* 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec/ocfs2: (47 commits)
ocfs2: Silence a gcc warning.
ocfs2: Don't retry xattr set in case value extension fails.
ocfs2:dlm: avoid dlm->ast_lock lockres->spinlock dependency break
ocfs2: Reset xattr value size after xa_cleanup_value_truncate().
fs/ocfs2/dlm: Use kstrdup
fs/ocfs2/dlm: Drop memory allocation cast
Ocfs2: Optimize punching-hole code.
Ocfs2: Make ocfs2_find_cpos_for_left_leaf() public.
Ocfs2: Fix hole punching to correctly do CoW during cluster zeroing.
Ocfs2: Optimize ocfs2 truncate to use ocfs2_remove_btree_range() instead.
ocfs2: Block signals for mkdir/link/symlink/O_CREAT.
ocfs2: Wrap signal blocking in void functions.
ocfs2/dlm: Increase o2dlm lockres hash size
ocfs2: Make ocfs2_extend_trans() really extend.
ocfs2/trivial: Code cleanup for allocation reservation.
ocfs2: make ocfs2_adjust_resv_from_alloc simple.
ocfs2: Make nointr a default mount option
ocfs2/dlm: Make o2dlm domain join/leave messages KERN_NOTICE
o2net: log socket state changes
ocfs2: print node # when tcp fails
...
ocfs2_block_group_claim_bits() is never called with min_bits=0, but we
shouldn't leave status undefined if it ever is.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In normal xattr set, the set sequence is inode, xattr block
and finally xattr bucket if we meet with a ENOSPC. But there
is a corner case.
So consider we will set a xattr whose value will be stored in
a cluster, and there is no xattr block by now. So we will
reserve 1 xattr block and 1 cluster for setting it. Now if we
fail in value extension(in case the volume is almost full and
we can't allocate the cluster because the check in
ocfs2_test_bg_bit_allocatable), ENOSPC will be returned. So
we will try to create a bucket(this time there is a chance that
the reserved cluster will be used), and when we try value extension
again, kernel bug happens. We did meet with it. Check the bug below.
http://oss.oracle.com/bugzilla/show_bug.cgi?id=1251
This patch just try to avoid this by adding a set_abort in
ocfs2_xattr_set_ctxt, so in case ENOSPC happens in value extension,
we will check whether it is caused by the real ENOSPC or just the
full of inode or xattr block. If it is the first case, we set set_abort
so that we don't try any further. we are safe to exit directly here
ince it is really ENOSPC.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Currently we process a dirty lockres with the lockres->spinlock taken. While
during the process, we may need to lock on dlm->ast_lock. This breaks the
dependency of dlm->ast_lock(lock first) and lockres->spinlock(lock second).
This patch fixes the problem.
Since we can't release lockres->spinlock, we have to take dlm->ast_lock
just before taking the lockres->spinlock and release it after lockres->spinlock
is released. And use __dlm_queue_bast()/__dlm_queue_ast(), the nolock version,
in dlm_shuffle_lists(). There are no too many locks on a lockres, so there is no
performance harm.
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In ocfs2_prepare_xattr_entry, if we fail to grow an existing value,
xa_cleanup_value_truncate() will leave the old entry in place. Thus, we
reset its value size. However, if we were allocating a new value, we
must not reset the value size or we will BUG(). This resolves
oss.oracle.com bug 1247.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Use kstrdup when the goal of an allocation is copy a string into the
allocated region.
The semantic patch that makes this change is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@
expression from,to;
expression flag,E1,E2;
statement S;
@@
- to = kmalloc(strlen(from) + 1,flag);
+ to = kstrdup(from, flag);
... when != \(from = E1 \| to = E1 \)
if (to==NULL || ...) S
... when != \(from = E2 \| to = E2 \)
- strcpy(to, from);
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Drop cast on the result of kmalloc and similar functions.
The semantic patch that makes this change is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@
type T;
@@
- (T *)
(\(kmalloc\|kzalloc\|kcalloc\|kmem_cache_alloc\|kmem_cache_zalloc\|
kmem_cache_alloc_node\|kmalloc_node\|kzalloc_node\)(...))
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
This patch simplifies the logic of handling existing holes and
skipping extent blocks and removes some confusing comments.
The patch survived the fill_verify_holes testcase in ocfs2-test.
It also passed my manual sanity check and stress tests with enormous
extent records.
Currently punching a hole on a file with 3+ extent tree depth was
really a performance disaster. It can even take several hours,
though we may not hit this in real life with such a huge extent
number.
