Commit Graph

15 Commits

Author SHA1 Message Date
David Brownell
c8626a1d72 rtc-cmos: display HPET emulation mode
For the "cmos" RTC, have /proc/driver/rtc say whether HPET based IRQ
emulation is in effect.  Given the problems we've had with this particular
hardware maldesign (and the fact that most BIOS code seems not to provide
the IRQ routing needed to use the saner HPET modes), this should help
troubleshooting.

Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-23 17:12:14 -08:00
Bernhard Walle
9d8af78b07 rtc: add HPET RTC emulation to RTC_DRV_CMOS
That patch adds the RTC emulation of the HPET timer to the new RTC_DRV_CMOS.
The old drivers/char/rtc.ko driver had that functionality and it's important
on new systems.

[akpm@linux-foundation.org: unbreak alpha build]
Signed-off-by: Bernhard Walle <bwalle@suse.de>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: David Brownell <david-b@pacbell.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@suse.de>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Robert Picco <Robert.Picco@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-06 10:41:14 -08:00
David Brownell
8a0bdfd7a0 rtc-cmos alarm acts as oneshot
Start making the rtc-cmos alarm act more like a oneshot alarm by disabling
that alarm after its IRQ fires.  (ACPI hooks are also needed.)

The Linux RTC framework has previously been a bit vague in this area, but
any other behavior is problematic and not very portable.  RTCs with full
YYYY-MM-DD HH:MM[:SS] alarms won't have a problem here.  Only ones with
partial match criteria, with the most visible example being the PC RTC, get
confused.  (Because the criteria will match repeatedly.)

Update comments relating to that oneshot behavior and timezone handling.
(Timezones are another issue that's mostly visible with rtc-cmos.  That's
because PCs often dual-boot MS-Windows, which likes its RTC to match local
wall-clock time instead of UTC.)

Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-06 10:41:13 -08:00
David Brownell
e07e232cd9 rtc-cmos: export nvram in sysfs
This makes rtc-cmos export its NVRAM, like several other RTC drivers.

It still works within the limits of the current CMOS_READ/CMOS_WRITE calls,
which don't understand how to access multiple register banks.  The primary
impact of that limitation is that Linux can't access the uppermost 128
bytes of NVRAM on many systems.

Note that this isn't aiming to be a drop-in replacement for the legacy
/dev/nvram support.  (Presumably that has real users, and isn't just
getting carried forward automatically?) Userspace handles more work:

 - When userspace code updates NVRAM, that will need to include
   updating any platform-specific checksums that may apply.

 - No /proc/driver/nvram file will parse and display NVRAM data
   according to whichever boot firmware your board expects.

Also minor pnp-related updates: update a comment, remove dead code.

Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Alessandro Zummo <a.zummo@towertech.it>
Cc: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-06 10:41:13 -08:00
Mark Lord
615bb29ccb rtc: ignore msb when reading back mday from alarm
I have a system here that actively relies upon RTC wake alarms, and it
has been failing (again) for a few days when attempting to use the
/sys/class/rtc/rtc?/wakealarm interface.

The old (fixed by Linus) /proc/ interface still works, but I'd like to
get it using the new one.

This patch fixes rtc-cmos to ignore the two upper bits when reading the
BCD mday (day of month) register from CMOS.  Some systems (eg.  mine)
seem to have the top bit set to "1" for some reason.

The older /proc/ interface ignores the upper bits, and so we should too.

Signed-off-by: Mark Lord <mlord@pobox.com>
Acked-by: David Brownell <david-b@pacbell.net>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-11-04 13:13:09 -08:00
David Brownell
05440dfcfc rtc-cmos probe() cleanup
Some cleanups for the rtc-cmos probe logic:

 - Claim i/o ports with request_region() not request_resource(),
   for better coexistence betwen platform and pnp bus glues.

 - Claim those ports earlier, to help work around procfs bugs
   (it allows duplicate names, like /proc/driver/rtc).

 - Fix some glitches in cleanup code, notably a cut'n'paste-o
   where the i/o port region might not get released during
   cleanup after a probe fault.

And some comment clarifications, including noting that this code
must work with PNPBIOS not just PNPACPI..

