Commit Graph

52 Commits

Author SHA1 Message Date
Paul Mackerras
e51ee31e8a powerpc/perf_counters: Reduce stack usage of power_check_constraints
Michael Ellerman reported stack-frame size warnings being produced
for power_check_constraints(), which uses an 8*8 array of u64 and
two 8*8 arrays of unsigned long, which are currently allocated on the
stack, along with some other smaller variables.  These arrays come
to 1.5kB on 64-bit or 1kB on 32-bit, which is a bit too much for the
stack.

This fixes the problem by putting these arrays in the existing
per-cpu cpu_hw_counters struct.  This is OK because two of the call
sites have interrupts disabled already; for the third call site we
use get_cpu_var, which disables preemption, so we know we won't
get a context switch while we're in power_check_constraints().
Note that power_check_constraints() can be called during context
switch but is not called from interrupts.

Reported-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: <stable@kernel.org)
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-09-11 11:27:59 +10:00
Paul Mackerras
a6dbf93a2a powerpc: Fix bug where perf_counters breaks oprofile
Currently there is a bug where if you use oprofile on a pSeries
machine, then use perf_counters, then use oprofile again, oprofile
will not work correctly; it will lose the PMU configuration the next
time the hypervisor does a partition context switch, and thereafter
won't count anything.

Maynard Johnson identified the sequence causing the problem:
- oprofile setup calls ppc_enable_pmcs(), which calls
  pseries_lpar_enable_pmcs, which tells the hypervisor that we want
  to use the PMU, and sets the "PMU in use" flag in the lppaca.
  This flag tells the hypervisor whether it needs to save and restore
  the PMU config.
- The perf_counter code sets and clears the "PMU in use" flag directly
  as it context-switches the PMU between tasks, and leaves it clear
  when it finishes.
- oprofile setup, called for a new oprofile run, calls ppc_enable_pmcs,
  which does nothing because it has already been called.  In particular
  it doesn't set the "PMU in use" flag.

This fixes the problem by arranging for ppc_enable_pmcs to always set
the "PMU in use" flag.  It makes the perf_counter code call
ppc_enable_pmcs also rather than calling the lower-level function
directly, and removes the setting of the "PMU in use" flag from
pseries_lpar_enable_pmcs, since that is now done in its caller.

This also removes the declaration of pasemi_enable_pmcs because it
isn't defined anywhere.

Reported-by: Maynard Johnson <mpjohn@us.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: <stable@kernel.org)
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-09-11 11:27:58 +10:00
Paul Mackerras
f36a1a133a perf_counter/powerpc: Fix oops on cpus without perf_counter hardware support
If we have the powerpc perf_counter backend compiled in, but
the cpu we are running on is one where we don't support the
PMU, we currently oops in hw_perf_group_sched_in if we try to
use any counters, because ppmu is NULL in that case, and we
unconditionally dereference ppmu.

This fixes the problem by adding a check if ppmu is NULL at the
beginning of hw_perf_group_sched_in, and also at the beginning
of the other functions that get called from the perf_counter
core, i.e. hw_perf_disable, hw_perf_enable, and
hw_perf_counter_setup.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: benh@kernel.crashing.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-09 12:54:37 +02:00
Paul Mackerras
98fb1807b9 perf_counter: powerpc: Make powerpc perf_counter code safe for 32-bit kernels
This abstracts a few things in arch/powerpc/kernel/perf_counter.c
that are specific to 64-bit kernels, and provides definitions for
32-bit kernels.  In particular,

* Only 64-bit has MMCRA and the bits in it that give information
  about a PMU interrupt (sampled PR, HV, slot number etc.)
* Only 64-bit has the lppaca and the lppaca->pmcregs_in_use field
* Use of SDAR is confined to 64-bit for now
* Only 64-bit has soft/lazy interrupt disable and therefore
  pseudo-NMIs (interrupts that occur while interrupts are soft-disabled)
* Only 64-bit has PMC7 and PMC8
* Only 64-bit has the MSR_HV bit.

This also fixes the types used in a couple of places, where we were
using long types for things that need to be 64-bit.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: linuxppc-dev@ozlabs.org
Cc: benh@kernel.crashing.org
LKML-Reference: <19000.55590.634126.876084@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-18 11:11:46 +02:00
Paul Mackerras
079b3c569c perf_counter: powerpc: Change how processor-specific back-ends get selected
At present, the powerpc generic (processor-independent) perf_counter
code has list of processor back-end modules, and at initialization,
it looks at the PVR (processor version register) and has a switch
statement to select a suitable processor-specific back-end.

This is going to become inconvenient as we add more processor-specific
back-ends, so this inverts the order: now each back-end checks whether
it applies to the current processor, and registers itself if so.
Furthermore, instead of looking at the PVR, back-ends now check the
cur_cpu_spec->oprofile_cpu_type string and match on that.

Lastly, each back-end now specifies a name for itself so the core can
print a nice message when a back-end registers itself.