One simple way to improve the performance is quite straightforward.
From the logic of truncate, we can punch the hole from hole_end to
hole_start, which reduces the overhead of btree operations in a
significant way, such as tree rotation and moving.
Following is the testing result when punching hole from 0 to file end
in bytes, on a 1G file, 1G file consists of 256k extent records, each record
cover 4k data(just one cluster, clustersize is 4k):
===========================================================================
* Original punching-hole mechanism:
===========================================================================
I waited 1 hour for its completion, unfortunately it's still ongoing.
===========================================================================
* Patched punching-hode mechanism:
===========================================================================
real 0m2.518s
user 0m0.000s
sys 0m2.445s
That means we've gained up to 1000 times improvement on performance in this
case, whee! It's fairly cool. and it looks like that performance gain will
be raising when extent records grow.
The patch was based on my former 2 patches, which were about truncating
codes optimization and fixup to handle CoW on punching hole.
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
The original idea to pull ocfs2_find_cpos_for_left_leaf() out of
alloc.c is to benefit punching-holes optimization patch, it however,
can also be referred by other funcs in the future who want to do the
same job.
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Based on the previous patch of optimizing truncate, the bugfix for
refcount trees when punching holes can be fairly easy
and straightforward since most of work we should take into account for
refcounting have been completed already in ocfs2_remove_btree_range().
This patch performs CoW for refcounted extents when a hole being punched
whose start or end offset were in the middle of a cluster, which means
partial zeroing of the cluster will be performed soon.
The patch has been tested fixing the following bug:
http://oss.oracle.com/bugzilla/show_bug.cgi?id=1216
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Truncate is just a special case of punching holes(from new i_size to
end), we therefore could take advantage of the existing
ocfs2_remove_btree_range() to reduce the comlexity and redundancy in
alloc.c. The goal here is to make truncate more generic and
straightforward.
Several functions only used by ocfs2_commit_truncate() will smiply be
removed.
ocfs2_remove_btree_range() was originally used by the hole punching
code, which didn't take refcount trees into account (definitely a bug).
We therefore need to change that func a bit to handle refcount trees.
It must take the refcount lock, calculate and reserve blocks for
refcount tree changes, and decrease refcounts at the end. We replace
ocfs2_lock_allocators() here by adding a new func
ocfs2_reserve_blocks_for_rec_trunc() which accepts some extra blocks to
reserve. This will not hurt any other code using
ocfs2_remove_btree_range() (such as dir truncate and hole punching).
I merged the following steps into one patch since they may be
logically doing one thing, though I know it looks a little bit fat
to review.
1). Remove redundant code used by ocfs2_commit_truncate(), since we're
moving to ocfs2_remove_btree_range anyway.
2). Add a new func ocfs2_reserve_blocks_for_rec_trunc() for purpose of
accepting some extra blocks to reserve.
3). Change ocfs2_prepare_refcount_change_for_del() a bit to fit our
needs. It's safe to do this since it's only being called by
truncate.
4). Change ocfs2_remove_btree_range() a bit to take refcount case into
account.
5). Finally, we change ocfs2_commit_truncate() to call
ocfs2_remove_btree_range() in a proper way.
The patch has been tested normally for sanity check, stress tests
with heavier workload will be expected.
Based on this patch, fixing the punching holes bug will be fairly easy.
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Once file or link creation gets going, it can't be interrupted by a
signal. They're not idempotent.
This blocks signals in ocfs2_mknod(), ocfs2_link(), and ocfs2_symlink()
once we start actually changing things. ocfs2_mknod() covers mknod(),
creat(), mkdir(), and open(O_CREAT).
Signed-off-by: Joel Becker <joel.becker@oracle.com>
ocfs2 sometimes needs to block signals around dlm operations, but it
currently does it with sigprocmask(). Even worse, it's checking the
error code of sigprocmask(). The in-kernel sigprocmask() can only error
if you get the SIG_* argument wrong. We don't.
Wrap the sigprocmask() calls with ocfs2_[un]block_signals(). These
functions are void, but they will BUG() if somehow sigprocmask() returns
an error.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Lockres hash size of 16KB is far too small for large filesystems (where we
have hundreds of thousands of lock resources stored in the table).
