0x30/0x180
72 process_zones+0x70/0x2e0
cat /sys/slab/kmalloc-128/free_calls
558 <not-available>
3 sn_io_slot_fixup+0x600/0x700
84 free_fdtable_rcu+0x120/0x260
2 seq_release+0x40/0x60
6 kmem_free+0x70/0xc0
24 free_as_io_context+0x20/0x200
1 acpi_get_object_info+0x3a0/0x3e0
1 acpi_add_single_object+0xcf0/0x1e40
2 con_release_unimap+0x80/0x140
1 free+0x20/0x40
SLAB_STORE_USER must be enabled for a slab cache by either booting with
"slab_debug" or enabling user tracking specifically for the slab of interest.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We leave a mininum of partial slabs on nodes when we search for
partial slabs on other node. Define a constant for that value.
Then modify slub to keep MIN_PARTIAL slabs around.
This avoids bad situations where a function frees the last object
in a slab (which results in the page being returned to the page
allocator) only to then allocate one again (which requires getting
a page back from the page allocator if the partial list was empty).
Keeping a couple of slabs on the partial list reduces overhead.
Empty slabs are added to the end of the partial list to insure that
partially allocated slabs are consumed first (defragmentation).
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This enables validation of slab. Validation means that all objects are
checked to see if there are redzone violations, if padding has been
overwritten or any pointers have been corrupted. Also checks the consistency
of slab counters.
Validation enables the detection of metadata corruption without the kernel
having to execute code that actually uses (allocs/frees) and object. It
allows one to make sure that the slab metainformation and the guard values
around an object have not been compromised.
A single slabcache can be checked by writing a 1 to the "validate" file.
i.e.
echo 1 >/sys/slab/kmalloc-128/validate
or use the slabinfo tool to check all slabs
slabinfo -v
Error messages will show up in the syslog.
Note that validation can only reach slabs that are on a list. This means that
we are usually restricted to partial slabs and active slabs unless
SLAB_STORE_USER is active which will build a full slab list and allows
validation of slabs that are fully in use. Booting with "slub_debug" set will
enable SLAB_STORE_USER and then full diagnostic are available.
Note that we attempt to push cpu slabs back to the lists when we start the
check. If the cpu slab is reactivated before we get to it (another processor
grabs it before we get to it) then it cannot be checked.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If slab tracking is on then build a list of full slabs so that we can verify
the integrity of all slabs and are also able to built list of alloc/free
callers.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Object tracking did not work the right way for several call chains. Fix this up
by adding a new parameter to slub_alloc and slub_free that specifies the
caller address explicitly.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The patch adds PageTail(page) and PageHead(page) to check if a page is the
head or the tail of a compound page. This is done by masking the two bits
describing the state of a compound page and then comparing them. So one
comparision and a branch instead of two bit checks and two branches.
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we add a new flag so that we can distinguish between the first page and the
tail pages then we can avoid to use page->private in the first page.
page->private == page for the first page, so there is no real information in
there.
Freeing up page->private makes the use of compound pages more transparent.
They become more usable like real pages. Right now we have to be careful f.e.
if we are going beyond PAGE_SIZE allocations in the slab on i386 because we
can then no longer use the private field. This is one of the issues that
cause us not to support debugging for page size slabs in SLAB.
Having page->private available for SLUB would allow more meta information in
the page struct. I can probably avoid the 16 bit ints that I have in there
right now.
Also if page->private is available then a compound page may be equipped with
buffer heads. This may free up the way for filesystems to support larger
blocks than page size.
We add PageTail as an alias of PageReclaim. Compound pages cannot currently
be reclaimed. Because of the alias one needs to check PageCompound first.
The RFC for the this approach was discussed at
http://marc.info/?t=117574302800001&r=1&w=2
[nacc@us.ibm.com: fix hugetlbfs]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PowerPC uses the slab allocator to manage the lowest level of the page
table. In high cpu configurations we also use the page struct to split the
page table lock. Disallow the selection of SLUB for that case.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Paul Mackerras <paulus@samba.org>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Makes SLUB behave like SLAB in this area to avoid issues....