This doesn't provide any support for unregistering back-ends, but that
wouldn't be hard to do and would allow back-ends to be modules.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: linuxppc-dev@ozlabs.org
Cc: benh@kernel.crashing.org
LKML-Reference: <19000.55529.762227.518531@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-18 11:11:45 +02:00
Paul Mackerras
448d64f8f4 perf_counter: powerpc: Use unsigned long for register and constraint values
This changes the powerpc perf_counter back-end to use unsigned long
types for hardware register values and for the value/mask pairs used
in checking whether a given set of events fit within the hardware
constraints.  This is in preparation for adding support for the PMU
on some 32-bit powerpc processors.  On 32-bit processors the hardware
registers are only 32 bits wide, and the PMU structure is generally
simpler, so 32 bits should be ample for expressing the hardware
constraints.  On 64-bit processors, unsigned long is 64 bits wide,
so using unsigned long vs. u64 (unsigned long long) makes no actual
difference.

This makes some other very minor changes: adjusting whitespace to line
things up in initialized structures, and simplifying some code in
hw_perf_disable().

Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: linuxppc-dev@ozlabs.org
Cc: benh@kernel.crashing.org
LKML-Reference: <19000.55473.26174.331511@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-18 11:11:45 +02:00
Paul Mackerras
90c8f95453 perf_counter: powerpc: Fix two compile warnings
This fixes a couple of compile warnings that crept into the powerpc
perf_counter code recently:

   CC      arch/powerpc/kernel/perf_counter.o
 arch/powerpc/kernel/perf_counter.c: In function 'record_and_restart':
 arch/powerpc/kernel/perf_counter.c:1016: warning: unused variable 'addr'
 arch/powerpc/kernel/perf_counter.c: In function 'hw_perf_counter_init':
 arch/powerpc/kernel/perf_counter.c:891: warning: 'ev' may be used uninitialized in this function

Stephen Rothwell reported this against linux-next as well.

Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <18998.12884.787039.22202@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-15 16:12:25 +02:00
Paul Mackerras
106b506c3a perf_counter: powerpc: Implement generalized cache events for POWER processors
This adds tables of event codes for the generalized cache events for
all the currently supported powerpc processors: POWER{4,5,5+,6,7} and
PPC970*, plus powerpc-specific code to use these tables when a
generalized cache event is requested.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <18992.36430.933526.742969@drongo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-11 16:48:37 +02:00
Paul Mackerras
4da52960fd perf_counters: powerpc: Add support for POWER7 processors
This adds the back-end for the PMU on POWER7 processors.  POWER7
has 4 fully-programmable counters and two fixed-function counters
(which do respect the freeze conditions, can generate interrupts,
and are writable, unlike PMC5/6 on POWER5+/6).

Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <18992.36329.189378.17992@drongo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-11 16:48:37 +02:00
Peter Zijlstra
9e350de37a perf_counter: Accurate period data
We currently log hw.sample_period for PERF_SAMPLE_PERIOD, however this is
incorrect. When we adjust the period, it will only take effect the next
cycle but report it for the current cycle. So when we adjust the period
for every cycle, we're always wrong.

Solve this by keeping track of the last_period.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-11 02:39:02 +02:00
Peter Zijlstra
df1a132bf3 perf_counter: Introduce struct for sample data
For easy extension of the sample data, put it in a structure.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-11 02:39:02 +02:00
Ingo Molnar
a21ca2cac5 perf_counter: Separate out attr->type from attr->config
Counter type is a frequently used value and we do a lot of
bit juggling by encoding and decoding it from attr->config.

Clean this up by creating a separate attr->type field.

Also clean up the various similarly complex user-space bits
all around counter attribute management.

The net improvement is significant, and it will be easier
to add a new major type (which is what triggered this cleanup).

(This changes the ABI, all tools are adapted.)
(PowerPC build-tested.)

Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-06 11:37:22 +02:00
Paul Mackerras
1b58c2515b perf_counter: powerpc: Use new identifier names in powerpc-specific code
Commit b23f3325 ("perf_counter: Rename various fields") fixed up
most of the uses of the renamed fields, but missed one instance
of "record_type" in powerpc-specific code which needs to be changed
to "sample_type", and a "PERF_RECORD_ADDR" in the same statement that
needs to be changed to "PERF_SAMPLE_ADDR", causing compilation
errors on powerpc.  This fixes it.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <18983.3111.770392.800486@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-04 13:20:11 +02:00
Paul Mackerras
dcd945e0d8 perf_counter: powerpc: Fix race causing "oops trying to read PMC0" errors
When using interrupting counters and limited (non-interrupting)
counters at the same time, it's possible that we get an
interrupt in write_mmcr0() after writing MMCR0 but before we
have set up the counters using limited PMCs.  What happens then
is that we get into perf_counter_interrupt() with
counter->hw.idx = 0 for the limited counters, leading to the
"oops trying to read PMC0" error message being printed.

This fixes the problem by making perf_counter_interrupt()
robust against counter->hw.idx being zero (the counter is just
ignored in that case) and also by changing write_mmcr0() to
write MMCR0 initially with the counter overflow interrupt
enable bits masked (set to 0).  If the MMCR0 value requested by
the caller has either of those bits set, we write MMCR0 again
with the requested value of those bits after setting up the
limited counters properly.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Kacur <jkacur@redhat.com>
Cc: Stephane Eranian <eranian@googlemail.com>
LKML-Reference: <18982.17684.138182.954599@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-03 11:49:53 +02:00
Peter Zijlstra
0d48696f87 perf_counter: Rename perf_counter_hw_event => perf_counter_attr
The structure isn't hw only and when I read event, I think about those
things that fall out the other end. Rename the thing.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Kacur <jkacur@redhat.com>
Cc: Stephane Eranian <eranian@googlemail.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-02 21:45:33 +02:00
Peter Zijlstra
b23f3325ed perf_counter: Rename various fields
A few renames:

  s/irq_period/sample_period/
  s/irq_freq/sample_freq/
  s/PERF_RECORD_/PERF_SAMPLE_/
  s/record_type/sample_type/

And change both the new sample_type and read_format to u64.

