Use scsi_dh_set_params() set parameters provided. Save the parameters in
parse_hw_handler() and use it in parse_path().
Reported-by: Eddie Williams <Eddie.Williams@steeleye.com>
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Tested-by: Eddie Williams <Eddie.Williams@steeleye.com>
Cc: Alasdair G Kergon <agk@redhat.com>
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
Recent commit c8c00a6915
changed the exit paths in do_md_stop and was not quite
careful enough. There is one path were 'err' now needs
to be cleared but it isn't.
So setting an array to readonly (with mdadm --readonly) will
work, but will incorrectly report and error: ENXIO.
Signed-off-by: NeilBrown <neilb@suse.de>
drivers/md/dm-log-userspace-transfer.c:110: warning: format '%lu' expects type 'long unsigned int', but argument 4 has type 'size_t'
Previously posted and acked, but apparently lost.
http://lkml.indiana.edu/hypermail/linux/kernel/0906.2/02074.html
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: dm-devel@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Normally we only allow the upper limit for a reshape to be decreased
when the array not performing a sync/recovery/reshape, otherwise there
could be races. But if an array is part-way through a reshape when it
is assembled the reshape is started immediately leaving no window
to set an upper bound.
If the array is started read-only, the reshape will be suspended until
the array becomes writable, so that provides a window during which it
is perfectly safe to reduce the upper limit of a reshape.
So: allow the upper limit (sync_max) to be reduced even if the reshape
thread is running, as long as the array is still read-only.
Signed-off-by: NeilBrown <neilb@suse.de>
We were removing the drives, from the array, but not
removing symlinks from /sys/.... and not marking the device
as having been removed.
Signed-off-by: NeilBrown <neilb@suse.de>
This "if" don't allow for the possibility that the number of devices
doesn't change, and so sector_nr isn't set correctly in that case.
So change '>' to '>='.
Signed-off-by: NeilBrown <neilb@suse.de>
md/raid5 doesn't allow a reshape to restart if it involves writing
over the same part of disk that it would be reading from.
This happens at the beginning of a reshape that increases the number
of devices, at the end of a reshape that decreases the number of
devices, and continuously for a reshape that does not change the
number of devices.
The current code is correct for the "increase number of devices"
case as the critical section at the start is handled by userspace
performing a backup.
It does not work for reducing the number of devices, or the
no-change case.
For 'reducing', we need to invert the test. For no-change we cannot
really be sure things will be safe, so simply require the array
to be read-only, which is how the user-space code which carefully
starts such arrays works.
Signed-off-by: NeilBrown <neilb@suse.de>
When assembling arrays, md allows two devices to have different event
counts as long as the difference is only '1'. This is to cope with
a system failure between updating the metadata on two difference
devices.
However there are currently times when we update the event count by
2. This was done to keep the event count even when the array is clean
and odd when it is dirty, which allows us to avoid writing common
update to spare devices and so allow those spares to go to sleep.
This is bad for the above reason. So change it to never increase by
two. This means that the alignment between 'odd/even' and
'clean/dirty' might take a little longer to attain, but that is only a
small cost. The spares will get a few more updates but that will
still be spared (;-) most updates and can still go to sleep.
Prior to this patch there was a small chance that after a crash an
array would fail to assemble due to the overly large event count
mismatch.
Signed-off-by: NeilBrown <neilb@suse.de>
A recent commit:
commit 449aad3e25
introduced the possibility of an A-B/B-A deadlock between
bd_mutex and reconfig_mutex.
__blkdev_get holds bd_mutex while calling md_open which takes
reconfig_mutex,
do_md_run is always called with reconfig_mutex held, and it now
takes bd_mutex in the call the revalidate_disk.
This potential deadlock was not caught by lockdep due to the
use of mutex_lock_interruptible_nexted which was introduced
by
commit d63a5a74de
do avoid a warning of an impossible deadlock.
It is quite possible to split reconfig_mutex in to two locks.
One protects the array data structures while it is being
reconfigured, the other ensures that an array is never even partially
open while it is being deactivated.
