Implement the actual patching machinery. paravirt_patch_default()
contains the logic to automatically patch a callsite based on a few
simple rules:
- if the paravirt_op function is paravirt_nop, then patch nops
- if the paravirt_op function is a jmp target, then jmp to it
- if the paravirt_op function is callable and doesn't clobber too much
for the callsite, call it directly
paravirt_patch_default is suitable as a default implementation of
paravirt_ops.patch, will remove most of the expensive indirect calls
in favour of either a direct call or a pile of nops.
Backends may implement their own patcher, however. There are several
helper functions to help with this:
paravirt_patch_nop nop out a callsite
paravirt_patch_ignore leave the callsite as-is
paravirt_patch_call patch a call if the caller and callee
have compatible clobbers
paravirt_patch_jmp patch in a jmp
paravirt_patch_insns patch some literal instructions over
the callsite, if they fit
This patch also implements more direct patches for the native case, so
that when running on native hardware many common operations are
implemented inline.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Anthony Liguori <anthony@codemonkey.ws>
Acked-by: Ingo Molnar <mingo@elte.hu>
Clean things up, and broadly document:
- the paravirt_ops functions themselves
- the patching mechanism
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Wrap a set of interesting paravirt_ops calls in a wrapper which makes
the callsites available for patching. Unfortunately this is pretty
ugly because there's no way to get gcc to generate a function call,
but also wrap just the callsite itself with the necessary labels.
This patch supports functions with 0-4 arguments, and either void or
returning a value. 64-bit arguments must be split into a pair of
32-bit arguments (lower word first). Small structures are returned in
registers.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Anthony Liguori <anthony@codemonkey.ws>
Fix a few clobbers to include the return register. The clobbers set
is the set of all registers modified (or may be modified) by the code
snippet, regardless of whether it was deliberate or accidental.
Also, make sure that callsites which are used in contexts which don't
allow clobbers actually save and restore all clobberable registers.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Zachary Amsden <zach@vmware.com>
Use patch type identifiers derived from the offset of the operation in
the paravirt_ops structure. This avoids having to maintain a separate
enum for patch site types.
Also, since the identifier is derived from the offset into
paravirt_ops, the offset can be derived from the identifier. This is
used to remove replicated information in the various callsite macros,
which has been a source of bugs in the past.
This patch also drops the fused save_fl+cli operation, which doesn't
really add much and makes things more complex - specifically because
it breaks the 1:1 relationship between identifiers and offsets. If
this operation turns out to be particularly beneficial, then the right
answer is to define a new entrypoint for it.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Zachary Amsden <zach@vmware.com>
Rename struct paravirt_patch to paravirt_patch_site, so that it
clearly refers to a callsite, and not the patch which may be applied
to that callsite.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Zachary Amsden <zach@vmware.com>
Add hooks to allow a paravirt implementation to track the lifetime of
an mm. Paravirtualization requires three hooks, but only two are
needed in common code. They are:
arch_dup_mmap, which is called when a new mmap is created at fork
arch_exit_mmap, which is called when the last process reference to an
mm is dropped, which typically happens on exit and exec.
The third hook is activate_mm, which is called from the arch-specific
activate_mm() macro/function, and so doesn't need stub versions for
other architectures. It's called when an mm is first used.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: linux-arch@vger.kernel.org
Cc: James Bottomley <James.Bottomley@SteelEye.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Normally when running in PAE mode, the 4th PMD maps the kernel address space,
which can be shared among all processes (since they all need the same kernel
mappings).
Xen, however, does not allow guests to have the kernel pmd shared between page
tables, so parameterize pgtable.c to allow both modes of operation.
There are several side-effects of this. One is that vmalloc will update the
kernel address space mappings, and those updates need to be propagated into
all processes if the kernel mappings are not intrinsically shared. In the
non-PAE case, this is done by maintaining a pgd_list of all processes; this
list is used when all process pagetables must be updated. pgd_list is
threaded via otherwise unused entries in the page structure for the pgd, which
means that the pgd must be page-sized for this to work.
Normally the PAE pgd is only 4x64 byte entries large, but Xen requires the PAE
pgd to page aligned anyway, so this patch forces the pgd to be page
aligned+sized when the kernel pmd is unshared, to accomodate both these
requirements.
Also, since there may be several distinct kernel pmds (if the user/kernel
split is below 3G), there's no point in allocating them from a slab cache;
they're just allocated with get_free_page and initialized appropriately. (Of
course the could be cached if there is just a single kernel pmd - which is the
default with a 3G user/kernel split - but it doesn't seem worthwhile to add
yet another case into this code).
