With a NR_CPUS==128 kernel with CPU hotplug enabled we would waste 4MB
on per CPU data of all possible CPUs. The reason was that HOTPLUG
always set up possible map to NR_CPUS cpus and then we need to allocate
that much (each per CPU data is roughly ~32k now)
The underlying problem is that ACPI didn't tell us how many hotplug CPUs
the platform supports. So the old code just assumed all, which would
lead to this memory wastage.
This implements some new heuristics:
- If the BIOS specified disabled CPUs in the ACPI/mptables assume they
can be enabled later (this is bending the ACPI specification a bit,
but seems like a obvious extension)
- The user can overwrite it with a new additionals_cpus=NUM option
- Otherwise use half of the available CPUs or 2, whatever is more.
Cc: ashok.raj@intel.com
Cc: len.brown@intel.com
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It is for physical addresses, not for PFNs.
Pointed out by Tejun Heo.
Cc: htejun@gmail.com
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We should zap the low mappings, as soon as possible, so that we can catch
kernel bugs more effectively. Previously early boot had NULL mapped
and didn't trap on NULL references.
This patch introduces boot_level4_pgt, which will always have low identity
addresses mapped. Druing boot, all the processors will use this as their
level4 pgt. On BP, we will switch to init_level4_pgt as soon as we enter C
code and zap the low mappings as soon as we are done with the usage of
identity low mapped addresses. On AP's we will zap the low mappings as
soon as we jump to C code.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Not go from the CPU number to an mapping array.
Mode number is often used now in fast paths.
This also adds a generic numa_node_id to all the topology includes
Suggested by Eric Dumazet
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
pfn_to_page really requires pfn_valid to be true now, no question.
Some people stumbled over it, but it was misleading and wrong.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Here's a patch that builds on Natalie Protasevich's IRQ compression
patch and tries to work for MPS boots as well as ACPI. It is meant for
a 4-node IBM x460 NUMA box, which was dying because it had interrupt
pins with GSI numbers > NR_IRQS and thus overflowed irq_desc.
The problem is that this system has 270 GSIs (which are 1:1 mapped with
I/O APIC RTEs) and an 8-node box would have 540. This is much bigger
than NR_IRQS (224 for both i386 and x86_64). Also, there aren't enough
vectors to go around. There are about 190 usable vectors, not counting
the reserved ones and the unused vectors at 0x20 to 0x2F. So, my patch
attempts to compress the GSI range and share vectors by sharing IRQs.
Cc: "Protasevich, Natalie" <Natalie.Protasevich@unisys.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
MC4_MISC - DRAM Errors Threshold Register realized under AMD K8 Rev F.
This register is used to count correctable and uncorrectable ECC errors that occur during DRAM read operations.
The user may interface through sysfs files in order to change the threshold configuration.
bank%d/error_count - reads current error count, write to clear.
bank%d/interrupt_enable - set/clear interrupt enable.
bank%d/threshold_limit - read/write the threshold limit.
APIC vector 0xF9 in hw_irq.h.
5 software defined bank ids in mce.h.
new apic.c function to setup threshold apic lvt.
defaults to interrupt off, count enabled, and threshold limit max.
sysfs interface created on /sys/devices/system/threshold.
AK: added some ifdefs to make it compile on UP
Signed-off-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add a new 4GB GFP_DMA32 zone between the GFP_DMA and GFP_NORMAL zones.
As a bit of historical background: when the x86-64 port
was originally designed we had some discussion if we should
use a 16MB DMA zone like i386 or a 4GB DMA zone like IA64 or
both. Both was ruled out at this point because it was in early
2.4 when VM is still quite shakey and had bad troubles even
dealing with one DMA zone. We settled on the 16MB DMA zone mainly
because we worried about older soundcards and the floppy.
But this has always caused problems since then because
device drivers had trouble getting enough DMA able memory. These days
the VM works much better and the wide use of NUMA has proven
it can deal with many zones successfully.
So this patch adds both zones.