In particular, the second lock prevents an open from completing
between the time when do_md_stop checks if there are any active opens,
and the time when the array is either set read-only, or when ->pers is
set to NULL. So we can be certain that no IO is in flight as the
array is being destroyed.
So create a new lock, open_mutex, just to ensure exclusion between
'open' and 'stop'.
This avoids the deadlock and also avoids the lockdep warning mentioned
in commit d63a5a74d
Reported-by: "Mike Snitzer" <snitzer@gmail.com>
Reported-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: NeilBrown <neilb@suse.de>
As revalidate_disk calls check_disk_size_change, it will cause
any capacity change of a gendisk to be propagated to the blockdev
inode. So use that instead of mucking about with locks and
i_size_write.
Also add a call to revalidate_disk in do_md_run and a few other places
where the gendisk capacity is changed.
Signed-off-by: NeilBrown <neilb@suse.de>
The ->quiesce method is not supposed to stop resync/recovery/reshape,
just normal IO.
But in raid5 we don't have a way to know which stripes are being
used for normal IO and which for resync etc, so we need to wait for
all stripes to be idle to be sure that all writes have completed.
However reshape keeps at least some stripe busy for an extended period
of time, so a call to raid5_quiesce can block for several seconds
needlessly.
So arrange for reshape etc to pause briefly while raid5_quiesce is
trying to quiesce the array so that the active_stripes count can
drop to zero.
Signed-off-by: NeilBrown <neilb@suse.de>
As the internal reshape_progress counter is the main driver
for reshape, the fact that reshape_position sometimes starts with the
wrong value has minimal effect. It is visible in sysfs and that
is all.
Signed-off-by: NeilBrown <neilb@suse.de>
The v1.x metadata does not have a fixed size and can grow
when devices are added.
If it grows enough to require an extra sector of storage,
we need to update the 'sb_size' to match.
Without this, md can write out an incomplete superblock with a
bad checksum, which will be rejected when trying to re-assemble
the array.
Cc: stable@kernel.org
Signed-off-by: NeilBrown <neilb@suse.de>
We trust the 'desc_nr' field in v1.x metadata enough to use it
as an index in an array. This isn't really safe.
So range-check the value first.
Signed-off-by: NeilBrown <neilb@suse.de>
When an array is changed from RAID6 to RAID5, fewer drives are
needed. So any device that is made superfluous by the level
conversion must be marked as not-active.
For the RAID6->RAID5 conversion, this will be a drive which only
has 'Q' blocks on it.
Cc: stable@kernel.org
Signed-off-by: NeilBrown <neilb@suse.de>
This patch replaces md_integrity_check() by two new public functions:
md_integrity_register() and md_integrity_add_rdev() which are both
personality-independent.
md_integrity_register() is called from the ->run and ->hot_remove
methods of all personalities that support data integrity. The
function iterates over the component devices of the array and
determines if all active devices are integrity capable and if their
profiles match. If this is the case, the common profile is registered
for the mddev via blk_integrity_register().
The second new function, md_integrity_add_rdev() is called from the
->hot_add_disk methods, i.e. whenever a new device is being added
to a raid array. If the new device does not support data integrity,
or has a profile different from the one already registered, data
integrity for the mddev is disabled.
For raid0 and linear, only the call to md_integrity_register() from
the ->run method is necessary.
Signed-off-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: NeilBrown <neilb@suse.de>
Add missing call to safe_put_page from stop() by unifying open coded
raid5_conf_t de-allocation under free_conf().
Cc: <stable@kernel.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Incorrect device area lengths are being passed to device_area_is_valid().
The regression appeared in 2.6.31-rc1 through commit
754c5fc7eb.