[ Many thanks to wli for review comments. ]
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: William Lee Irwin III <wli@holomorphy.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Zachary Amsden <zach@vmware.com>
Cc: Christoph Lameter <clameter@sgi.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Allocate a fixmap slot for use by a paravirt_ops implementation. This
is intended for early-boot bootstrap mappings. Once the zones and
allocator have been set up, it would be better to use get_vm_area() to
allocate some virtual space.
Xen uses this to map the hypervisor's shared info page, which doesn't
have a pseudo-physical page number, and therefore can't be mapped
ordinarily. It is needed early because it contains the vcpu state,
including the interrupt mask.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
This patch introduces paravirt_ops hooks to control how the kernel's
initial pagetable is set up.
In the case of a native boot, the very early bootstrap code creates a
simple non-PAE pagetable to map the kernel and physical memory. When
the VM subsystem is initialized, it creates a proper pagetable which
respects the PAE mode, large pages, etc.
When booting under a hypervisor, there are many possibilities for what
paging environment the hypervisor establishes for the guest kernel, so
the constructon of the kernel's pagetable depends on the hypervisor.
In the case of Xen, the hypervisor boots the kernel with a fully
constructed pagetable, which is already using PAE if necessary. Also,
Xen requires particular care when constructing pagetables to make sure
all pagetables are always mapped read-only.
In order to make this easier, kernel's initial pagetable construction
has been changed to only allocate and initialize a pagetable page if
there's no page already present in the pagetable. This allows the Xen
paravirt backend to make a copy of the hypervisor-provided pagetable,
allowing the kernel to establish any more mappings it needs while
keeping the existing ones.
A slightly subtle point which is worth highlighting here is that Xen
requires all kernel mappings to share the same pte_t pages between all
pagetables, so that updating a kernel page's mapping in one pagetable
is reflected in all other pagetables. This makes it possible to
allocate a page and attach it to a pagetable without having to
explicitly enumerate that page's mapping in all pagetables.
And:
+From: "Eric W. Biederman" <ebiederm@xmission.com>
If we don't set the leaf page table entries it is quite possible that
will inherit and incorrect page table entry from the initial boot
page table setup in head.S. So we need to redo the effort here,
so we pick up PSE, PGE and the like.
Hypervisors like Xen require that their page tables be read-only,
which is slightly incompatible with our low identity mappings, however
I discussed this with Jeremy he has modified the Xen early set_pte
function to avoid problems in this area.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Acked-by: William Irwin <bill.irwin@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Add a set of accessors to pack, unpack and modify page table entries
(at all levels). This allows a paravirt implementation to control the
contents of pgd/pmd/pte entries. For example, Xen uses this to
convert the (pseudo-)physical address into a machine address when
populating a pagetable entry, and converting back to pphys address
when an entry is read.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Add a _paravirt_nop function for use as a stub for no-op operations,
and paravirt_nop #defined void * version to make using it easier
(since all its uses are as a void *).
This is useful to allow the patcher to automatically identify noop
operations so it can simply nop out the callsite.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
[mingo] but only as a cleanup of the current open-coded (void *) casts.
My problem with this is that it loses the types. Not that there is much
to check for, but still, this adds some assumptions about how function
calls look like
On Thu, 2007-03-29 at 13:16 +0200, Andi Kleen wrote:
> Please clean it up properly with two structs.
Not sure about this, now I've done it. Running it here.
If you like it, I can do x86-64 as well.
==
lguest defines its own TSS struct because the "struct tss_struct"
contains linux-specific additions. Andi asked me to split the struct
in processor.h.
Unfortunately it makes usage a little awkward.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andi Kleen <ak@suse.de>
The .smp_altinstructions section and its corresponding symbols are
completely unused, so remove them.
Also, remove stray #ifdef __KENREL__ in asm-i386/alternative.h
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
This patch is based on Rusty's recent cleanup of the EFLAGS-related
macros; it extends the same kind of cleanup to control registers and
MSRs.
It also unifies these between i386 and x86-64; at least with regards
to MSRs, the two had definitely gotten out of sync.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Andi Kleen <ak@suse.de>
It doesn't put the CPU into deeper sleep states, so it's better to use the standard
idle loop to save power. But allow to reenable it anyways for benchmarking.
I also removed the obsolete idle=halt on i386
Cc: andreas.herrmann@amd.com
Signed-off-by: Andi Kleen <ak@suse.de>
Now that relocation of the VDSO for COMPAT_VDSO users is done at
runtime rather than compile time, it is possible to enable/disable
compat mode at runtime.