Reported-by: Stephane Eranian <eranian@googlemail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: John Kacur <jkacur@redhat.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-02 21:45:30 +02:00
Paul Mackerras
8a7b8cb91f perf_counter: powerpc: Implement interrupt throttling
This implements interrupt throttling on powerpc.  Since we don't have
individual count enable/disable or interrupt enable/disable controls
per counter, this simply sets the hardware counter to 0, meaning that
it will not interrupt again until it has counted 2^31 counts, which
will take at least 2^30 cycles assuming a maximum of 2 counts per
cycle.  Also, we set counter->hw.period_left to the maximum possible
value (2^63 - 1), so we won't report overflows for this counter for
the forseeable future.

The unthrottle operation restores counter->hw.period_left and the
hardware counter so that we will once again report a counter overflow
after counter->hw.irq_period counts.

[ Impact: new perfcounters robustness feature on PowerPC ]

Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <18971.35823.643362.446774@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-05-26 09:43:59 +02:00
Paul Mackerras
c0daaf3f1f perf_counter: powerpc: initialize cpuhw pointer before use
Commit 9e35ad38 ("perf_counter: Rework the perf counter
disable/enable") added code to the powerpc hw_perf_enable (renamed
from hw_perf_restore) to test cpuhw->disabled and return immediately
if it is not set (i.e. if the PMU is already enabled).

Unfortunately the test got added before cpuhw was initialized,
resulting in an oops the first time hw_perf_enable got called.
This fixes it by moving the initialization of cpuhw to before
cpuhw->disabled is tested.

[ Impact: fix oops-causing bug on powerpc ]

Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <18960.56772.869734.304631@drongo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-05-18 07:38:42 +02:00
Paul Mackerras
0bbd0d4be8 perf_counter: powerpc: supply more precise information on counter overflow events
This uses values from the MMCRA, SIAR and SDAR registers on
powerpc to supply more precise information for overflow events,
including a data address when PERF_RECORD_ADDR is specified.

Since POWER6 uses different bit positions in MMCRA from earlier
processors, this converts the struct power_pmu limited_pmc5_6
field, which only had 0/1 values, into a flags field and
defines bit values for its previous use (PPMU_LIMITED_PMC5_6)
and a new flag (PPMU_ALT_SIPR) to indicate that the processor
uses the POWER6 bit positions rather than the earlier
positions.  It also adds definitions in reg.h for the new and
old positions of the bit that indicates that the SIAR and SDAR
values come from the same instruction.

For the data address, the SDAR value is supplied if we are not
doing instruction sampling.  In that case there is no guarantee
that the address given in the PERF_RECORD_ADDR subrecord will
correspond to the instruction whose address is given in the
PERF_RECORD_IP subrecord.

If instruction sampling is enabled (e.g. because this counter
is counting a marked instruction event), then we only supply
the SDAR value for the PERF_RECORD_ADDR subrecord if it
corresponds to the instruction whose address is in the
PERF_RECORD_IP subrecord.  Otherwise we supply 0.

[ Impact: support more PMU hardware features on PowerPC ]

Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <18955.37028.48861.555309@drongo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-05-15 16:38:57 +02:00
Paul Mackerras
ef923214a4 perf_counter: powerpc: use u64 for event codes internally
Although the perf_counter API allows 63-bit raw event codes,
internally in the powerpc back-end we had been using 32-bit
event codes.  This expands them to 64 bits so that we can add
bits for specifying threshold start/stop events and instruction
sampling modes later.

This also corrects the return value of can_go_on_limited_pmc;
we were returning an event code rather than just a 0/1 value in
some circumstances. That didn't particularly matter while event
codes were 32-bit, but now that event codes are 64-bit it
might, so this fixes it.

[ Impact: extend PowerPC perfcounter interfaces from u32 to u64 ]

Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <18955.36874.472452.353104@drongo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-05-15 16:38:55 +02:00
Peter Zijlstra
60db5e09c1 perf_counter: frequency based adaptive irq_period
Instead of specifying the irq_period for a counter, provide a target interrupt
frequency and dynamically adapt the irq_period to match this frequency.

[ Impact: new perf-counter attribute/feature ]

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <20090515132018.646195868@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-05-15 15:26:56 +02:00
Peter Zijlstra
9e35ad388b perf_counter: Rework the perf counter disable/enable
The current disable/enable mechanism is:

	token = hw_perf_save_disable();
	...
	/* do bits */
	...
	hw_perf_restore(token);

This works well, provided that the use nests properly. Except we don't.

x86 NMI/INT throttling has non-nested use of this, breaking things. Therefore
provide a reference counter disable/enable interface, where the first disable
disables the hardware, and the last enable enables the hardware again.