With the dm-stripe target, the size of the target (ti->len) was used
instead of the stripe_width (ti->len/#stripes). An example of a
consequent incorrect error message is:
device-mapper: table: 254:0: sdb too small for target
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This patch removes DM's bio-based vs request-based conditional setting
of next_ordered. For bio-based DM the next_ordered check is no longer a
concern (as that check is now in the __make_request path). For
request-based DM the default of QUEUE_ORDERED_NONE is now appropriate.
bio-based DM was changed to work-around the previously misplaced
next_ordered check with this commit:
99360b4c18
request-based DM does not yet support barriers but reacted to the above
bio-based DM change with this commit:
5d67aa2366
The above changes are no longer needed given Neil Brown's recent fix to
put the next_ordered check in the __make_request path:
db64f680ba
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Cc: NeilBrown <neilb@suse.de>
Acked-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com>
Acked-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
The recent commit 7513c2a761 (dm raid1:
add is_remote_recovering hook for clusters) changed do_writes() to
update the ms->writes list but forgot to wake up kmirrord to process it.
The rule is that when anything is being added on ms->reads, ms->writes
or ms->failures and the list was empty before we must call
wakeup_mirrord (for immediate processing) or delayed_wake (for delayed
processing). Otherwise the bios could sit on the list indefinitely.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
CC: stable@kernel.org
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Commit 1faa16d228 accidentally broke
the bdi congestion wait queue logic, causing us to wait on congestion
for WRITE (== 1) when we really wanted BLK_RW_ASYNC (== 0) instead.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Commit 5fd29d6ccb ("printk: clean up
handling of log-levels and newlines") changed printk semantics. printk
lines with multiple KERN_<level> prefixes are no longer emitted as
before the patch.
<level> is now included in the output on each additional use.
Remove all uses of multiple KERN_<level>s in formats.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.dk/linux-2.6-block:
cfq-iosched: remove redundant check for NULL cfqq in cfq_set_request()
blocK: Restore barrier support for md and probably other virtual devices.
block: get rid of queue-private command filter
block: Create bip slabs with embedded integrity vectors
cfq-iosched: get rid of the need for __GFP_NOFAIL in cfq_find_alloc_queue()
cfq-iosched: move cfqq initialization out of cfq_find_alloc_queue()
Trivial typo fixes in Documentation/block/data-integrity.txt.
* 'for-linus' of git://neil.brown.name/md:
md: use interruptible wait when duration is controlled by userspace.
md/raid5: suspend shouldn't affect read requests.
md: tidy up error paths in md_alloc
md: fix error path when duplicate name is found on md device creation.
md: avoid dereferencing NULL pointer when accessing suspend_* sysfs attributes.
md: Use new topology calls to indicate alignment and I/O sizes
This patch restores stacking ability to the block layer integrity
infrastructure by creating a set of dedicated bip slabs. Each bip slab
has an embedded bio_vec array at the end. This cuts down on memory
allocations and also simplifies the code compared to the original bvec
version. Only the largest bip slab is backed by a mempool. The pool is
contained in the bio_set so stacking drivers can ensure forward
progress.
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Jens Axboe <axboe@carl.(none)>
User space can set various limits on an md array so that resync waits
when it gets to a certain point, or so that I/O is blocked for a short
while.
When md is waiting against one of these limit, it should use an
interruptible wait so as not to add to the load average, and so are
not to trigger a warning if the wait goes on for too long.
Signed-off-by: NeilBrown <neilb@suse.de>
md allows write to regions on an array to be suspended temporarily.
This allows user-space to participate is aspects of reshape.
In particular, data can be copied with not risk of a race.
We should not be blocking read requests though, so don't.
Cc: stable@kernel.org
Signed-off-by: NeilBrown <neilb@suse.de>
As the recent bug in md_alloc showed, having a single exit path for
unlocking and putting is a good idea. So restructure md_alloc to have
a single mutex_unlock and mddev_put, and use gotos where necessary.
Found-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
When an md device is created by name (rather than number) we need to
check that the name is not already in use. If this check finds a
duplicate, we return an error without dropping the lock or freeing
the newly create mddev.
This patch fixes that.
Cc: stable@kernel.org
Found-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
If we try to modify one of the md/ sysfs files
suspend_lo or suspend_hi
when the array is not active, we dereference a NULL.
Protect against that.
Cc: stable@kernel.org
Signed-off-by: NeilBrown <neilb@suse.de>
Switch MD over to the new disk_stack_limits() function which checks for
aligment and adjusts preferred I/O sizes when stacking.
Also indicate preferred I/O sizes where applicable.