This patch allows you to enable COMPAT_VDSO mode with "vdso=2" on the
kernel command line, or via sysctl. (Switching on a running system
shouldn't be done lightly; any process which was relying on the compat
VDSO will be upset if it goes away.)
The COMPAT_VDSO config option still exists, but if enabled it just
makes vdso_enabled default to VDSO_COMPAT.
+From: Hugh Dickins <hugh@veritas.com>
Fix oops from i386-make-compat_vdso-runtime-selectable.patch.
Even mingetty at system startup finds it easy to trigger an oops
while reading /proc/PID/maps: though it has a good hold on the mm
itself, that cannot stop exit_mm() from resetting tsk->mm to NULL.
(It is usually show_map()'s call to get_gate_vma() which oopses,
and I expect we could change that to check priv->tail_vma instead;
but no matter, even m_start()'s call just after get_task_mm() is racy.)
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Zachary Amsden <zach@vmware.com>
Cc: "Jan Beulich" <JBeulich@novell.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Roland McGrath <roland@redhat.com>
Some versions of libc can't deal with a VDSO which doesn't have its
ELF headers matching its mapped address. COMPAT_VDSO maps the VDSO at
a specific system-wide fixed address. Previously this was all done at
build time, on the grounds that the fixed VDSO address is always at
the top of the address space. However, a hypervisor may reserve some
of that address space, pushing the fixmap address down.
This patch does the adjustment dynamically at runtime, depending on
the runtime location of the VDSO fixmap.
[ Patch has been through several hands: Jan Beulich wrote the orignal
version; Zach reworked it, and Jeremy converted it to relocate phdrs
as well as sections. ]
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Zachary Amsden <zach@vmware.com>
Cc: "Jan Beulich" <JBeulich@novell.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Roland McGrath <roland@redhat.com>
identify_cpu() is used to identify both the boot CPU and secondary
CPUs, but it performs some actions which only apply to the boot CPU.
Those functions are therefore really __init functions, but because
they're called by identify_cpu(), they must be marked __cpuinit.
This patch splits identify_cpu() into identify_boot_cpu() and
identify_secondary_cpu(), and calls the appropriate init functions
from each. Also, identify_boot_cpu() and all the functions it
dominates are marked __init.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Most of asm-i386/bugs.h is code which should be in a C file, so put it there.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Under CONFIG_DISCONTIGMEM, assuming that a !pfn_valid() implies all
subsequent pfn-s are also invalid is wrong. Thus replace this by
explicitly checking against the E820 map.
AK: make e820 on x86-64 not initdata
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Acked-by: Mark Langsdorf <mark.langsdorf@amd.com>
machine_ops is an interface for the machine_* functions defined in
<linux/reboot.h>. This is intended to allow hypervisors to intercept
the reboot process, but it could be used to implement other x86
subarchtecture reboots.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Add a smp_ops interface. This abstracts the API defined by
<linux/smp.h> for use within arch/i386. The primary intent is that it
be used by a paravirtualizing hypervisor to implement SMP, but it
could also be used by non-APIC-using sub-architectures.
This is related to CONFIG_PARAVIRT, but is implemented unconditionally
since it is simpler that way and not a highly performance-sensitive
interface.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Now we have an explicit per-cpu GDT variable, we don't need to keep the
descriptors around to use them to find the GDT: expose cpu_gdt directly.
We could go further and make load_gdt() pack the descriptor for us, or even
assume it means "load the current cpu's GDT" which is what it always does.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Move X86_EFLAGS_IF et al out to a new header: processor-flags.h, so we
can include it from irqflags.h and use it in raw_irqs_disabled_flags().
As a side-effect, we could now use these flags in .S files.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andi Kleen <ak@suse.de>
Fix various broken corner cases in i386 and x86-64 change_page_attr.
AK: split off from tighten kernel image access rights
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andi Kleen <ak@suse.de>
paravirt.c used to implement native versions of all low-level
functions. Far cleaner is to have the native versions exposed in the
headers and as inline native_XXX, and if !CONFIG_PARAVIRT, then simply
#define XXX native_XXX.
There are several nice side effects:
1) write_dt_entry() now takes the correct "struct Xgt_desc_struct *"
not "void *".
2) load_TLS is reintroduced to the for loop, not manually unrolled
with a #error in case the bounds ever change.
3) Macros become inlines, with type checking.