[ Impact: refactor, simplify the PMU disable/enable logic ]

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-05-15 09:47:02 +02:00
Paul Mackerras
ab7ef2e50a perf_counter: powerpc: allow use of limited-function counters
POWER5+ and POWER6 have two hardware counters with limited functionality:
PMC5 counts instructions completed in run state and PMC6 counts cycles
in run state.  (Run state is the state when a hardware RUN bit is 1;
the idle task clears RUN while waiting for work to do and sets it when
there is work to do.)

These counters can't be written to by the kernel, can't generate
interrupts, and don't obey the freeze conditions.  That means we can
only use them for per-task counters (where we know we'll always be in
run state; we can't put a per-task counter on an idle task), and only
if we don't want interrupts and we do want to count in all processor
modes.

Obviously some counters can't go on a limited hardware counter, but there
are also situations where we can only put a counter on a limited hardware
counter - if there are already counters on that exclude some processor
modes and we want to put on a per-task cycle or instruction counter that
doesn't exclude any processor mode, it could go on if it can use a
limited hardware counter.

To keep track of these constraints, this adds a flags argument to the
processor-specific get_alternatives() functions, with three bits defined:
one to say that we can accept alternative event codes that go on limited
counters, one to say we only want alternatives on limited counters, and
one to say that this is a per-task counter and therefore events that are
gated by run state are equivalent to those that aren't (e.g. a "cycles"
event is equivalent to a "cycles in run state" event).  These flags
are computed for each counter and stored in the counter->hw.counter_base
field (slightly wonky name for what it does, but it was an existing
unused field).

Since the limited counters don't freeze when we freeze the other counters,
we need some special handling to avoid getting skew between things counted
on the limited counters and those counted on normal counters.  To minimize
this skew, if we are using any limited counters, we read PMC5 and PMC6
immediately after setting and clearing the freeze bit.  This is done in
a single asm in the new write_mmcr0() function.

The code here is specific to PMC5 and PMC6 being the limited hardware
counters.  Being more general (e.g. having a bitmap of limited hardware
counter numbers) would have meant more complex code to read the limited
counters when freezing and unfreezing the normal counters, with
conditional branches, which would have increased the skew.  Since it
isn't necessary for the code to be more general at this stage, it isn't.

This also extends the back-ends for POWER5+ and POWER6 to be able to
handle up to 6 counters rather than the 4 they previously handled.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robert Richter <robert.richter@amd.com>
LKML-Reference: <18936.19035.163066.892208@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-29 14:58:35 +02:00
Robert Richter
4aeb0b4239 perfcounters: rename struct hw_perf_counter_ops into struct pmu
This patch renames struct hw_perf_counter_ops into struct pmu. It
introduces a structure to describe a cpu specific pmu (performance
monitoring unit). It may contain ops and data. The new name of the
structure fits better, is shorter, and thus better to handle. Where it
was appropriate, names of function and variable have been changed too.

[ Impact: cleanup ]

Signed-off-by: Robert Richter <robert.richter@amd.com>
Cc: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1241002046-8832-7-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-29 14:51:03 +02:00
Paul Mackerras
ca8f2d7f01 perf_counter: powerpc: add nmi_enter/nmi_exit calls
Impact: fix potential deadlocks on powerpc

Now that the core is using in_nmi() (added in e30e08f6, "perf_counter:
fix NMI race in task clock"), we need the powerpc perf_counter_interrupt
to call nmi_enter() and nmi_exit() in those cases where the interrupt
happens when interrupts are soft-disabled.

If interrupts were soft-enabled, we can treat it as a regular interrupt
and do irq_enter/irq_exit around the whole routine. This lets us get rid
of the test_perf_counter_pending() call at the end of
perf_counter_interrupt, thus simplifying things a little.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <18909.31952.873098.336615@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-09 07:56:08 +02:00
Peter Zijlstra
78f13e9525 perf_counter: allow for data addresses to be recorded
Paul suggested we allow for data addresses to be recorded along with
the traditional IPs as power can provide these.

For now, only the software pagefault events provide data addresses,
but in the future power might as well for some events.

x86 doesn't seem capable of providing this atm.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090408130409.394816925@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-08 19:05:56 +02:00
Paul Mackerras
f708223d49 perf_counter: powerpc: set sample enable bit for marked instruction events
Impact: enable access to hardware feature

POWER processors have the ability to "mark" a subset of the instructions
and provide more detailed information on what happens to the marked
instructions as they flow through the pipeline.  This marking is
enabled by the "sample enable" bit in MMCRA, and there are
synchronization requirements around setting and clearing the bit.

This adds logic to the processor-specific back-ends so that they know
which events relate to marked instructions and set the sampling enable
bit if any event that we want to put on the PMU is a marked instruction
event.  It also adds logic to the generic powerpc code to do the
necessary synchronization if that bit is set.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <18908.31930.1024.228867@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-08 12:39:28 +02:00
Paul Mackerras
dc66270b51 perf_counter: fix powerpc build
Commit 4af4998b ("perf_counter: rework context time") changed struct
perf_counter_context to have a 'time' field instead of a 'time_now'
field, but neglected to fix the place in the powerpc perf_counter.c
where the time_now field was accessed.  This fixes it.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <18908.31922.411398.147810@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-08 12:39:27 +02:00
Peter Zijlstra
f6c7d5fe58 perf_counter: theres more to overflow than writing events
Prepare for more generic overflow handling. The new perf_counter_overflow()
method will handle the generic bits of the counter overflow, and can return
a !0 return value, in which case the counter should be (soft) disabled, so
that it won't count until it's properly disabled.