Throw a stack dump to alert people.
At some point the behavior should be switched back. NULL is no memory as
far as I can tell and if the use asked for 0 bytes then he need to get no
memory.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Structures may contain u64 items on 32 bit platforms that are only able to
address 64 bit items on 64 bit boundaries. Change the mininum alignment of
slabs to conform to those expectations.
ARCH_KMALLOC_MINALIGN must be changed for good since a variety of structure
are mixed in the general slabs.
ARCH_SLAB_MINALIGN is changed because currently there is no consistent
specification of object alignment. We may have that in the future when the
KMEM_CACHE and related macros are used to generate slabs. These pass the
alignment of the structure generated by the compiler to the slab.
With KMEM_CACHE etc we could align structures that do not contain 64
bit values to 32 bit boundaries potentially saving some memory.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a new slab allocator which was motivated by the complexity of the
existing code in mm/slab.c. It attempts to address a variety of concerns
with the existing implementation.
A. Management of object queues
A particular concern was the complex management of the numerous object
queues in SLAB. SLUB has no such queues. Instead we dedicate a slab for
each allocating CPU and use objects from a slab directly instead of
queueing them up.
B. Storage overhead of object queues
SLAB Object queues exist per node, per CPU. The alien cache queue even
has a queue array that contain a queue for each processor on each
node. For very large systems the number of queues and the number of
objects that may be caught in those queues grows exponentially. On our
systems with 1k nodes / processors we have several gigabytes just tied up
for storing references to objects for those queues This does not include
the objects that could be on those queues. One fears that the whole
memory of the machine could one day be consumed by those queues.
C. SLAB meta data overhead
SLAB has overhead at the beginning of each slab. This means that data
cannot be naturally aligned at the beginning of a slab block. SLUB keeps
all meta data in the corresponding page_struct. Objects can be naturally
aligned in the slab. F.e. a 128 byte object will be aligned at 128 byte
boundaries and can fit tightly into a 4k page with no bytes left over.
SLAB cannot do this.
D. SLAB has a complex cache reaper
SLUB does not need a cache reaper for UP systems. On SMP systems
the per CPU slab may be pushed back into partial list but that
operation is simple and does not require an iteration over a list
of objects. SLAB expires per CPU, shared and alien object queues
during cache reaping which may cause strange hold offs.
E. SLAB has complex NUMA policy layer support
SLUB pushes NUMA policy handling into the page allocator. This means that
allocation is coarser (SLUB does interleave on a page level) but that
situation was also present before 2.6.13. SLABs application of
policies to individual slab objects allocated in SLAB is
certainly a performance concern due to the frequent references to
memory policies which may lead a sequence of objects to come from
one node after another. SLUB will get a slab full of objects
from one node and then will switch to the next.
F. Reduction of the size of partial slab lists
SLAB has per node partial lists. This means that over time a large
number of partial slabs may accumulate on those lists. These can
only be reused if allocator occur on specific nodes. SLUB has a global
pool of partial slabs and will consume slabs from that pool to
decrease fragmentation.
G. Tunables
SLAB has sophisticated tuning abilities for each slab cache. One can
manipulate the queue sizes in detail. However, filling the queues still
requires the uses of the spin lock to check out slabs. SLUB has a global
parameter (min_slab_order) for tuning. Increasing the minimum slab
order can decrease the locking overhead. The bigger the slab order the
less motions of pages between per CPU and partial lists occur and the
better SLUB will be scaling.
G. Slab merging
We often have slab caches with similar parameters. SLUB detects those
on boot up and merges them into the corresponding general caches. This
leads to more effective memory use. About 50% of all caches can
be eliminated through slab merging. This will also decrease
slab fragmentation because partial allocated slabs can be filled
up again. Slab merging can be switched off by specifying
slub_nomerge on boot up.
Note that merging can expose heretofore unknown bugs in the kernel
because corrupted objects may now be placed differently and corrupt
differing neighboring objects. Enable sanity checks to find those.
H. Diagnostics
The current slab diagnostics are difficult to use and require a
recompilation of the kernel. SLUB contains debugging code that
is always available (but is kept out of the hot code paths).