This patch increases it to 128KB.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In ocfs2, we use ocfs2_extend_trans() to extend a journal handle's
blocks. But if jbd2_journal_extend() fails, it will only restart
with the the new number of blocks. This tends to be awkward since
in most cases we want additional reserved blocks. It makes our code
harder to mantain since the caller can't be sure all the original
blocks will not be accessed and dirtied again. There are 15 callers
of ocfs2_extend_trans() in fs/ocfs2, and 12 of them have to add
h_buffer_credits before they call ocfs2_extend_trans(). This makes
ocfs2_extend_trans() really extend atop the original block count.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Two tiny cleanup for allocation reservation.
1. Remove some extra codes in ocfs2_local_alloc_find_clear_bits.
2. Remove an unuseful variables in ocfs2_find_resv_lhs.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
When we allocate some bits from the reservation, we always
allocate from the r_start(see ocfs2_resmap_resv_bits).
So there should be no reason to check between r_start
and start. And I don't think we will change this behaviour
later by allocating from some bits after r_start. Why not make
ocfs2_adjust_resv_from_alloc simple for now?
The only chance we have to adjust the reservation is when we haven't
reached the end. With this patch, the function is more readable.
Note:
btw, this patch also fixes an original bug in the function
which I haven't found before.
if (end < ocfs2_resv_end(resv))
rhs = end - ocfs2_resv_end(resv);
This code is of course buggy. ;)
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
OCFS2 has never really supported intr. This patch acknowledges this reality
and makes nointr the default mount option. In a later patch, we intend to
support intr.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
o2dlm join and leave messages are more than informational as they are
required for debugging locking issues. This patch changes them from
KERN_INFO to KERN_NOTICE.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
This patch logs socket state changes that lead to socket shutdown.
Signed-off-by: Srinivas Eeda <srinivas.eeda@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Print the node number of a peer node if sending it a message failed.
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
The default behavior for directory reservations stays the same, but we add a
mount option so people can tweak the size of directory reservations
according to their workloads.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
The default reservation size of 4 (32-bit windows) is a bit too ambitious.
Scale it back to 16 bits (resv_level=2). I have been testing various sizes
on a 4-node cluster which runs a mixed workload that is heavily threaded.
With a 256MB local alloc, I get *roughly* the following levels of average file
fragmentation:
resv_level=0 70%
resv_level=1 21%
resv_level=2 23%
resv_level=3 24%
resv_level=4 60%
resv_level=5 did not test
resv_level=6 60%
resv_level=2 seemed like a good compromise between not letting windows be
too small, but not so big that heavier workloads will immediately suffer
without tuning.
This patch also change the behavior of directory reservations - they now
track file reservations. The previous compromise of giving directory
windows only 8 bits wound up fragmenting more at some window sizes because
file allocations had smaller unused windows to poach from.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
I have observed that the current size of 8M gives us pretty poor
fragmentation on multi-threaded workloads which do lots of writes.
Generally, I can increase the size of local alloc windows and observe a
marked decrease in fragmentation, even up and beyond window sizes of 512
megabytes. This makes sense for a couple reasons - larger local alloc means
more room for reservation windows. On multi-node workloads the larger local
alloc helps as well because we don't have to do window slides as often.
Also, I removed the OCFS2_DEFAULT_LOCAL_ALLOC_SIZE constant as it is no
longer used and the comment above it was out of date.
To test fragmentation, I used a workload which launched 4 threads that did
4k writes into a series of about 140 alternating files.
With resv_level=2, and a 4k/4k file system I observed the following average
fragmentation for various localalloc= parameters:
localalloc= avg. fragmentation
8 48
32 16
64 10
120 7
On larger cluster sizes, the difference is more dramatic.
The new default size top out at 256M, which we'll only get for cluster
sizes of 32K and above.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
This patch pulls the local alloc sizing code into localalloc.c and provides
a callout to it from ocfs2_fill_super(). Behavior is essentially unchanged
except that I correctly calculate the maximum local alloc size. The old code
in ocfs2_parse_options() calculated the max size as:
ocfs2_local_alloc_size(sb) * 8
which is correct, in bits. Unfortunately though the option passed in is in
megabytes. Ultimately, this bug made no real difference - the shrink code
would catch a too-large size and bring it down to something reasonable.
Still, it's less than efficient as-is.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Inodes are always allocated from the global bitmap now so we don't need this
any more. Also, the existing implementation bounces reservations around
needlessly.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Otherwise, the need for a very large contiguous allocation tends to
wreak havoc on many inode allocation reservations on the local alloc, thus
ruining any chances for contiguousness.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Use the reservations system for unindexed dir tree allocations. We don't
bother with the indexed tree as reads from it are mostly random anyway.