XXX: do powerpc and swcounter

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
LKML-Reference: <20090406094517.812109629@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-07 10:48:56 +02:00
Paul Mackerras
d5d2bc0dd0 perf_counter: make it possible for hw_perf_counter_init to return error codes
Impact: better error reporting

At present, if hw_perf_counter_init encounters an error, all it can do
is return NULL, which causes sys_perf_counter_open to return an EINVAL
error to userspace.  This isn't very informative for userspace; it means
that userspace can't tell the difference between "sorry, oprofile is
already using the PMU" and "we don't support this CPU" and "this CPU
doesn't support the requested generic hardware event".

This commit uses the PTR_ERR/ERR_PTR/IS_ERR set of macros to let
hw_perf_counter_init return an error code on error rather than just NULL
if it wishes.  If it does so, that error code will be returned from
sys_perf_counter_open to userspace.  If it returns NULL, an EINVAL
error will be returned to userspace, as before.

This also adapts the powerpc hw_perf_counter_init to make use of this
to return ENXIO, EINVAL, EBUSY, or EOPNOTSUPP as appropriate.  It would
be good to add extra error numbers in future to allow userspace to
distinguish the various errors that are currently reported as EINVAL,
i.e. irq_period < 0, too many events in a group, conflict between
exclude_* settings in a group, and PMU resource conflict in a group.

[ v2: fix a bug pointed out by Corey Ashford where error returns from
      hw_perf_counter_init were not handled correctly in the case of
      raw hardware events.]

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Orig-LKML-Reference: <20090330171023.682428180@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:30:40 +02:00
Paul Mackerras
7595d63b3a perf_counter: powerpc: only reserve PMU hardware when we need it
Impact: cooperate with oprofile

At present, on PowerPC, if you have perf_counters compiled in, oprofile
doesn't work.  There is code to allow the PMU to be shared between
competing subsystems, such as perf_counters and oprofile, but currently
the perf_counter subsystem reserves the PMU for itself at boot time,
and never releases it.

This makes perf_counter play nicely with oprofile.  Now we keep a count
of how many perf_counter instances are counting hardware events, and
reserve the PMU when that count becomes non-zero, and release the PMU
when that count becomes zero.  This means that it is possible to have
perf_counters compiled in and still use oprofile, as long as there are
no hardware perf_counters active.  This also means that if oprofile is
active, sys_perf_counter_open will fail if the hw_event specifies a
hardware event.

To avoid races with other tasks creating and destroying perf_counters,
we use a mutex.  We use atomic_inc_not_zero and atomic_add_unless to
avoid having to take the mutex unless there is a possibility of the
count going between 0 and 1.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Orig-LKML-Reference: <20090330171023.627912475@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:30:39 +02:00
Peter Zijlstra
925d519ab8 perf_counter: unify and fix delayed counter wakeup
While going over the wakeup code I noticed delayed wakeups only work
for hardware counters but basically all software counters rely on
them.

This patch unifies and generalizes the delayed wakeup to fix this
issue.

Since we're dealing with NMI context bits here, use a cmpxchg() based
single link list implementation to track counters that have pending
wakeups.

[ This should really be generic code for delayed wakeups, but since we
  cannot use cmpxchg()/xchg() in generic code, I've let it live in the
  perf_counter code. -- Eric Dumazet could use it to aggregate the
  network wakeups. ]

Furthermore, the x86 method of using TIF flags was flawed in that its
quite possible to end up setting the bit on the idle task, loosing the
wakeup.

The powerpc method uses per-cpu storage and does appear to be
sufficient.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Paul Mackerras <paulus@samba.org>
Orig-LKML-Reference: <20090330171023.153932974@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:30:36 +02:00
Paul Mackerras
53cfbf5937 perf_counter: record time running and time enabled for each counter
Impact: new functionality

Currently, if there are more counters enabled than can fit on the CPU,
the kernel will multiplex the counters on to the hardware using
round-robin scheduling.  That isn't too bad for sampling counters, but
for counting counters it means that the value read from a counter
represents some unknown fraction of the true count of events that
occurred while the counter was enabled.

This remedies the situation by keeping track of how long each counter
is enabled for, and how long it is actually on the cpu and counting
events.  These times are recorded in nanoseconds using the task clock
for per-task counters and the cpu clock for per-cpu counters.

These values can be supplied to userspace on a read from the counter.
Userspace requests that they be supplied after the counter value by
setting the PERF_FORMAT_TOTAL_TIME_ENABLED and/or
PERF_FORMAT_TOTAL_TIME_RUNNING bits in the hw_event.read_format field
when creating the counter.  (There is no way to change the read format
after the counter is created, though it would be possible to add some
way to do that.)

Using this information it is possible for userspace to scale the count
it reads from the counter to get an estimate of the true count:

true_count_estimate = count * total_time_enabled / total_time_running

This also lets userspace detect the situation where the counter never
got to go on the cpu: total_time_running == 0.