SLUB diagnostics can be enabled via the "slab_debug" option.
Parameters can be specified to select a single or a group of
slab caches for diagnostics. This means that the system is running
with the usual performance and it is much more likely that
race conditions can be reproduced.
I. Resiliency
If basic sanity checks are on then SLUB is capable of detecting
common error conditions and recover as best as possible to allow the
system to continue.
J. Tracing
Tracing can be enabled via the slab_debug=T,<slabcache> option
during boot. SLUB will then protocol all actions on that slabcache
and dump the object contents on free.
K. On demand DMA cache creation.
Generally DMA caches are not needed. If a kmalloc is used with
__GFP_DMA then just create this single slabcache that is needed.
For systems that have no ZONE_DMA requirement the support is
completely eliminated.
L. Performance increase
Some benchmarks have shown speed improvements on kernbench in the
range of 5-10%. The locking overhead of slub is based on the
underlying base allocation size. If we can reliably allocate
larger order pages then it is possible to increase slub
performance much further. The anti-fragmentation patches may
enable further performance increases.
Tested on:
i386 UP + SMP, x86_64 UP + SMP + NUMA emulation, IA64 NUMA + Simulator
SLUB Boot options
slub_nomerge Disable merging of slabs
slub_min_order=x Require a minimum order for slab caches. This
increases the managed chunk size and therefore
reduces meta data and locking overhead.
slub_min_objects=x Mininum objects per slab. Default is 8.
slub_max_order=x Avoid generating slabs larger than order specified.
slub_debug Enable all diagnostics for all caches
slub_debug=<options> Enable selective options for all caches
slub_debug=<o>,<cache> Enable selective options for a certain set of
caches
Available Debug options
F Double Free checking, sanity and resiliency
R Red zoning
P Object / padding poisoning
U Track last free / alloc
T Trace all allocs / frees (only use for individual slabs).
To use SLUB: Apply this patch and then select SLUB as the default slab
allocator.
[hugh@veritas.com: fix an oops-causing locking error]
[akpm@linux-foundation.org: various stupid cleanups and small fixes]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If device->num is zero we attempt to kmalloc() zero bytes. When SLUB is
enabled this returns a null pointer and take that as an allocation failure
and fail the device register. Check for no devices and avoid the
allocation.
[akpm: opportunistic kzalloc() conversion]
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
i386 uses kmalloc to allocate the threadinfo structure assuming that the
allocations result in a page sized aligned allocation. That has worked so
far because SLAB exempts page sized slabs from debugging and aligns them in
special ways that goes beyond the restrictions imposed by
KMALLOC_ARCH_MINALIGN valid for other slabs in the kmalloc array.
SLUB also works fine without debugging since page sized allocations neatly
align at page boundaries. However, if debugging is switched on then SLUB
will extend the slab with debug information. The resulting slab is not
longer of page size. It will only be aligned following the requirements
imposed by KMALLOC_ARCH_MINALIGN. As a result the threadinfo structure may
not be page aligned which makes i386 fail to boot with SLUB debug on.
Replace the calls to kmalloc with calls into the page allocator.
An alternate solution may be to create a custom slab cache where the
alignment is set to PAGE_SIZE. That would allow slub debugging to be
applied to the threadinfo structure.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
OOM killed tasks have access to memory reserves as specified by the
TIF_MEMDIE flag in the hopes that it will quickly exit. If such a task has
memory allocations constrained by cpusets, we may encounter a deadlock if a
blocking task cannot exit because it cannot allocate the necessary memory.
We allow tasks that have the TIF_MEMDIE flag to allocate memory anywhere,
including outside its cpuset restriction, so that it can quickly die
regardless of whether it is __GFP_HARDWALL.
Cc: Andi Kleen <ak@suse.de>
Cc: Paul Jackson <pj@sgi.com>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is only ever used prior to free_initmem().