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.de>
The offset passed to blk_stack_limits() must be in bytes not sectors.
Fixes false warnings like the following:
device-mapper: table: 254:1: target device sda6 is misaligned
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Reported-by: Frans Pop <elendil@planet.nl>
Tested-by: Frans Pop <elendil@planet.nl>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Fix exception store name handling.
We need to reference exception store by zero terminated string.
Fixes regression introduced in commit f6bd4eb73c
Cc: Yi Yang <yi.y.yang@intel.com>
Cc: Jonathan Brassow <jbrassow@redhat.com>
Cc: stable@kernel.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Milan Broz <mbroz@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This patch converts dm-multipath target to request-based from bio-based.
Basically, the patch just converts the I/O unit from struct bio
to struct request.
In the course of the conversion, it also changes the I/O queueing
mechanism. The change in the I/O queueing is described in details
as follows.
I/O queueing mechanism change
-----------------------------
In I/O submission, map_io(), there is no mechanism change from
bio-based, since the clone request is ready for retry as it is.
However, in I/O complition, do_end_io(), there is a mechanism change
from bio-based, since the clone request is not ready for retry.
In do_end_io() of bio-based, the clone bio has all needed memory
for resubmission. So the target driver can queue it and resubmit
it later without memory allocations.
The mechanism has almost no overhead.
On the other hand, in do_end_io() of request-based, the clone request
doesn't have clone bios, so the target driver can't resubmit it
as it is. To resubmit the clone request, memory allocation for
clone bios is needed, and it takes some overheads.
To avoid the overheads just for queueing, the target driver doesn't
queue the clone request inside itself.
Instead, the target driver asks dm core for queueing and remapping
the original request of the clone request, since the overhead for
queueing is just a freeing memory for the clone request.
As a result, the target driver doesn't need to record/restore
the information of the original request for resubmitting
the clone request. So dm_bio_details in dm_mpath_io is removed.
multipath_busy()
---------------------
The target driver returns "busy", only when the following case:
o The target driver will map I/Os, if map() function is called
and
o The mapped I/Os will wait on underlying device's queue due to
their congestions, if map() function is called now.
In other cases, the target driver doesn't return "busy".
Otherwise, dm core will keep the I/Os and the target driver can't
do what it wants.
(e.g. the target driver can't map I/Os now, so wants to kill I/Os.)
Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This patch disables interrupt when taking map_lock to avoid
lockdep warnings in request-based dm.
request-based dm takes map_lock after taking queue_lock with
disabling interrupt:
spin_lock_irqsave(queue_lock)
q->request_fn() == dm_request_fn()
=> dm_get_table()
=> read_lock(map_lock)
while queue_lock could be (but isn't) taken in interrupt context.
Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Christof Schmitt <christof.schmitt@de.ibm.com>
Acked-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Request-based dm doesn't have barrier support yet.
So we need to set QUEUE_ORDERED_DRAIN only for bio-based dm.
Since the device type is decided at the first table loading time,
the flag set is deferred until then.
Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This patch enables request-based dm.
o Request-based dm and bio-based dm coexist, since there are
some target drivers which are more fitting to bio-based dm.
Also, there are other bio-based devices in the kernel
(e.g. md, loop).
Since bio-based device can't receive struct request,
there are some limitations on device stacking between
bio-based and request-based.
type of underlying device
bio-based request-based
----------------------------------------------
bio-based OK OK
request-based -- OK
The device type is recognized by the queue flag in the kernel,
so dm follows that.
o The type of a dm device is decided at the first table binding time.
Once the type of a dm device is decided, the type can't be changed.
o Mempool allocations are deferred to at the table loading time, since
mempools for request-based dm are different from those for bio-based
dm and needed mempool type is fixed by the type of table.
o Currently, request-based dm supports only tables that have a single
target. To support multiple targets, we need to support request
splitting or prevent bio/request from spanning multiple targets.
The former needs lots of changes in the block layer, and the latter
needs that all target drivers support merge() function.
Both will take a time.
Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This patch adds core functions for request-based dm.