This functionality has been requested by the PAPI developers, and will
be generally needed for interpreting the count values from counting
counters correctly.

In the implementation, this keeps 5 time values (in nanoseconds) for
each counter: total_time_enabled and total_time_running are used when
the counter is in state OFF or ERROR and for reporting back to
userspace.  When the counter is in state INACTIVE or ACTIVE, it is the
tstamp_enabled, tstamp_running and tstamp_stopped values that are
relevant, and total_time_enabled and total_time_running are determined
from them.  (tstamp_stopped is only used in INACTIVE state.)  The
reason for doing it like this is that it means that only counters
being enabled or disabled at sched-in and sched-out time need to be
updated.  There are no new loops that iterate over all counters to
update total_time_enabled or total_time_running.

This also keeps separate child_total_time_running and
child_total_time_enabled fields that get added in when reporting the
totals to userspace.  They are separate fields so that they can be
atomic.  We don't want to use atomics for total_time_running,
total_time_enabled etc., because then we would have to use atomic
sequences to update them, which are slower than regular arithmetic and
memory accesses.

It is possible to measure total_time_running by adding a task_clock
counter to each group of counters, and total_time_enabled can be
measured approximately with a top-level task_clock counter (though
inaccuracies will creep in if you need to disable and enable groups
since it is not possible in general to disable/enable the top-level
task_clock counter simultaneously with another group).  However, that
adds extra overhead - I measured around 15% increase in the context
switch latency reported by lat_ctx (from lmbench) when a task_clock
counter was added to each of 2 groups, and around 25% increase when a
task_clock counter was added to each of 4 groups.  (In both cases a
top-level task-clock counter was also added.)

In contrast, the code added in this commit gives better information
with no overhead that I could measure (in fact in some cases I
measured lower times with this code, but the differences were all less
than one standard deviation).

[ v2: address review comments by Andrew Morton. ]

Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Orig-LKML-Reference: <18890.6578.728637.139402@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:30:36 +02:00
Peter Zijlstra
7b732a7504 perf_counter: new output ABI - part 1
Impact: Rework the perfcounter output ABI

use sys_read() only for instant data and provide mmap() output for all
async overflow data.

The first mmap() determines the size of the output buffer. The mmap()
size must be a PAGE_SIZE multiple of 1+pages, where pages must be a
power of 2 or 0. Further mmap()s of the same fd must have the same
size. Once all maps are gone, you can again mmap() with a new size.

In case of 0 extra pages there is no data output and the first page
only contains meta data.

When there are data pages, a poll() event will be generated for each
full page of data. Furthermore, the output is circular. This means
that although 1 page is a valid configuration, its useless, since
we'll start overwriting it the instant we report a full page.

Future work will focus on the output format (currently maintained)
where we'll likey want each entry denoted by a header which includes a
type and length.

Further future work will allow to splice() the fd, also containing the
async overflow data -- splice() would be mutually exclusive with
mmap() of the data.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Orig-LKML-Reference: <20090323172417.470536358@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:30:27 +02:00
Paul Mackerras
37d8182838 perf_counter: add an mmap method to allow userspace to read hardware counters
Impact: new feature giving performance improvement

This adds the ability for userspace to do an mmap on a hardware counter
fd and get access to a read-only page that contains the information
needed to translate a hardware counter value to the full 64-bit
counter value that would be returned by a read on the fd.  This is
useful on architectures that allow user programs to read the hardware
counters, such as PowerPC.

The mmap will only succeed if the counter is a hardware counter
monitoring the current process.

On my quad 2.5GHz PowerPC 970MP machine, userspace can read a counter
and translate it to the full 64-bit value in about 30ns using the
mmapped page, compared to about 830ns for the read syscall on the
counter, so this does give a significant performance improvement.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Orig-LKML-Reference: <20090323172417.297057964@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:30:26 +02:00
Peter Zijlstra
f4a2deb486 perf_counter: remove the event config bitfields
Since the bitfields turned into a bit of a mess, remove them and rely on
good old masks.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Orig-LKML-Reference: <20090323172417.059499915@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:30:25 +02:00
Paul Mackerras
9aaa131a27 perf_counter: fix type/event_id layout on big-endian systems
Impact: build fix for powerpc

Commit db3a944aca35ae61 ("perf_counter: revamp syscall input ABI")
expanded the hw_event.type field into a union of structs containing
bitfields.  In particular it introduced a type field and a raw_type
field, with the intention that the 1-bit raw_type field should
overlay the most-significant bit of the 8-bit type field, and in fact
perf_counter_alloc() now assumes that (or at least, assumes that
raw_type doesn't overlay any of the bits that are 1 in the values of
PERF_TYPE_{HARDWARE,SOFTWARE,TRACEPOINT}).

Unfortunately this is not true on big-endian systems such as PowerPC,
where bitfields are laid out from left to right, i.e. from most
significant bit to least significant.  This means that setting
hw_event.type = PERF_TYPE_SOFTWARE will set hw_event.raw_type to 1.

This fixes it by making the layout depend on whether or not
__BIG_ENDIAN_BITFIELD is defined.  It's a bit ugly, but that's what
we get for using bitfields in a user/kernel ABI.