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:13 -07:00
David Brownell
97144c6756 rtc_irq_set_freq() requires power-of-two and associated kerneldoc
RTC periodic IRQs are only defined to work for 2^N Hz values.  This patch
moves that validity check into the infrastructure, so drivers don't need to
check it; and adds kerneldoc for the two interface functions related to
periodic IRQs.  (One of which was quite mysterious until its first use was
recently checked in!)

Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:13 -07:00
Alessandro Zummo
57deb52622 RTC: add periodic irq support to rtc-cmos
Adds support for periodic irq enabling in rtc-cmos.  This could be used by
the ALSA driver and is already being tested with the zaptel ztdummy module.

Signed-off-by: Alessandro Zummo <a.zummo@towertech.it>
Cc: David Brownell <david-b@pacbell.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 10:04:52 -07:00
Matthew Garrett
6cd8fa87fb RTC: use fallback IRQ if PNP tables don't provide one
Intel Macs (and possibly other machines) provide a PNP entry for the RTC,
but provide no IRQ.  As a result the rtc-cmos driver doesn't allow wakeup
alarms.  If the RTC is located at the legacy ioport range, assume that it's
on IRQ 8 unless the tables say otherwise.

Signed-off-by: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Matthieu CASTET <castet.matthieu@free.fr>
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-06-01 08:18:29 -07:00
Marko Vrh
41ac8df9d5 rtc-cmos: make it load on PNPBIOS systems
Replace CONFIG_PNPACPI with CONFIG_PNP, so it loads on ACPI-less PNPBIOS
systems.

Signed-off-by: Marko Vrh <mvrh@freeshells.ch>
Acked-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 11:15:19 -07:00
David Brownell
87ac84f42a rtc-cmos wakeup interface
I finally got around to testing the updated wakeup event hooks for rtc-cmos,
and they follow in two patches:

 - Interface update ... when a simple enable_irq_wake() doesn't suffice,
   the platform data can hold suspend/resume callback hooks.

 - ACPI implementation ... provides callback hooks to do ACPI magic, and
   eliminate the legacy /proc/acpi/alarm file.

The interface update could go into 2.6.21, but that's not essential; they
will be NOPs on most PCs, without the ACPI stuff.

I suspect the ACPI folk may have opinions about how to merge that second
patch, and how to obsolete that legacy procfs file.  I'd like to see that
merge into 2.6.22 if possible...

As for how to kick it in ... two ways:

 - The appended "rtcwake" program; updated since the last time it was
   posted, it deals much better with timezones and DST.

 - Write the /sys/class/rtc/.../wakealarm file, then go to sleep.

For some reason RTC wake from "swsusp" stopped working on a system where
it previously worked; the alarm setting appears to get clobbered.  But
on the bright side, RTC wake from "standby" worked on a system that had
never been able to resume from that state before ... IDEACPI is my guess
as to why it finally started to work.  It's the old "two steps forward,
one step back" dance, I guess.

- Dave

/* gcc -Wall -Os -o rtcwake rtcwake.c */

#include <stdio.h>
#include <getopt.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <time.h>

#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/types.h>

#include <linux/rtc.h>

/* constants from legacy PC/AT hardware */
#define	RTC_PF	0x40
#define	RTC_AF	0x20
#define	RTC_UF	0x10

/*
 * rtcwake -- enter a system sleep state until specified wakeup time.
 *
 * This uses cross-platform Linux interfaces to enter a system sleep state,
 * and leave it no later than a specified time.  It uses any RTC framework
 * driver that supports standard driver model wakeup flags.
 *
 * This is normally used like the old "apmsleep" utility, to wake from a
 * suspend state like ACPI S1 (standby) or S3 (suspend-to-RAM).  Most
 * platforms can implement those without analogues of BIOS, APM, or ACPI.
 *
 * On some systems, this can also be used like "nvram-wakeup", waking
 * from states like ACPI S4 (suspend to disk).  Not all systems have
 * persistent media that are appropriate for such suspend modes.
 *
 * The best way to set the system's RTC is so that it holds the current
 * time in UTC.  Use the "-l" flag to tell this program that the system
 * RTC uses a local timezone instead (maybe you dual-boot MS-Windows).
 */

static char		*progname;