(It will cause a warning when we run the section checking, but that's a
false-positive and it simply changes the source of an existing warning, which
is also a false-positive)
Cc: Christoph Lameter <clameter@engr.sgi.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The sysctl handler for min_free_kbytes calls setup_per_zone_pages_min() on
read or write. This function iterates through every zone and calls
spin_lock_irqsave() on the zone LRU lock. When reading min_free_kbytes,
this is a total waste of time that disables interrupts on the local
processor. It might even be noticable machines with large numbers of zones
if a process started constantly reading min_free_kbytes.
This patch only calls setup_per_zone_pages_min() only on write. Tested on
an x86 laptop and it did the right thing.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some NUMA machines have a big MAX_NUMNODES (possibly 1024), but fewer
possible nodes. This patch dynamically sizes the 'struct kmem_cache' to
allocate only needed space.
I moved nodelists[] field at the end of struct kmem_cache, and use the
following computation in kmem_cache_init()
cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
nr_node_ids * sizeof(struct kmem_list3 *);
On my two nodes x86_64 machine, kmem_cache.obj_size is now 192 instead of 704
(This is because on x86_64, MAX_NUMNODES is 64)
On bigger NUMA setups, this might reduce the gfporder of "cache_cache"
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can avoid allocating empty shared caches and avoid unecessary check of
cache->limit. We save some memory. We avoid bringing into CPU cache
unecessary cache lines.
All accesses to l3->shared are already checking NULL pointers so this patch is
safe.
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The existing comment in mm/slab.c is *perfect*, so I reproduce it :
/*
* CPU bound tasks (e.g. network routing) can exhibit cpu bound
* allocation behaviour: Most allocs on one cpu, most free operations
* on another cpu. For these cases, an efficient object passing between
* cpus is necessary. This is provided by a shared array. The array
* replaces Bonwick's magazine layer.
* On uniprocessor, it's functionally equivalent (but less efficient)
* to a larger limit. Thus disabled by default.
*/
As most shiped linux kernels are now compiled with CONFIG_SMP, there is no way
a preprocessor #if can detect if the machine is UP or SMP. Better to use
num_possible_cpus().
This means on UP we allocate a 'size=0 shared array', to be more efficient.
Another patch can later avoid the allocations of 'empty shared arrays', to
save some memory.
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename file_ra_state.prev_page to prev_index and file_ra_state.offset to
prev_offset. Also update of prev_index in do_generic_mapping_read() is now
moved close to the update of prev_offset.
[wfg@mail.ustc.edu.cn: fix it]
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: WU Fengguang <wfg@mail.ustc.edu.cn>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce ra.offset and store in it an offset where the previous read
ended. This way we can detect whether reads are really sequential (and
thus we should not mark the page as accessed repeatedly) or whether they
are random and just happen to be in the same page (and the page should
really be marked accessed again).
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: WU Fengguang <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adds /proc/pid/clear_refs. When any non-zero number is written to this file,
pte_mkold() and ClearPageReferenced() is called for each pte and its
corresponding page, respectively, in that task's VMAs. This file is only
writable by the user who owns the task.
It is now possible to measure _approximately_ how much memory a task is using
by clearing the reference bits with
echo 1 > /proc/pid/clear_refs
and checking the reference count for each VMA from the /proc/pid/smaps output
at a measured time interval. For example, to observe the approximate change
in memory footprint for a task, write a script that clears the references
(echo 1 > /proc/pid/clear_refs), sleeps, and then greps for Pgs_Referenced and
extracts the size in kB. Add the sizes for each VMA together for the total
referenced footprint. Moments later, repeat the process and observe the
difference.
For example, using an efficient Mozilla:
accumulated time referenced memory
---------------- -----------------
0 s 408 kB
1 s 408 kB
2 s 556 kB
3 s 1028 kB
4 s 872 kB
5 s 1956 kB
6 s 416 kB
7 s 1560 kB
8 s 2336 kB
9 s 1044 kB
10 s 416 kB
This is a valuable tool to get an approximate measurement of the memory
footprint for a task.
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
[akpm@linux-foundation.org: build fixes]
[mpm@selenic.com: rename for_each_pmd]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adds an additional unsigned long field to struct mem_size_stats called
'referenced'. For each pte walked in the smaps code, this field is
incremented by PAGE_SIZE if it has pte-reference bits.