Also, that commit didn't fix up some places in arch/powerpc/kernel/
perf_counter.c where hw_event.raw and hw_event.event_id were used.
This fixes them too.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-04-06 09:30:18 +02:00
Paul Mackerras
db4fb5acf2 perf_counter: powerpc: clean up perc_counter_interrupt
Impact: cleanup

This updates the powerpc perf_counter_interrupt following on from the
"perf_counter: unify irq output code" patch.  Since we now use the
generic perf_counter_output code, which sets the perf_counter_pending
flag directly, we no longer need the need_wakeup variable.

This removes need_wakeup and makes perf_counter_interrupt use
get_perf_counter_pending() instead.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Steven Rostedt <rostedt@goodmis.org>
Orig-LKML-Reference: <20090319194234.024464535@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:30:18 +02:00
Peter Zijlstra
0322cd6ec5 perf_counter: unify irq output code
Impact: cleanup

Having 3 slightly different copies of the same code around does nobody
any good. First step in revamping the output format.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Orig-LKML-Reference: <20090319194233.929962222@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:30:17 +02:00
Peter Zijlstra
b8e83514b6 perf_counter: revamp syscall input ABI
Impact: modify ABI

The hardware/software classification in hw_event->type became a little
strained due to the addition of tracepoint tracing.

Instead split up the field and provide a type field to explicitly specify
the counter type, while using the event_id field to specify which event to
use.

Raw counters still work as before, only the raw config now goes into
raw_event.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Orig-LKML-Reference: <20090319194233.836807573@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-04-06 09:30:17 +02:00
Paul Mackerras
b6c5a71da1 perf_counter: abstract wakeup flag setting in core to fix powerpc build
Impact: build fix for powerpc

Commit bd753921015e7905 ("perf_counter: software counter event
infrastructure") introduced a use of TIF_PERF_COUNTERS into the core
perfcounter code.  This breaks the build on powerpc because we use
a flag in a per-cpu area to signal wakeups on powerpc rather than
a thread_info flag, because the thread_info flags have to be
manipulated with atomic operations and are thus slower than per-cpu
flags.

This fixes the by changing the core to use an abstracted
set_perf_counter_pending() function, which is defined on x86 to set
the TIF_PERF_COUNTERS flag and on powerpc to set the per-cpu flag
(paca->perf_counter_pending).  It changes the previous powerpc
definition of set_perf_counter_pending to not take an argument and
adds a clear_perf_counter_pending, so as to simplify the definition
on x86.

On x86, set_perf_counter_pending() is defined as a macro.  Defining
it as a static inline in arch/x86/include/asm/perf_counters.h causes
compile failures because <asm/perf_counters.h> gets included early in
<linux/sched.h>, and the definitions of set_tsk_thread_flag etc. are
therefore not available in <asm/perf_counters.h>.  (On powerpc this
problem is avoided by defining set_perf_counter_pending etc. in
<asm/hw_irq.h>.)

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-04-06 09:30:14 +02:00
Paul Mackerras
880860e392 perfcounters/powerpc: add support for POWER4 processors
Impact: more hardware support

This adds the back-end for the PMU on the POWER4 and POWER4+ processors
(GP and GQ).  This is quite similar to the PPC970, with 8 PMCs, but has
fewer events than the PPC970.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-03-06 16:30:57 +11:00
Paul Mackerras
aabbaa6036 perfcounters/powerpc: add support for POWER5+ processors
Impact: more hardware support

This adds the back-end for the PMU on the POWER5+ processors (i.e. GS,
including GS DD3 aka POWER5++).  This doesn't use the fixed-function
PMC5 and PMC6 since they don't respect the freeze conditions and don't
generate interrupts, as on POWER6.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-03-06 16:28:37 +11:00
Paul Mackerras
86028598de perfcounters/powerpc: fix oops with multiple counters in a group
Impact: fix oops-causing bug

This fixes a bug in the powerpc hw_perf_counter_init where the code
didn't initialize ctrs[n] before passing the ctrs array to check_excludes,
leading to possible oopses and other incorrect behaviour.  This fixes it
by initializing ctrs[n] correctly.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-03-06 08:07:13 +11:00
Paul Mackerras
742bd95ba9 perfcounters/powerpc: Add support for POWER5 processors
This adds the back-end for the PMU on the POWER5 processor.  This knows
how to use the fixed-function PMC5 and PMC6 (instructions completed and
run cycles).  Unlike POWER6, PMC5/6 obey the freeze conditions and can
generate interrupts, so their use doesn't impose any extra restrictions.

POWER5+ is different and is not supported by this patch.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-02-26 15:36:48 +11:00
Paul Mackerras
d095cd46da perfcounters/powerpc: Make exclude_kernel bit work on Apple G5 processors
Currently, setting hw_event.exclude_kernel does nothing on the PPC970
variants used in Apple G5 machines, because they have the HV (hypervisor)
bit in the MSR forced to 1, so as far as the PMU is concerned, the
kernel runs in hypervisor mode.  Thus we have to use the MMCR0_FCHV
(freeze counters in hypervisor mode) bit rather than the MMCR0_FCS
(freeze counters in supervisor mode) bit.