#ifdef	DEBUG
#define	VERSION	"1.0 dev (" __DATE__ " " __TIME__ ")"
#else
#define	VERSION	"0.9"
#endif

static unsigned		verbose;
static int		rtc_is_utc = -1;

static int may_wakeup(const char *devname)
{
	char	buf[128], *s;
	FILE	*f;

	snprintf(buf, sizeof buf, "/sys/class/rtc/%s/device/power/wakeup",
			devname);
	f = fopen(buf, "r");
	if (!f) {
		perror(buf);
		return 0;
	}
	fgets(buf, sizeof buf, f);
	fclose(f);

	s = strchr(buf, '\n');
	if (!s)
		return 0;
	*s = 0;

	/* wakeup events could be disabled or not supported */
	return strcmp(buf, "enabled") == 0;
}

/* all times should be in UTC */
static time_t	sys_time;
static time_t	rtc_time;

static int get_basetimes(int fd)
{
	struct tm	tm;
	struct rtc_time	rtc;

	/* this process works in RTC time, except when working
	 * with the system clock (which always uses UTC).
	 */
	if (rtc_is_utc)
		setenv("TZ", "UTC", 1);
	tzset();

	/* read rtc and system clocks "at the same time", or as
	 * precisely (+/- a second) as we can read them.
	 */
	if (ioctl(fd, RTC_RD_TIME, &rtc) < 0) {
		perror("read rtc time");
		return 0;
	}
	sys_time = time(0);
	if (sys_time == (time_t)-1) {
		perror("read system time");
		return 0;
	}

	/* convert rtc_time to normal arithmetic-friendly form,
	 * updating tm.tm_wday as used by asctime().
	 */
	memset(&tm, 0, sizeof tm);
	tm.tm_sec = rtc.tm_sec;
	tm.tm_min = rtc.tm_min;
	tm.tm_hour = rtc.tm_hour;
	tm.tm_mday = rtc.tm_mday;
	tm.tm_mon = rtc.tm_mon;
	tm.tm_year = rtc.tm_year;
	tm.tm_isdst = rtc.tm_isdst;	/* stays unspecified? */
	rtc_time = mktime(&tm);

	if (rtc_time == (time_t)-1) {
		perror("convert rtc time");
		return 0;
	}

	if (verbose) {
		if (!rtc_is_utc) {
			printf("\ttzone   = %ld\n", timezone);
			printf("\ttzname  = %s\n", tzname[daylight]);
			gmtime_r(&rtc_time, &tm);
		}
		printf("\tsystime = %ld, (UTC) %s",
				(long) sys_time, asctime(gmtime(&sys_time)));
		printf("\trtctime = %ld, (UTC) %s",
				(long) rtc_time, asctime(&tm));
	}

	return 1;
}

static int setup_alarm(int fd, time_t *wakeup)
{
	struct tm		*tm;
	struct rtc_wkalrm	wake;

	tm = gmtime(wakeup);

	wake.time.tm_sec = tm->tm_sec;
	wake.time.tm_min = tm->tm_min;
	wake.time.tm_hour = tm->tm_hour;
	wake.time.tm_mday = tm->tm_mday;
	wake.time.tm_mon = tm->tm_mon;
	wake.time.tm_year = tm->tm_year;
	wake.time.tm_wday = tm->tm_wday;
	wake.time.tm_yday = tm->tm_yday;
	wake.time.tm_isdst = tm->tm_isdst;

	/* many rtc alarms only support up to 24 hours from 'now' ... */
	if ((rtc_time + (24 * 60 * 60)) > *wakeup) {
		if (ioctl(fd, RTC_ALM_SET, &wake.time) < 0) {
			perror("set rtc alarm");
			return 0;
		}
		if (ioctl(fd, RTC_AIE_ON, 0) < 0) {
			perror("enable rtc alarm");
			return 0;
		}

	/* ... so use the "more than 24 hours" request only if we must */
	} else {
		/* avoid an extra AIE_ON call */
		wake.enabled = 1;

		if (ioctl(fd, RTC_WKALM_SET, &wake) < 0) {
			perror("set rtc wake alarm");
			return 0;
		}
	}

	return 1;
}

static void suspend_system(const char *suspend)
{
	FILE	*f = fopen("/sys/power/state", "w");

	if (!f) {
		perror("/sys/power/state");
		return;
	}

	fprintf(f, "%s\n", suspend);
	fflush(f);