Directory reservations are marked seperately, to allow the reservations code
a chance to optimize their window sizes. This patch allocates only 8 bits
for directory windows as they generally are not expected to grow as quickly
as file data. Future improvements to dir window sizing can trivially be
made.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This patch improves Ocfs2 allocation policy by allowing an inode to
reserve a portion of the local alloc bitmap for itself. The reserved
portion (allocation window) is advisory in that other allocation
windows might steal it if the local alloc bitmap becomes
full. Otherwise, the reservations are honored and guaranteed to be
free. When the local alloc window is moved to a different portion of
the bitmap, existing reservations are discarded.
Reservation windows are represented internally by a red-black
tree. Within that tree, each node represents the reservation window of
one inode. An LRU of active reservations is also maintained. When new
data is written, we allocate it from the inodes window. When all bits
in a window are exhausted, we allocate a new one as close to the
previous one as possible. Should we not find free space, an existing
reservation is pulled off the LRU and cannibalized.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
jbd[2]_journal_dirty_metadata() only returns 0. It's been returning 0
since before the kernel moved to git. There is no point in checking
this error.
ocfs2_journal_dirty() has been faithfully returning the status since the
beginning. All over ocfs2, we have blocks of code checking this can't
fail status. In the past few years, we've tried to avoid adding these
checks, because they are pointless. But anyone who looks at our code
assumes they are needed.
Finally, ocfs2_journal_dirty() is made a void function. All error
checking is removed from other files. We'll BUG_ON() the status of
jbd2_journal_dirty_metadata() just in case they change it someday. They
won't.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
gcc warns that a variable is uninitialized. It's actually handled, but
an early return fools gcc. Let's just initialize the variable to a
garbage value that will crash if the usage is ever broken.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
when we fall back to buffered write from direct write, we call
__generic_file_aio_write() but that will end up doing direct write
even we are only prepared to do buffered write because the file
has the O_DIRECT flag set. This is a fix for
https://bugzilla.novell.com/show_bug.cgi?id=591039
revised with Joel's comments.
Signed-off-by: Li Dongyang <lidongyang@novell.com>
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
When asked for a partial read of the LVB in a dlmfs file, we can
accidentally calculate a negative count.
Reported-by: Dan Carpenter <error27@gmail.com>
Cc: <stable@kernel.org>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In reflink we update the id info on the disk but forgot to update
the corresponding information in the VFS inode. Update them
accordingly when we want to preserve the attributes.
Reported-by: Jeff Liu <jeff.liu@oracle.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Cc: <stable@kernel.org>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
If "handle" is non null at the end of the function then we assume it's a
valid pointer and pass it to ocfs2_commit_trans();
Signed-off-by: Dan Carpenter <error27@gmail.com>
Cc: <stable@kernel.org>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
If we get a failure during creation of an inode we'll allow the orphan code
to remove the inode, which is correct. However, we need to ensure that we
don't get any errors after the call to ocfs2_add_entry(), otherwise we could
leave a dangling directory reference. The solution is simple - in both
cases, all I had to do was move ocfs2_dentry_attach_lock() above the
ocfs2_add_entry() call.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Mark the inode with flag OCFS2_INODE_SKIP_ORPHAN_DIR in ocfs2_mknod, so we
can kill the inode in case of error.
[ Fixed up comment style -Mark ]
Signed-off-by: Li Dongyang <lidongyang@novell.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Mark the inode with flag OCFS2_INODE_SKIP_ORPHAN_DIR when we get an error
after allocating one, so that we can kill the inode.
Signed-off-by: Li Dongyang <lidongyang@novell.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Currently in the error path of ocfs2_symlink and ocfs2_mknod, we just call
iput with the inode we failed with, but the inode wipe code will complain
because we don't add the inode to orphan dir. One solution would be to lock
the orphan dir during the entire transaction, but that's too heavy for a
rare error path. Instead, we add a flag, OCFS2_INODE_SKIP_ORPHAN_DIR which
tells the inode wipe code that it won't find this inode in the orphan dir.
[ Merge fixes and comment style cleanups -Mark ]
Signed-off-by: Li Dongyang <lidongyang@novell.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
In __ocfs2_extend_allocation, we will restart our file extension
if ((!status) && restart_func). But there is a bug that the
status is still left as -EGAIN. This is really an old bug,
but it is masked by the return value of ocfs2_journal_dirty.
So it show up when we make ocfs2_journal_dirty void.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Online resize writes out the new superblock and its backups directly.