4) Access to the native versions is trivial for KVM, lguest, Xen and
others who might want it.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@muc.de>
Cc: Avi Kivity <avi@qumranet.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We now have cpu_init() and secondary_cpu_init() doing nothing but calling
_cpu_init() with the same arguments. Rename _cpu_init() to cpu_init() and use
it as a replcement for secondary_cpu_init().
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Now we are no longer dynamically allocating the GDT, we don't need the
"cpu_gdt_table" at all: we can switch straight from "boot_gdt_table" to the
per-cpu GDT. This means initializing the cpu_gdt array in C.
The boot CPU uses the per-cpu var directly, then in smp_prepare_cpus() it
switches to the per-cpu copy just allocated. For secondary CPUs, the
early_gdt_descr is set to point directly to their per-cpu copy.
For UP the code is very simple: it keeps using the "per-cpu" GDT as per SMP,
but we never have to move.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Allocating PDA and GDT at boot is a pain. Using simple per-cpu variables adds
happiness (although we need the GDT page-aligned for Xen, which we do in a
followup patch).
[akpm@linux-foundation.org: build fix]
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The specific case I am encountering is kdump under Xen with a 64 bit
hypervisor and 32 bit kernel/userspace. The dump created is 64 bit due to
the hypervisor but the dump kernel is 32 bit for maximum compatibility.
It's possibly less likely to be useful in a purely native scenario but I
see no reason to disallow it.
[akpm@linux-foundation.org: build fix]
Signed-off-by: Ian Campbell <ian.campbell@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Acked-by: Vivek Goyal <vgoyal@in.ibm.com>
Cc: Horms <horms@verge.net.au>
Cc: Magnus Damm <magnus.damm@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Whenever we schedule, __switch_to calls load_esp0 which does:
tss->esp0 = thread->esp0;
This is never initialized for the initial thread (ie "swapper"), so when we're
scheduling that, we end up setting esp0 to 0. This is fine: the swapper never
leaves ring 0, so this field is never used.
lguest, however, gets upset that we're trying to used an unmapped page as our
kernel stack. Rather than work around it there, let's initialize it.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Change mark_tsc_unstable() so it takes a string argument, which holds the
reason the TSC was marked unstable.
This is then displayed the first time mark_tsc_unstable is called.
This should help us better debug why the TSC was marked unstable on certain
systems and allow us to make sure we're not being overly paranoid when
throwing out this troublesome clocksource.
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andi Kleen <ak@suse.de>
o Modpost generates warnings for i386 if compiled with CONFIG_RELOCATABLE=y
WARNING: vmlinux - Section mismatch: reference to .init.text:find_unisys_acpi_oem_table from .text between 'acpi_madt_oem_check' (at offset 0xc0101eda) and 'enable_apic_mode'
WARNING: vmlinux - Section mismatch: reference to .init.text:acpi_get_table_header_early from .text between 'acpi_madt_oem_check' (at offset 0xc0101ef0) and 'enable_apic_mode'
WARNING: vmlinux - Section mismatch: reference to .init.text:parse_unisys_oem from .text between 'acpi_madt_oem_check' (at offset 0xc0101f2e) and 'enable_apic_mode'
WARNING: vmlinux - Section mismatch: reference to .init.text:setup_unisys from .text between 'acpi_madt_oem_check' (at offset 0xc0101f37) and 'enable_apic_mode'WARNING: vmlinux - Section mismatch: reference to .init.text:parse_unisys_oem from .text between 'mps_oem_check' (at offset 0xc0101ec7) and 'acpi_madt_oem_check'
WARNING: vmlinux - Section mismatch: reference to .init.text:es7000_sw_apic from .text between 'enable_apic_mode' (at offset 0xc0101f48) and 'check_apicid_present'
o Some functions which are inline (acpi_madt_oem_check) are not inlined by
compiler as these functions are accessed using function pointer. These
functions are put in .text section and they in-turn access __init type
functions hence modpost generates warnings.
o Do not iniline acpi_madt_oem_check, instead make it __init.
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Cc: Len Brown <lenb@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The reboot_fixups stuff seems to be a bit of a mess, specifically the
header is in linux/ when its a purely i386-specific piece of code. I'm
not sure why it has its config option; its only currently needed for
"geode-gx1/cs5530a", so perhaps whatever config option controls that
hardware should enable this?