	/* this executes after wake from suspend */
	fclose(f);
}

int main(int argc, char **argv)
{
	static char		*devname = "rtc0";
	static unsigned		seconds = 0;
	static char		*suspend = "standby";

	int		t;
	int		fd;
	time_t		alarm = 0;

	progname = strrchr(argv[0], '/');
	if (progname)
		progname++;
	else
		progname = argv[0];
	if (chdir("/dev/") < 0) {
		perror("chdir /dev");
		return 1;
	}

	while ((t = getopt(argc, argv, "d:lm:s:t:uVv")) != EOF) {
		switch (t) {

		case 'd':
			devname = optarg;
			break;

		case 'l':
			rtc_is_utc = 0;
			break;

		/* what system power mode to use?  for now handle only
		 * standardized mode names; eventually when systems define
		 * their own state names, parse /sys/power/state.
		 *
		 * "on" is used just to test the RTC alarm mechanism,
		 * bypassing all the wakeup-from-sleep infrastructure.
		 */
		case 'm':
			if (strcmp(optarg, "standby") == 0
					|| strcmp(optarg, "mem") == 0
					|| strcmp(optarg, "disk") == 0
					|| strcmp(optarg, "on") == 0
					) {
				suspend = optarg;
				break;
			}
			printf("%s: unrecognized suspend state '%s'\n",
					progname, optarg);
			goto usage;

		/* alarm time, seconds-to-sleep (relative) */
		case 's':
			t = atoi(optarg);
			if (t < 0) {
				printf("%s: illegal interval %s seconds\n",
						progname, optarg);
				goto usage;
			}
			seconds = t;
			break;

		/* alarm time, time_t (absolute, seconds since 1/1 1970 UTC) */
		case 't':
			t = atoi(optarg);
			if (t < 0) {
				printf("%s: illegal time_t value %s\n",
						progname, optarg);
				goto usage;
			}
			alarm = t;
			break;

		case 'u':
			rtc_is_utc = 1;
			break;

		case 'v':
			verbose++;
			break;

		case 'V':
			printf("%s: version %s\n", progname, VERSION);
			break;

		default:
usage:
			printf("usage: %s [options]"
				"\n\t"
				"-d rtc0|rtc1|...\t(select rtc)"
				"\n\t"
				"-l\t\t\t(RTC uses local timezone)"
				"\n\t"
				"-m standby|mem|...\t(sleep mode)"
				"\n\t"
				"-s seconds\t\t(seconds to sleep)"
				"\n\t"
				"-t time_t\t\t(time to wake)"
				"\n\t"
				"-u\t\t\t(RTC uses UTC)"
				"\n\t"
				"-v\t\t\t(verbose messages)"
				"\n\t"
				"-V\t\t\t(show version)"
				"\n",
				progname);
			return 1;
		}
	}

	if (!alarm && !seconds) {
		printf("%s: must provide wake time\n", progname);
		goto usage;
	}

	/* REVISIT:  if /etc/adjtime exists, read it to see what
	 * the util-linux version of hwclock assumes.
	 */
	if (rtc_is_utc == -1) {
		printf("%s: assuming RTC uses UTC ...\n", progname);
		rtc_is_utc = 1;
	}

	/* this RTC must exist and (if we'll sleep) be wakeup-enabled */
	fd = open(devname, O_RDONLY);
	if (fd < 0) {
		perror(devname);
		return 1;
	}
	if (strcmp(suspend, "on") != 0 && !may_wakeup(devname)) {
		printf("%s: %s not enabled for wakeup events\n",
				progname, devname);
		return 1;
	}

	/* relative or absolute alarm time, normalized to time_t */
	if (!get_basetimes(fd))
		return 1;
	if (verbose)
		printf("alarm %ld, sys_time %ld, rtc_time %ld, seconds %u\n",
				alarm, sys_time, rtc_time, seconds);
	if (alarm) {
		if (alarm < sys_time) {
			printf("%s: time doesn't go backward to %s",
					progname, ctime(&alarm));
			return 1;
		}
		alarm += sys_time - rtc_time;
	} else
		alarm = rtc_time + seconds + 1;
	if (setup_alarm(fd, &alarm) < 0)
		return 1;