The metaecc data wasn't being recomputed. Let's do that directly.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Acked-by: Mark Fasheh <mfasheh@suse.com>[
Cc: stable@kernel.org
The checking of lockres owner in dlm_update_lvb() is not inside spinlock
protection. I don't see problem in current call path of dlm_update_lvb().
But just for code robustness.
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
This patch fixes another compiling warning in ocfs2_file_aio_write() like this,
fs/ocfs2/file.c: In function ‘ocfs2_file_aio_write’:
fs/ocfs2/file.c:2026: warning: suggest parentheses around ‘&&’ within ‘||’
As Joel suggested, '!ret' is unary, this version removes the wrap from '!ret'.
Signed-off-by: Coly Li <coly.li@suse.de>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In commit 0016eedc41, we have
changed dlmfs to use stackglue. So when use DLM* when we
decode dlm flags from open level.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
In o2dlm, the master of a lock resource keeps a map of all interested
nodes. This prevents the master from purging the resource before an
interested node can create a lock.
A race between the mastery thread and the mastery handler allowed an
interested node to discover who the master is without informing the
master directly. This is easily fixed by holding the dlm spinlock a
little longer in the mastery handler.
Signed-off-by: Srinivas Eeda <srinivas.eeda@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
The rule is that all inodes in the orphan dir have ORPHANED_FL,
otherwise we treated it as an ERROR. This rule works well except
for some rare cases of reflink operation:
http://oss.oracle.com/bugzilla/show_bug.cgi?id=1215
The problem is caused by how reflink and our orphan_scan thread
interact.
* The orphan scan pulls the orphans into a queue first, then runs the
queue at a later time. We only hold the orphan_dir's lock
during scanning.
* Reflink create a oprhaned target in orphan_dir as its first step.
It removes the target and clears the flag as the final step.
These two steps take the orphan_dir's lock, but it is not held for
the duration.
Based on the above semantics, a reflink inode can be moved out of the
orphan dir and have its ORPHANED_FL cleared before the queue of orphans
is run. This leads to a ERROR in ocfs2_query_wipde_inode().
This patch teaches ocfs2_query_wipe_inode() to detect previously
orphaned reflink targets. If a reflink fails or a crash occurs during
the relfink operation, the inode will retain ORPHANED_FL and will be
properly wiped.
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Currently, some callers were missing to journal the dirty inode after
adding it to orphan dir.
Now we're going to journal such modifications within the ocfs2_orphan_add()
itself, It's safe to do so, though some existing caller may duplicate this,
and it makes the logic look more straightforward anyway.
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
When the local alloc file changes windows, unused bits are freed back to the
global bitmap. By defnition, those bits can not be in use by any file. Also,
the local alloc will never have been able to allocate those bits if they
were part of a previous truncate. Therefore it makes sense that we should
clear unused local alloc bits in the undo buffer so that they can be used
immediatly.
[ Modified to call it ocfs2_release_clusters() -- Joel ]
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
You can't store a pointer that you haven't filled in yet and expect it
to work.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
When replacing a xattr's value, in some case we wipe its name/value
first and then re-add it. The wipe is done by
ocfs2_xa_block_wipe_namevalue() when the xattr is in the inode or
block. We currently adjust name_offset for all the entries which have
(offset < name_offset). This does not adjust the entrie we're replacing.
Since we are replacing the entry, we don't adjust the total entry count.
When we calculate a new namevalue location, we trust the entries
now-wrong offset in ocfs2_xa_get_free_start(). The solution is to
also adjust the name_offset for the replaced entry, allowing
ocfs2_xa_get_free_start() to calculate the new namevalue location
correctly.
The following script can trigger a kernel panic easily.
echo 'y'|mkfs.ocfs2 --fs-features=local,xattr -b 4K $DEVICE
mount -t ocfs2 $DEVICE $MNT_DIR
FILE=$MNT_DIR/$RANDOM
for((i=0;i<76;i++))
do
string_76="a$string_76"
done
string_78="aa$string_76"
string_82="aaaa$string_78"
touch $FILE
setfattr -n 'user.test1234567890' -v $string_76 $FILE
setfattr -n 'user.test1234567890' -v $string_78 $FILE
setfattr -n 'user.test1234567890' -v $string_82 $FILE
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
What we were doing before was to ask for the current window size as the
maximum allocation. This had the effect of limiting the amount of allocation
we could get for the local alloc during times when the window size was
shrunk due to fragmentation. In some cases, that could actually *increase*
fragmentation by artificially limiting the number of bits we can accept. So
while we still want to ask for a minimum number of bits equal to window
size, there is no reason why we should limit the number of bits the local
alloc should accept. Hence always allow the maximum number of local alloc
bits.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
ac_last_group is used to record the last block group we
used during allocation. But the initialization process
only calls ocfs2_which_suballoc_group and fails to
use suballoc_loc properly. So let us do it.