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Explicity specify that the caller should pin the user memory
otherwise the function will sleep
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@gmail.com>
Signed-off-by: Andi Kleen <ak@suse.de>
The VIA C7 is a 686 (with TSC) that supports MMX, SSE and SSE2, it also has
a cache line length of 64 according to
http://www.digit-life.com/articles2/cpu/rmma-via-c7.html. This patch sets
gcc to -march=686 and select s the correct cache shift.
Signed-off-by: Simon Arlott <simon@fire.lp0.eu>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Cc: Dave Jones <davej@codemonkey.org.uk>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Eliminated the arch/i386/kernel/timers in 2.6.18, use clocksoures instead.
pit_latch_buggy was referred in timers/timer_tsc.c, and currently removed.
Therefore nobody refer it.
Until 2.6.17, MediaGX's TSC works correctly. after 2.6.18, warned "TSC
appears to be running slowly. Marking it as unstable". So marked unstable
TSC when CS55x0.
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andi Kleen <ak@suse.de>
No need to use -traditional for processing asm in i386/kernel/
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Move inclusion of asm/fixmap.h to where it is really used rather than
where it may have been used long ago (requires a few other adjustments
to includes due to previous implicit dependencies).
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Now that network timestamps use ktime_t infrastructure, we can add a new
SOL_SOCKET sockopt SO_TIMESTAMPNS.
This command is similar to SO_TIMESTAMP, but permits transmission of
a 'timespec struct' instead of a 'timeval struct' control message.
(nanosecond resolution instead of microsecond)
Control message is labelled SCM_TIMESTAMPNS instead of SCM_TIMESTAMP
A socket cannot mix SO_TIMESTAMP and SO_TIMESTAMPNS : the two modes are
mutually exclusive.
sock_recv_timestamp() became too big to be fully inlined so I added a
__sock_recv_timestamp() helper function.
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
CC: linux-arch@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
Now network timestamps use ktime_t infrastructure, we can add a new
ioctl() SIOCGSTAMPNS command to get timestamps in 'struct timespec'.
User programs can thus access to nanosecond resolution.
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
CC: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Here is the current version of the 64 bit divide common code.
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since lazy MMU batching mode still allows interrupts to enter, it is
possible for interrupt handlers to try to use kmap_atomic, which fails when
lazy mode is active, since the PTE update to highmem will be delayed. The
best workaround is to issue an explicit flush in kmap_atomic_functions
case; this is the only way nested PTE updates can happen in the interrupt
handler.
Thanks to Jeremy Fitzhardinge for noting the bug and suggestions on a fix.
This patch gets reverted again when we start 2.6.22 and the bug gets fixed
differently.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Cc: Andi Kleen <ak@muc.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
AMD dual core laptops with C1E do not run the APIC timer correctly
when they go idle. Previously the code assumed this only happened
on C2 or deeper. But not all of these systems report support C2.
Use a AMD supplied snippet to detect C1E being enabled and then disable
local apic timer use.
This supercedes an earlier workaround using DMI detection of specific systems.
Thanks to Mark Langsdorf for the detection snippet.
Signed-off-by: Andi Kleen <ak@suse.de>
Its now used.. because we added the new definitions so enabled all the
goodies on i386
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The segment register slots in struct pt_regs are padded to 32 bits.
Some of these are stored with instructions like "pushl %es", which
leaves the high 16 bits as they were. So the high bits of these
fields in struct pt_regs contain kernel stack garbage. These bits are
ignored by everything and never leak to user space, except in core
dumps. The user struct pt_regs is always at the base of the thread's
kernel stack and so it seems unlikely the information that leaks from
here is ever worthwhile so as to be a security concern, but I'm not
sure about that. It has been this way for ages; userland consumers of
core dumps all mask off these high bits themselves. So it is not urgent.
This change masks off the padding bits of the segment register slots
in core dumps. ptrace already masks off these high bits, so this
makes the values in core dumps consistent with what ptrace would
report just before the process died.
As I read the processor manuals, the cs and ss values will always be
padded with zero bits rather than stack garbage. But unlike "pushl %es",
this is not simple to test with a userland program. So I added the two
instructions rather than wonder if they are really never necessary.
I think that x86_64 does not have this problem (for either 32-bit or
64-bit processes). It only uses "mov" instructions from segment
registers, which zero-extend.
Signed-off-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It turned out that it is almost impossible to trust ACPI, BIOS & Co.
regarding the C states. This was the reason to switch the local apic
timer off in C2 state already. OTOH there are sane and well behaving
systems, which get punished by that decision.
Allow the user to confirm that the local apic timer is trustworthy in C2
state. This keeps the default behaviour on the safe side.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>