This checks the MSR.HV bit at startup, and if it is set, we set the
freeze_counters_kernel variable to MMCR0_FCHV (it was initialized to
MMCR0_FCS).  We then use that whenever we need to exclude kernel events.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-02-23 23:01:28 +11:00
Paul Mackerras
0475f9ea8e perf_counters: allow users to count user, kernel and/or hypervisor events
Impact: new perf_counter feature

This extends the perf_counter_hw_event struct with bits that specify
that events in user, kernel and/or hypervisor mode should not be
counted (i.e. should be excluded), and adds code to program the PMU
mode selection bits accordingly on x86 and powerpc.

For software counters, we don't currently have the infrastructure to
distinguish which mode an event occurs in, so we currently fail the
counter initialization if the setting of the hw_event.exclude_* bits
would require us to distinguish.  Context switches and CPU migrations
are currently considered to occur in kernel mode.

On x86, this changes the previous policy that only root can count
kernel events.  Now non-root users can count kernel events or exclude
them.  Non-root users still can't use NMI events, though.  On x86 we
don't appear to have any way to control whether hypervisor events are
counted or not, so hw_event.exclude_hv is ignored.

On powerpc, the selection of whether to count events in user, kernel
and/or hypervisor mode is PMU-wide, not per-counter, so this adds a
check that the hw_event.exclude_* settings are the same as other events
on the PMU.  Counters being added to a group have to have the same
settings as the other hardware counters in the group.  Counters and
groups can only be enabled in hw_perf_group_sched_in or power_perf_enable
if they have the same settings as any other counters already on the
PMU.  If we are not running on a hypervisor, the exclude_hv setting
is ignored (by forcing it to 0) since we can't ever get any
hypervisor events.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-02-11 15:06:59 +11:00
Paul Mackerras
3b6f9e5cb2 perf_counter: Add support for pinned and exclusive counter groups
Impact: New perf_counter features

A pinned counter group is one that the user wants to have on the CPU
whenever possible, i.e. whenever the associated task is running, for
a per-task group, or always for a per-cpu group.  If the system
cannot satisfy that, it puts the group into an error state where
it is not scheduled any more and reads from it return EOF (i.e. 0
bytes read).  The group can be released from error state and made
readable again using prctl(PR_TASK_PERF_COUNTERS_ENABLE).  When we
have finer-grained enable/disable controls on counters we'll be able
to reset the error state on individual groups.

An exclusive group is one that the user wants to be the only group
using the CPU performance monitor hardware whenever it is on.  The
counter group scheduler will not schedule an exclusive group if there
are already other groups on the CPU and will not schedule other groups
onto the CPU if there is an exclusive group scheduled (that statement
does not apply to groups containing only software counters, which can
always go on and which do not prevent an exclusive group from going on).
With an exclusive group, we will be able to let users program PMU
registers at a low level without the concern that those settings will
perturb other measurements.

Along the way this reorganizes things a little:
- is_software_counter() is moved to perf_counter.h.
- cpuctx->active_oncpu now records the number of hardware counters on
  the CPU, i.e. it now excludes software counters.  Nothing was reading
  cpuctx->active_oncpu before, so this change is harmless.
- A new cpuctx->exclusive field records whether we currently have an
  exclusive group on the CPU.
- counter_sched_out moves higher up in perf_counter.c and gets called
  from __perf_counter_remove_from_context and __perf_counter_exit_task,
  where we used to have essentially the same code.
- __perf_counter_sched_in now goes through the counter list twice, doing
  the pinned counters in the first loop and the non-pinned counters in
  the second loop, in order to give the pinned counters the best chance
  to be scheduled in.

Note that only a group leader can be exclusive or pinned, and that
attribute applies to the whole group.  This avoids some awkwardness in
some corner cases (e.g. where a group leader is closed and the other
group members get added to the context list).  If we want to relax that
restriction later, we can, and it is easier to relax a restriction than
to apply a new one.

This doesn't yet handle the case where a pinned counter is inherited
and goes into error state in the child - the error state is not
propagated up to the parent when the child exits, and arguably it
should.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-01-14 21:00:30 +11:00
Paul Mackerras
01d0287f06 powerpc/perf_counter: Make sure PMU gets enabled properly
This makes sure that we call the platform-specific ppc_md.enable_pmcs
function on each CPU before we try to use the PMU on that CPU.  If the
CPU goes off-line and then on-line, we need to do the enable_pmcs call
again, so we use the hw_perf_counter_setup hook to ensure that.  It gets
called as each CPU comes online, but it isn't called on the CPU that is
coming up, so this adds the CPU number as an argument to it (there were
no non-empty instances of hw_perf_counter_setup before).

This also arranges to set the pmcregs_in_use field of the lppaca (data
structure shared with the hypervisor) on each CPU when we are using the
PMU and clear it when we are not.  This allows the hypervisor to optimize
partition switches by not saving/restoring the PMU registers when we
aren't using the PMU.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-01-14 13:44:19 +11:00
Paul Mackerras
f78628374a powerpc/perf_counter: Add support for POWER6
This adds the back-end for the PMU on the POWER6 processor.
Fortunately, the event selection hardware is somewhat simpler on
POWER6 than on other POWER family processors, so the constraints
fit into only 32 bits.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-01-10 16:35:01 +11:00