When struct mapped device (md) is initialized, md->queue has
an I/O scheduler and the following functions are used for
request-based dm as the queue functions:
make_request_fn: dm_make_request()
pref_fn: dm_prep_fn()
request_fn: dm_request_fn()
softirq_done_fn: dm_softirq_done()
lld_busy_fn: dm_lld_busy()
Actual initializations are done in another patch (PATCH 2).
Below is a brief summary of how request-based dm behaves, including:
- making request from bio
- cloning, mapping and dispatching request
- completing request and bio
- suspending md
- resuming md
bio to request
==============
md->queue->make_request_fn() (dm_make_request()) calls __make_request()
for a bio submitted to the md.
Then, the bio is kept in the queue as a new request or merged into
another request in the queue if possible.
Cloning and Mapping
===================
Cloning and mapping are done in md->queue->request_fn() (dm_request_fn()),
when requests are dispatched after they are sorted by the I/O scheduler.
dm_request_fn() checks busy state of underlying devices using
target's busy() function and stops dispatching requests to keep them
on the dm device's queue if busy.
It helps better I/O merging, since no merge is done for a request
once it is dispatched to underlying devices.
Actual cloning and mapping are done in dm_prep_fn() and map_request()
called from dm_request_fn().
dm_prep_fn() clones not only request but also bios of the request
so that dm can hold bio completion in error cases and prevent
the bio submitter from noticing the error.
(See the "Completion" section below for details.)
After the cloning, the clone is mapped by target's map_rq() function
and inserted to underlying device's queue using
blk_insert_cloned_request().
Completion
==========
Request completion can be hooked by rq->end_io(), but then, all bios
in the request will have been completed even error cases, and the bio
submitter will have noticed the error.
To prevent the bio completion in error cases, request-based dm clones
both bio and request and hooks both bio->bi_end_io() and rq->end_io():
bio->bi_end_io(): end_clone_bio()
rq->end_io(): end_clone_request()
Summary of the request completion flow is below:
blk_end_request() for a clone request
=> blk_update_request()
=> bio->bi_end_io() == end_clone_bio() for each clone bio
=> Free the clone bio
=> Success: Complete the original bio (blk_update_request())
Error: Don't complete the original bio
=> blk_finish_request()
=> rq->end_io() == end_clone_request()
=> blk_complete_request()
=> dm_softirq_done()
=> Free the clone request
=> Success: Complete the original request (blk_end_request())
Error: Requeue the original request
end_clone_bio() completes the original request on the size of
the original bio in successful cases.
Even if all bios in the original request are completed by that
completion, the original request must not be completed yet to keep
the ordering of request completion for the stacking.
So end_clone_bio() uses blk_update_request() instead of
blk_end_request().
In error cases, end_clone_bio() doesn't complete the original bio.
It just frees the cloned bio and gives over the error handling to
end_clone_request().
end_clone_request(), which is called with queue lock held, completes
the clone request and the original request in a softirq context
(dm_softirq_done()), which has no queue lock, to avoid a deadlock
issue on submission of another request during the completion:
- The submitted request may be mapped to the same device
- Request submission requires queue lock, but the queue lock
has been held by itself and it doesn't know that
The clone request has no clone bio when dm_softirq_done() is called.
So target drivers can't resubmit it again even error cases.
Instead, they can ask dm core for requeueing and remapping
the original request in that cases.
suspend
=======
Request-based dm uses stopping md->queue as suspend of the md.
For noflush suspend, just stops md->queue.
For flush suspend, inserts a marker request to the tail of md->queue.
And dispatches all requests in md->queue until the marker comes to
the front of md->queue. Then, stops dispatching request and waits
for the all dispatched requests to complete.
After that, completes the marker request, stops md->queue and
wake up the waiter on the suspend queue, md->wait.
resume
======
Starts md->queue.
Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
This patch contains a device-mapper mirror log module that forwards
requests to userspace for processing.
The structures used for communication between kernel and userspace are
located in include/linux/dm-log-userspace.h. Due to the frequency,
diversity, and 2-way communication nature of the exchanges between
kernel and userspace, 'connector' was chosen as the interface for
communication.