An additional line was added to the /proc/pid/smaps output for each VMA to
indicate how many pages within it are currently marked as referenced or
accessed.
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Extracts the pmd walker from smaps-specific code in fs/proc/task_mmu.c.
The new struct pmd_walker includes the struct vm_area_struct of the memory to
walk over. Iteration begins at the vma->vm_start and completes at
vma->vm_end. A pointer to another data structure may be stored in the private
field such as struct mem_size_stats, which acts as the smaps accumulator. For
each pmd in the VMA, the action function is called with a pointer to its
struct vm_area_struct, a pointer to the pmd_t, its start and end addresses,
and the private field.
The interface for walking pmd's in a VMA for fs/proc/task_mmu.c is now:
void for_each_pmd(struct vm_area_struct *vma,
void (*action)(struct vm_area_struct *vma,
pmd_t *pmd, unsigned long addr,
unsigned long end,
void *private),
void *private);
Since the pmd walker is now extracted from the smaps code, smaps_one_pmd() is
invoked for each pmd in the VMA. Its behavior and efficiency is identical to
the existing implementation.
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If you actually clear the bit, you need to:
+ pte_update_defer(vma->vm_mm, addr, ptep);
The reason is, when updating PTEs, the hypervisor must be notified. Using
atomic operations to do this is fine for all hypervisors I am aware of.
However, for hypervisors which shadow page tables, if these PTE
modifications are not trapped, you need a post-modification call to fulfill
the update of the shadow page table.
Acked-by: Zachary Amsden <zach@vmware.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add ptep_test_and_clear_{dirty,young} to i386. They advertise that they
have it and there is at least one place where it needs to be called without
the page table lock: to clear the accessed bit on write to
/proc/pid/clear_refs.
ptep_clear_flush_{dirty,young} are updated to use the new functions. The
overall net effect to current users of ptep_clear_flush_{dirty,young} is
that we introduce an additional branch.
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a macro for suppressing gcc from generating a warning about a
probable uninitialized state of a variable.
Example:
- spinlock_t *ptl;
+ spinlock_t *uninitialized_var(ptl);
Not a happy solution, but those warnings are obnoxious.
- Using the usual pointlessly-set-it-to-zero approach wastes several
bytes of text.
- Using a macro means we can (hopefully) do something else if gcc changes
cause the `x = x' hack to stop working
- Using a macro means that people who are worried about hiding true bugs
can easily turn it off.
Signed-off-by: Borislav Petkov <bbpetkov@yahoo.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Identical block is duplicated twice: contrary to the comment, we have been
re-reading the page *twice* in filemap_nopage rather than once.
If any retry logic or anything is needed, it belongs in lower levels anyway.
Only retry once. Linus agrees.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Generally we work under the assumption that memory the mem_map array is
contigious and valid out to MAX_ORDER_NR_PAGES block of pages, ie. that if we
have validated any page within this MAX_ORDER_NR_PAGES block we need not check
any other. This is not true when CONFIG_HOLES_IN_ZONE is set and we must
check each and every reference we make from a pfn.
Add a pfn_valid_within() helper which should be used when scanning pages
within a MAX_ORDER_NR_PAGES block when we have already checked the validility
of the block normally with pfn_valid(). This can then be optimised away when
we do not have holes within a MAX_ORDER_NR_PAGES block of pages.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Architectures that don't support DMA can say so by adding a config NO_DMA
to their Kconfig file. This will prevent compilation of some dma specific
driver code. Also dma-mapping-broken.h isn't needed anymore on at least
s390. This avoids compilation and linking of otherwise dead/broken code.
Other architectures that include dma-mapping-broken.h are arm26, h8300,
m68k, m68knommu and v850. If these could be converted as well we could get
rid of the header file.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
"John W. Linville" <linville@tuxdriver.com>
Cc: Kyle McMartin <kyle@parisc-linux.org>
Cc: <James.Bottomley@SteelEye.com>
Cc: Tejun Heo <htejun@gmail.com>
Cc: Jeff Garzik <jeff@garzik.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: <geert@linux-m68k.org>
Cc: <zippel@linux-m68k.org>
Cc: <spyro@f2s.com>
Cc: <uclinux-v850@lsi.nec.co.jp>
Cc: <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the badness of a process is zero then oom_adj>0 has no effect. This
patch makes sure that the oom_adj shift actually increases badness points
appropriately.