This helps drivers who need a lot of memory below 4GB because
their hardware is not accessing more (graphic drivers - proprietary
and free ones, video frame buffer drivers, sound drivers etc.).
Previously they could only use IOMMU+16MB GFP_DMA, which
was not enough memory.
Another common problem is that hardware who has full memory
addressing for >4GB misses it for some control structures in memory
(like transmit rings or other metadata). They tended to allocate memory
in the 16MB GFP_DMA or the IOMMU/swiotlb then using pci_alloc_consistent,
but that can tie up a lot of precious 16MB GFPDMA/IOMMU/swiotlb memory
(even on AMD systems the IOMMU tends to be quite small) especially if you have
many devices. With the new zone pci_alloc_consistent can just put
this stuff into memory below 4GB which works better.
One argument was still if the zone should be 4GB or 2GB. The main
motivation for 2GB would be an unnamed not so unpopular hardware
raid controller (mostly found in older machines from a particular four letter
company) who has a strange 2GB restriction in firmware. But
that one works ok with swiotlb/IOMMU anyways, so it doesn't really
need GFP_DMA32. I chose 4GB to be compatible with IA64 and because
it seems to be the most common restriction.
The new zone is so far added only for x86-64.
For other architectures who don't set up this
new zone nothing changes. Architectures can set a compatibility
define in Kconfig CONFIG_DMA_IS_DMA32 that will define GFP_DMA32
as GFP_DMA. Otherwise it's a nop because on 32bit architectures
it's normally not needed because GFP_NORMAL (=0) is DMA able
enough.
One problem is still that GFP_DMA means different things on different
architectures. e.g. some drivers used to have #ifdef ia64 use GFP_DMA
(trusting it to be 4GB) #elif __x86_64__ (use other hacks like
the swiotlb because 16MB is not enough) ... . This was quite
ugly and is now obsolete.
These should be now converted to use GFP_DMA32 unconditionally. I haven't done
this yet. Or best only use pci_alloc_consistent/dma_alloc_coherent
which will use GFP_DMA32 transparently.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
__MUTEX_INITIALIZER() has no users, and equates to the more commonly used
DECLARE_MUTEX(), thus making it pretty much redundant. Remove it for good.
Signed-off-by: Arthur Othieno <a.othieno@bluewin.ch>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch removes page_pte_prot and page_pte macros from all
architectures. Some architectures define both, some only page_pte (broken)
and others none. These macros are not used anywhere.
page_pte_prot(page, prot) is identical to mk_pte(page, prot) and
page_pte(page) is identical to page_pte_prot(page, __pgprot(0)).
* The following architectures define both page_pte_prot and page_pte
arm, arm26, ia64, sh64, sparc, sparc64
* The following architectures define only page_pte (broken)
frv, i386, m32r, mips, sh, x86-64
* All other architectures define neither
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make sure we always return, as all syscalls should. Also move the common
prototype to <linux/syscalls.h>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Handle 32-bit mtrr ioctls in the mtrr driver instead of the ia32
compatability layer.
Signed-off-by: Brian Gerst <bgerst@didntduck.org>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add sem_is_read/write_locked functions to the read/write semaphores, along the
same lines of the *_is_locked spinlock functions. The swap token tuning patch
uses sem_is_read_locked; sem_is_write_locked is added for completeness.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
... and related annotations for amd64 - swiotlb code is shared, but
prototypes are not.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Commit id 6142891a0c
Andi Kleen reports that it seems to break things for some people,
and since it's purely a small optimization, revert it for now.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
changes to swiotlb.c made in commit 281dd25cdc
since this file has been moved from arch/ia64/lib/swiotlb.c to
lib/swiotlb.c
Signed-off-by: Tony Luck <tony.luck@intel.com>
CPU hotplug fills up the possible map to NR_CPUs, but it did that after
setting up per CPU data. This lead to CPU data not getting allocated
for all possible CPUs, which lead to various side effects.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
I checked with AMD and they requested to only disable it for family 15.
Also disable it for i386 too. And some style fixes.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Re-implement dma_sync_single_range_for_{cpu,device} for x86_64 using
swiotlb_sync_single_range_for_{cpu,device}.