Another function ocfs2_test_suballoc_bit also needs fix.
I have searched all the callers of ocfs2_which_suballoc_group,
and all the callers notices suballoc_loc now.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
In case the block we are going to free is allocated from
a discontiguous block group, we have to use suballoc_loc
to be the right group.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
ocfs2_group_bitmap_size has to handle the case when the
volume don't have discontiguous block group support. So
pass the feature_incompat in and check it.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
The fixes include:
1. some endian problems.
2. we should use bit/bpc in ocfs2_block_group_grow_discontig to
allocate clusters.
3. set num_clusters properly in __ocfs2_claim_clusters.
4. change name from ocfs2_supports_discontig_bh to
ocfs2_supports_discontig_bg.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Rather than extending the transaction every time we add an extent to a
discontiguous block group, we grab enough credits to fill the extent
list up front. This means we can free the bits in the same transaction
if we end up not getting enough space.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Get the suballoc_loc from ocfs2_claim_new_inode() or
ocfs2_claim_metadata(). Store it on the appropriate field of the block
we just allocated.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Rather than calculating the resulting block number, return it on the
ocfs2_suballoc_result structure. This way we can calculate block
numbers for discontiguous block groups.
Cluster groups keep doing it the old way.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
They all take an ocfs2_alloc_context, which has the allocation inode.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
A discontiguous block group can find a range of free bits that straddle
more than one region of its space. Callers can't handle that, so we
trim the returned bits until they fit within one region.
Only cluster allocations ask for min_bits>1. Discontiguous block groups
are only for block allocations. So min_bits doesn't matter here.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
We're going to be adding more info to a suballocator allocation. Rather
than growing every function in the chain, let's pass a result structure
around.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
If we cannot get a contiguous region for a block group, allocate a
discontiguous one when the filesystem supports it.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Defines the OCFS2_FEATURE_INCOMPAT_DISCONTIG_BG feature bit and modifies
struct ocfs2_group_desc for the feature.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
ocfs2_set_acl() and ocfs2_init_acl() were setting i_mode on the in-memory
inode, but never setting it on the disk copy. Thus, acls were some times not
getting propagated between nodes. This patch fixes the issue by adding a
helper function ocfs2_acl_set_mode() which does this the right way.
ocfs2_set_acl() and ocfs2_init_acl() are then updated to call
ocfs2_acl_set_mode().
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In reflink, we need to upate i_blocks for the target inode.
Reported-by: Jie Liu <jeff.liu@oracle.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In ocfs2_validate_gd_parent, we check bg_chain against the
cl_next_free_rec of the dinode. Actually in resize, we have
the chance of bg_chain == cl_next_free_rec. So add some
additional condition check for it.
I also rename paramter "clean_error" to "resize", since the
old one is not clearly enough to indicate that we should only
meet with this case in resize.
btw, the correpsonding bug is
http://oss.oracle.com/bugzilla/show_bug.cgi?id=1230.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
ocfs2_lock() will skip locks on file which has mode set to 02666. This
is a problem in cases where the mode of the file is changed after a
process has obtained a lock on the file.
ocfs2_lock() should skip the check for mandatory locks when unlocking a
file.
Signed-off-by: Sachin Prabhu <sprabhu@redhat.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (56 commits)
doc: fix typo in comment explaining rb_tree usage
Remove fs/ntfs/ChangeLog
doc: fix console doc typo
doc: cpuset: Update the cpuset flag file
Fix of spelling in arch/sparc/kernel/leon_kernel.c no longer needed
Remove drivers/parport/ChangeLog
Remove drivers/char/ChangeLog
doc: typo - Table 1-2 should refer to "status", not "statm"
tree-wide: fix typos "ass?o[sc]iac?te" -> "associate" in comments
No need to patch AMD-provided drivers/gpu/drm/radeon/atombios.h
devres/irq: Fix devm_irq_match comment
Remove reference to kthread_create_on_cpu
tree-wide: Assorted spelling fixes
tree-wide: fix 'lenght' typo in comments and code
drm/kms: fix spelling in error message
doc: capitalization and other minor fixes in pnp doc
devres: typo fix s/dev/devm/
Remove redundant trailing semicolons from macros
fix typo "definetly" -> "definitely" in comment
tree-wide: s/widht/width/g typo in comments
...