The first log implementations written in userspace - "clustered-disk"
and "clustered-core" - support clustered shared storage. A userspace
daemon (in the LVM2 source code repository) uses openAIS/corosync to
process requests in an ordered fashion with the rest of the nodes in the
cluster so as to prevent log state corruption. Other implementations
with no association to LVM or openAIS/corosync, are certainly possible.
(Imagine if two machines are writing to the same region of a mirror.
They would both mark the region dirty, but you need a cluster-aware
entity that can handle properly marking the region clean when they are
done. Otherwise, you might clear the region when the first machine is
done, not the second.)
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Cc: Evgeniy Polyakov <johnpol@2ka.mipt.ru>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Currently, device-mapper maintains a separate instance of 'struct
queue_limits' for each table of each device. When the configuration of
a device is to be changed, first its table is loaded and this structure
is populated, then the device is 'resumed' and the calculated
queue_limits are applied.
This places restrictions on how userspace may process related devices,
where it is often advantageous to 'load' tables for several devices
at once before 'resuming' them together. As the new queue_limits
only take effect after the 'resume', if they are changing and one
device uses another, the latter must be 'resumed' before the former
may be 'loaded'.
This patch moves the calculation of these queue_limits out of
the 'load' operation into 'resume'. Since we are no longer
pre-calculating this struct, we no longer need to maintain copies
within our dm structs.
dm_set_device_limits() now passes the 'start' of the device's
data area (aka pe_start) as the 'offset' to blk_stack_limits().
init_valid_queue_limits() is replaced by blk_set_default_limits().
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: martin.petersen@oracle.com
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
create_log_context() must use the logical_block_size from the log disk,
where the I/O happens, not the target's logical_block_size.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Add .iterate_devices to 'struct target_type' to allow a function to be
called for all devices in a DM target. Implemented it for all targets
except those in dm-snap.c (origin and snapshot).
(The raid1 version number jumps to 1.12 because we originally reserved
1.1 to 1.11 for 'block_on_error' but ended up using 'handle_errors'
instead.)
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Cc: martin.petersen@oracle.com
Copy the table's queue_limits to the DM device's request_queue. This
properly initializes the queue's topology limits and also avoids having
to track the evolution of 'struct queue_limits' in
dm_table_set_restrictions()
Also fixes a bug that was introduced in dm_table_set_restrictions() via
commit ae03bf639a. In addition to
establishing 'bounce_pfn' in the queue's limits blk_queue_bounce_limit()
also performs an allocation to setup the ISA DMA pool. This allocation
resulted in "sleeping function called from invalid context" when called
from dm_table_set_restrictions().
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Use blk_stack_limits() to stack block limits (including topology) rather
than duplicate the equivalent within Device Mapper.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Impose necessary and sufficient conditions on a devices's table such
that any incoming bio which respects its logical_block_size can be
processed successfully.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Ensure I/O is aligned to the logical block size of target devices.
Rename check_device_area() to device_area_is_valid() for clarity and
establish the device limits including the logical block size prior to
calling it.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Add support for passing a 32 bit "cookie" into the kernel with the
DM_SUSPEND, DM_DEV_RENAME and DM_DEV_REMOVE ioctls. The (unsigned)
value of this cookie is returned to userspace alongside the uevents
issued by these ioctls in the variable DM_COOKIE.
This means the userspace process issuing these ioctls can be notified
by udev after udev has completed any actions triggered.
To minimise the interface extension, we pass the cookie into the
kernel in the event_nr field which is otherwise unused when calling
these ioctls. Incrementing the version number allows userspace to
determine in advance whether or not the kernel supports the cookie.
If the kernel does support this but userspace does not, there should
be no impact as the new variable will just get ignored.
Signed-off-by: Milan Broz <mbroz@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Add a file named 'suspended' to each device-mapper device directory in
sysfs. It holds the value 1 while the device is suspended. Otherwise
it holds 0.
Signed-off-by: Peter Rajnoha <prajnoha@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
Report any devices forgotten to be freed before a table is destroyed.
Signed-off-by: Jonathan Brassow <jbrassow@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>