Signed-off-by: Joshua N. Pritikin <jpritikin@pobox.com>
Cc: Andrea Arcangeli <andrea@novell.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__block_write_full_page is calling SetPageUptodate without the page locked.
This is unusual, but not incorrect, as PG_writeback is still set.
However the next patch will require that SetPageUptodate always be called with
the page locked. Simply don't bother setting the page uptodate in this case
(it is unusual that the write path does such a thing anyway). Instead just
leave it to the read side to bring the page uptodate when it notices that all
buffers are uptodate.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ensure pages are uptodate after returning from read_cache_page, which allows
us to cut out most of the filesystem-internal PageUptodate calls.
I didn't have a great look down the call chains, but this appears to fixes 7
possible use-before uptodate in hfs, 2 in hfsplus, 1 in jfs, a few in
ecryptfs, 1 in jffs2, and a possible cleared data overwritten with readpage in
block2mtd. All depending on whether the filler is async and/or can return
with a !uptodate page.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If slab->inuse is corrupted, cache_alloc_refill can enter an infinite
loop as detailed by Michael Richardson in the following post:
<http://lkml.org/lkml/2007/2/16/292>. This adds a BUG_ON to catch
those cases.
Cc: Michael Richardson <mcr@sandelman.ca>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Minimum gcc version is 3.2 now. However, with likely profiling, even
modern gcc versions cannot always eliminate the call.
Replace the placeholder functions with the more conventional empty static
inlines, which should be optimal for everyone.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a proper prototype for hugetlb_get_unmapped_area() in
include/linux/hugetlb.h.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Acked-by: William Irwin <wli@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can use the global ZVC counters to establish the exact size of the LRU
and the free pages. This allows a more accurate determination of the dirty
ratio.
This patch will fix the broken ratio calculations if large amounts of
memory are allocated to huge pags or other consumers that do not put the
pages on to the LRU.
Notes:
- I did not add NR_SLAB_RECLAIMABLE to the calculation of the
dirtyable pages. Those may be reclaimable but they are at this
point not dirtyable. If NR_SLAB_RECLAIMABLE would be considered
then a huge number of reclaimable pages would stop writeback
from occurring.
- This patch used to be in mm as the last one in a series of patches.
It was removed when Linus updated the treatment of highmem because
there was a conflict. I updated the patch to follow Linus' approach.
This patch is neede to fulfill the claims made in the beginning of the
patchset that is now in Linus' tree.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The nr_cpu_ids value is currently only calculated in smp_init. However, it
may be needed before (SLUB needs it on kmem_cache_init!) and other kernel
components may also want to allocate dynamically sized per cpu array before
smp_init. So move the determination of possible cpus into sched_init()
where we already loop over all possible cpus early in boot.
Also initialize both nr_node_ids and nr_cpu_ids with the highest value they
could take. If we have accidental users before these values are determined
then the current valud of 0 may cause too small per cpu and per node arrays
to be allocated. If it is set to the maximum possible then we only waste
some memory for early boot users.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a new mm function apply_to_page_range() which applies a given function to
every pte in a given virtual address range in a given mm structure. This is a
generic alternative to cut-and-pasting the Linux idiomatic pagetable walking
code in every place that a sequence of PTEs must be accessed.
Although this interface is intended to be useful in a wide range of
situations, it is currently used specifically by several Xen subsystems, for
example: to ensure that pagetables have been allocated for a virtual address
range, and to construct batched special pagetable update requests to map I/O
memory (in ioremap()).
[akpm@linux-foundation.org: fix warning, unpleasantly]
Signed-off-by: Ian Pratt <ian.pratt@xensource.com>
Signed-off-by: Christian Limpach <Christian.Limpach@cl.cam.ac.uk>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Matt Mackall <mpm@waste.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
serial_core, use pr_debug
Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>