Fix trivial conflict in Documentation/laptops/00-INDEX
Signed-off-by: Joe Perches <joe@perches.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Constify struct sysfs_ops.
This is part of the ops structure constification
effort started by Arjan van de Ven et al.
Benefits of this constification:
* prevents modification of data that is shared
(referenced) by many other structure instances
at runtime
* detects/prevents accidental (but not intentional)
modification attempts on archs that enforce
read-only kernel data at runtime
* potentially better optimized code as the compiler
can assume that the const data cannot be changed
* the compiler/linker move const data into .rodata
and therefore exclude them from false sharing
Signed-off-by: Emese Revfy <re.emese@gmail.com>
Acked-by: David Teigland <teigland@redhat.com>
Acked-by: Matt Domsch <Matt_Domsch@dell.com>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Acked-by: Hans J. Koch <hjk@linutronix.de>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Jens Axboe <jens.axboe@oracle.com>
Acked-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Rename for_each_bit to for_each_set_bit in the kernel source tree. To
permit for_each_clear_bit(), should that ever be added.
The patch includes a macro to map the old for_each_bit() onto the new
for_each_set_bit(). This is a (very) temporary thing to ease the migration.
[akpm@linux-foundation.org: add temporary for_each_bit()]
Suggested-by: Alexey Dobriyan <adobriyan@gmail.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Artem Bityutskiy <dedekind@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs-2.6: (33 commits)
quota: stop using QUOTA_OK / NO_QUOTA
dquot: cleanup dquot initialize routine
dquot: move dquot initialization responsibility into the filesystem
dquot: cleanup dquot drop routine
dquot: move dquot drop responsibility into the filesystem
dquot: cleanup dquot transfer routine
dquot: move dquot transfer responsibility into the filesystem
dquot: cleanup inode allocation / freeing routines
dquot: cleanup space allocation / freeing routines
ext3: add writepage sanity checks
ext3: Truncate allocated blocks if direct IO write fails to update i_size
quota: Properly invalidate caches even for filesystems with blocksize < pagesize
quota: generalize quota transfer interface
quota: sb_quota state flags cleanup
jbd: Delay discarding buffers in journal_unmap_buffer
ext3: quota_write cross block boundary behaviour
quota: drop permission checks from xfs_fs_set_xstate/xfs_fs_set_xquota
quota: split out compat_sys_quotactl support from quota.c
quota: split out netlink notification support from quota.c
quota: remove invalid optimization from quota_sync_all
...
Fixed trivial conflicts in fs/namei.c and fs/ufs/inode.c
Get rid of the initialize dquot operation - it is now always called from
the filesystem and if a filesystem really needs it's own (which none
currently does) it can just call into it's own routine directly.
Rename the now static low-level dquot_initialize helper to __dquot_initialize
and vfs_dq_init to dquot_initialize to have a consistent namespace.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Currently various places in the VFS call vfs_dq_init directly. This means
we tie the quota code into the VFS. Get rid of that and make the
filesystem responsible for the initialization. For most metadata operations
this is a straight forward move into the methods, but for truncate and
open it's a bit more complicated.
For truncate we currently only call vfs_dq_init for the sys_truncate case
because open already takes care of it for ftruncate and open(O_TRUNC) - the
new code causes an additional vfs_dq_init for those which is harmless.
For open the initialization is moved from do_filp_open into the open method,
which means it happens slightly earlier now, and only for regular files.
The latter is fine because we don't need to initialize it for operations
on special files, and we already do it as part of the namespace operations
for directories.
Add a dquot_file_open helper that filesystems that support generic quotas
can use to fill in ->open.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Get rid of the drop dquot operation - it is now always called from
the filesystem and if a filesystem really needs it's own (which none
currently does) it can just call into it's own routine directly.
Rename the now static low-level dquot_drop helper to __dquot_drop
and vfs_dq_drop to dquot_drop to have a consistent namespace.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Currently clear_inode calls vfs_dq_drop directly. This means
we tie the quota code into the VFS. Get rid of that and make the
filesystem responsible for the drop inside the ->clear_inode
superblock operation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Get rid of the transfer dquot operation - it is now always called from
the filesystem and if a filesystem really needs it's own (which none
currently does) it can just call into it's own routine directly.
Rename the now static low-level dquot_transfer helper to __dquot_transfer
and vfs_dq_transfer to dquot_transfer to have a consistent namespace,
and make the new dquot_transfer return a normal negative errno value
which all callers expect.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Get rid of the alloc_inode and free_inode dquot operations - they are
always called from the filesystem and if a filesystem really needs
their own (which none currently does) it can just call into it's
own routine directly.