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
This patch implements swiotlb_sync_single_range_for_{cpu,device}. This
is intended to support an x86_64 implementation of
dma_sync_single_range_for_{cpu,device}.
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
include/asm/desc.h: In function `load_LDT':
include/asm/desc.h:209: warning: implicit declaration of function `get_cpu'
include/asm/desc.h:211: warning: implicit declaration of function `put_cpu'
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
As written in Documentation/feature-removal-schedule.txt, remove the
io_remap_page_range() kernel API.
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Original patch from Bertro Simul
This is probably still not quite correct, but seems to be
the best solution so far.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
As mentioned before, the size of the bug frame can be further reduced while
continuing to use instructions to encode the information.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
While only cosmetic for x86-64, this adjusts the cmpxchg code appearantly
inherited from i386 to use more generic constraints.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Rather than blindly re-enabling interrupts in oops_end(), save their state
in oope_begin() and then restore that state.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The only difference was the inline assembly, so move that into
asm/msr.h and merge with the i386 version.
This adds some missing sysfs support code to x86-64.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Being the foundation for reliable stack unwinding, this fixes CFI unwind
annotations in many low-level x86_64 routines, plus a config option
(available to all architectures, and also present in the previously sent
patch adding such annotations to i386 code) to enable them separatly
rather than only along with adding full debug information.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Currently just defined to their non range parts.
Pointed out by John Linville
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
They should be identical in the kernel now, but this
makes it consistent with other code.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Needed for some newer Opteron systems with E stepping and memory
relocation enabled. The node addresses are different in lower
bits now so the nodemap hash function needs to be enlarged.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The generic TLB flush functions kept upto 506 pages per
CPU to avoid too frequent IPIs.
This value was done for the L1 cache of older x86 CPUs,
but with modern CPUs it does not make much sense anymore.
TLB flushing is slow enough that using the L2 cache is fine.
This patch increases the flush array on x86-64 to cache
5350 pages. That is roughly 20MB with 4K pages. It speeds
up large munmaps in multithreaded processes on SMP considerably.
The cost is roughly 42k of memory per CPU, which is reasonable.
I only increased it on x86-64 for now, but it would probably
make sense to increase it everywhere. Embedded architectures
with SMP may keep it smaller to save some memory per CPU.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
asm-x86-64/timex.h does not reference CONFIG constants.
Do not need to include config.h.
Signed-off-by: Grant Grundler <iod00d@hp.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Instead of using a global spinlock to protect the state
of the remote TLB flush use a lock and state for each sending CPU.
To tell the receiver where to look for the state use 8 different
call vectors. Each CPU uses a specific vector to trigger flushes on other
CPUs. Depending on the received vector the target CPUs look into
the right per cpu variable for the flush data.
When the system has more than 8 CPUs they are hashed to the 8 available
vectors. The limited global vector space forces us to this right now.
In future when interrupts are split into per CPU domains this could be
fixed, at the cost of needing more IPIs in flat mode.
Also some minor cleanup in the smp flush code and remove some outdated
debug code.
Requires patch to move cpu_possible_map setup earlier.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The FLATMEM people added it, but there doesn't seem a good reason
because end_pfn is identical.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
PCI_DMA_BUS_IS_PHYS has to be zero even when the GART IOMMU is disabled
and the swiotlb is used. Otherwise the block layer does unnecessary
double bouncing.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In particular on systems where the local APIC space and node space
is very different from the Linux CPU number space.
Previously the older NUMA setup code directly parsing the K8
northbridge registers had some issues on 8 socket or dual core
systems. This patch fixes them.
This is mainly done by fixing some confusion between Linux
CPU numbers and local APIC ids. We now pass the local APIC IDs
to later code, which avoids mismatches.
Also add some heuristics to detect cases where the Hypertransport
nodeids and the local APIC IDs don't match, but are shifted
by a constant offset.
This is still all quite hackish, hopefully BIOS writers fill
in correct SRATs instead.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>