	sync();
	printf("%s: wakeup from \"%s\" using %s at %s",
			progname, suspend, devname,
			ctime(&alarm));
	fflush(stdout);
	usleep(10 * 1000);

	if (strcmp(suspend, "on") != 0)
		suspend_system(suspend);
	else {
		unsigned long data;

		do {
			t = read(fd, &data, sizeof data);
			if (t < 0) {
				perror("rtc read");
				break;
			}
			if (verbose)
				printf("... %s: %03lx\n", devname, data);
		} while (!(data & RTC_AF));
	}

	if (ioctl(fd, RTC_AIE_OFF, 0) < 0)
		perror("disable rtc alarm interrupt");

	close(fd);
	return 0;
}

This patch:

Make rtc-cmos do the relevant magic so this RTC can wake the system from a
sleep state.  That magic comes in two basic flavors:

 - Straightforward:  enable_irq_wake(), the way it'd work on most SOC chips;
   or generally with system sleep states which don't disable core IRQ logic.

 - Roundabout, using non-IRQ platform hooks.  This is needed with ACPI and
   one almost-clone chip which uses a special wakeup-only alarm.  (That's
   the RTC used on Footbridge boards, FWIW, which don't do PM in Linux.)

A separate patch implements those hooks for ACPI platforms, so that rtc_cmos
can issue system wakeup events (and its sysfs "wakealarm" attribute works on
at least some systems).

Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Len Brown <lenb@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 11:15:18 -07:00
David Brownell
cd9662094e rtc: remove rest of class_device
Finish converting the RTC framework so it no longer uses class_device.

Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-By: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 11:15:18 -07:00
David Brownell
ab6a2d70d1 rtc: rtc interfaces don't use class_device
This patch removes class_device from the programming interface that the RTC
framework exposes to the rest of the kernel.  Now an rtc_device is passed,
which is more type-safe and streamlines all the relevant code.

Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-By: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 11:15:18 -07:00
David Brownell
bcd9b89c02 [PATCH] rtc-cmos lockdep fix, irq updates
Lockdep reported cmos_suspend() and cmos_resume() calling rtc_update_irq()
with IRQs enabled; not allowed.

Also fix problems seen on some hardware, whereby false alarm IRQs could be
reported (primarily to userspace); and update two comments to match changes
in ACPI.  Those make up most of this patch, by volume.

Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-04-02 10:06:09 -07:00
David Brownell
7be2c7c96a [PATCH] RTC framework driver for CMOS RTCs
This is an "RTC framework" driver for the "CMOS" RTCs which are standard on
PCs and some other platforms.  That's MC146818 compatible silicon.
Advantages of this vs.  drivers/char/rtc.c (use one _or_ the other, only
one will be able to claim the RTC irq) include:

 - This leverages both the new RTC framework and the driver model; both
   PNPACPI and platform device modes are supported.  (A separate patch
   creates a platform device on PCs where PNPACPI isn't configured.)

 - It supports common extensions like longer alarms.  (A separate patch
   exports that information from ACPI through platform_data.)

 - Likewise, system wakeup events use "real driver model support", with
   policy control via sysfs "wakeup" attributes and and using normal rtc
   ioctls to manage wakeup.  (Patch in the works.  The ACPI hooks are
   known; /proc/acpi/alarm can vanish.  Making it work with EFI will
   be a minor challenge to someone with e.g. a MiniMac.)

It's not yet been tested on non-x86 systems, without ACPI, or with HPET.
And the RTC framework will surely have teething pains on "mainstream"
PC-based systems (though must embedded Linux systems use it heavily), not
limited to sorting out the "/dev/rtc0" issue (udev easily tweaked).  Also,
the ALSA rtctimer code doesn't use the new RTC API.

Otherwise, this should be a no-known-regressions replacement for the old
drivers/char/rtc.c driver, and should help the non-embedded distros (and
the new timekeeping code) start to switch to the framework.

Note also that any systems using "rtc-m48t86" are candidates to switch over
to this more functional driver; the platform data is different, and the way
bytes are read is different, but otherwise those chips should be compatible.

[akpm@osdl.org: sparc32 fix]
[akpm@osdl.org: sparc64 fix]
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Cc: Woody Suwalski <woodys@xandros.com>
Cc: Alessandro Zummo <alessandro.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11 10:51:32 -08:00