Also get rid of the vfs_dq_alloc/vfs_dq_free wrappers and always
call the lowlevel dquot_alloc_inode / dqout_free_inode routines
directly, which now lose the number argument which is always 1.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Get rid of the alloc_space, free_space, reserve_space, claim_space and
release_rsv dquot operations - they are always called from the filesystem
and if a filesystem really needs their own (which none currently does)
it can just call into it's own routine directly.
Move shared logic into the common __dquot_alloc_space,
dquot_claim_space_nodirty and __dquot_free_space low-level methods,
and rationalize the wrappers around it to move as much as possible
code into the common block for CONFIG_QUOTA vs not. Also rename
all these helpers to be named dquot_* instead of vfs_dq_*.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Currently we were adding ioctl cmds/structures for ocfs2 into ocfs2_fs.h
which was used for define ocfs2 on-disk layout. That sounds a little bit
confusing, and it may be quickly polluted espcially when growing the
ocfs2_info_request ioctls afterwards(it will grow i bet).
As a result, such OCFS2 IOCs do need to be placed somewhere other than
ocfs2_fs.h, a separated ocfs2_ioctl.h will be added to store such ioctl
structures and definitions which could also be used from userspace to
invoke ioctls call.
Signed-off-by: Tristan Ye <tristan.ye@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
This patch makes ocfs2 send SIGXFSZ if new file size exceeds the rlimit.
Processes may get SIGXFSZ on one node (in the cluster) while others will
not on another if file size limits are different on the two nodes.
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Make use of the newly added BASTS masklog to trace ASTs and BASTs in userdlm.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
This patch adds a new masklog and uses it allow tracing ASTs and BASTs
in the dlmglue layer. This has been found to be very useful in debugging
cluster locking issues.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
If a node down event happens while dlm shutdown in progress, dlm recovery
should be done before dlm is shutdown. We can't migrate unrecovered locks,
obviously. But dlm_reco_thread only does recovery if the dlm_state is
in DLM_CTXT_JOINED.
dlm_reco_thread should do recovery if dlm_state is in DLM_CTXT_JOINED or
DLM_CTXT_IN_SHUTDOWN.
Signed-off-by: Srinivas Eeda <srinivas.eeda@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In ocfs2_direct_IO_get_blocks, we only need to bug out
in case of we are going to write a recounted extent rec.
What a silly bug introduced by me!
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Cc: stable@kernel.org
This patch fixes a compiling warning in ocfs2_file_aio_write().
Signed-off-by: Coly Li <coly.li@suse.de>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Unlike ocfs2, dlmfs has no permanent storage. It can't store off a
cluster stack it is supposed to be using. So it can't specify the stack
name in ocfs2_cluster_connect().
Instead, we create ocfs2_cluster_connect_agnostic(), which simply uses
the stack that is currently enabled. This is find for dlmfs, which will
rely on the stack initialization.
We add the "stackglue" capability to dlmfs's capability list. This lets
userspace know dlmfs can be used with all cluster stacks.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Rather than directly using o2dlm, dlmfs can now use the stackglue. This
allows it to use userspace cluster stacks and fs/dlm. This commit
forces o2cb for now. A latter commit will bump the protocol version and
allow non-o2cb stacks.
This is one big sed, really. LKM_xxMODE becomes DLM_LOCK_xx. LKM_flag
becomes DLM_LKF_flag.
We also learn to check that the LVB is valid before reading it. Any DLM
can lose the contents of the LVB during a complicated recovery. userdlm
should be checking this. Now it does. dlmfs will return 0 from read(2)
if the LVB was invalid.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
We want folks using dlmfs to be able to use the LVB in places other than
just write(2)/read(2). By ignoring truncate requests, we allow 'echo
"contents" > /dlm/space/lockname' to work.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Inside the stackglue, the locking protocol structure is hanging off of
the ocfs2_cluster_connection. This takes it one further; the locking
protocol is passed into ocfs2_cluster_connect(). Now different cluster
connections can have different locking protocols with distinct asts.
Note that all locking protocols have to keep their maximum protocol
version in lock-step.
With the protocol structure set in ocfs2_cluster_connect(), there is no
need for the stackglue to have a static pointer to a specific protocol
structure. We can change initialization to only pass in the maximum
protocol version.
Signed-off-by: Joel Becker <joel.becker@oracle.com>