* Force chunk allocation when find_free_extent has to do a full scan
* Record the max key at the start of defrag so it doesn't run forever
* Block groups might not be contiguous, make a forward search for the
next block group in extent-tree.c
* Get rid of extra checks for total fs size
* Fix relocate_one_reference to avoid relocating the same file data block
twice when referenced by an older transaction
* Use the open device count when allocating chunks so that we don't
try to allocate from devices that don't exist
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The async submit workqueue was absorbing too many requests, leading to long
stalls where the async submitters were stalling.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Before, nodatacow only checked to make sure multiple roots didn't have
references on a single extent. This check makes sure that multiple
inodes don't have references.
nodatacow needed an extra check to see if the block group was currently
readonly. This way cows forced by the chunk relocation code are honored.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This required a few structural changes to the code that manages bdev pointers:
The VFS super block now gets an anon-bdev instead of a pointer to the
lowest bdev. This allows us to avoid swapping the super block bdev pointer
around at run time.
The code to read in the super block no longer goes through the extent
buffer interface. Things got ugly keeping the mapping constant.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This significantly improves streaming write performance by allowing
concurrency in the data checksumming.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This allows checksumming to happen in parallel among many cpus, and
keeps us from bogging down pdflush with the checksumming code.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Block headers now store the chunk tree uuid
Chunk items records the device uuid for each stripes
Device extent items record better back refs to the chunk tree
Block groups record better back refs to the chunk tree
The chunk tree format has also changed. The objectid of BTRFS_CHUNK_ITEM_KEY
used to be the logical offset of the chunk. Now it is a chunk tree id,
with the logical offset being stored in the offset field of the key.
This allows a single chunk tree to record multiple logical address spaces,
upping the number of bytes indexed by a chunk tree from 2^64 to
2^128.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
On huge machines, delayed allocation may try to allocate massive extents.
This change allows btrfs_alloc_extent to return something smaller than
the caller asked for, and the data allocation routines will loop over
the allocations until it fills the whole delayed alloc.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Before, metadata checksumming was done by the callers of read_tree_block,
which would set EXTENT_CSUM bits in the extent tree to show that a given
range of pages was already checksummed and didn't need to be verified
again.
But, those bits could go away via try_to_releasepage, and the end
result was bogus checksum failures on pages that never left the cache.
The new code validates checksums when the page is read. It is a little
tricky because metadata blocks can span pages and a single read may
end up going via multiple bios.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This allows detection of blocks that have already been written in the
running transaction so they can be recowed instead of modified again.
It is step one in trusting the transid field of the block pointers.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When we checkum file data during writepage, the checksumming is done one
page at a time, making it difficult to do bulk metadata modifications
to insert checksums for large ranges of the file at once.
This patch changes btrfs to checksum on a per-bio basis instead. The
bios are checksummed before they are handed off to the block layer, so
each bio is contiguous and only has pages from the same inode.
Checksumming on a bio basis allows us to insert and modify the file
checksum items in large groups. It also allows the checksumming to
be done more easily by async worker threads.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs set/get macros lose type information needed to avoid
unaligned accesses on sparc64.
ere is a patch for the kernel bits which fixes most of the
unaligned accesses on sparc64.
btrfs_name_hash is modified to return the hash value instead
of getting a return location via a (potentially unaligned)
pointer.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Now that delayed allocation accounting works, i_blocks accounting is changed
to only modify i_blocks when extents inserted or removed.
The fillattr call is changed to include the delayed allocation byte count
in the i_blocks result.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
There is now extent_map for mapping offsets in the file to disk and
extent_io for state tracking, IO submission and extent_bufers.
The new extent_map code shifts from [start,end] pairs to [start,len], and
pushes the locking out into the caller. This allows a few performance
optimizations and is easier to use.
A number of extent_map usage bugs were fixed, mostly with failing
to remove extent_map entries when changing the file.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
There were a few places that could cause duplicate extent insertion,
this adjusts the code that creates holes to avoid it.
lookup_extent_map is changed to correctly return all of the extents in a
range, even when there are none matching at the start of the range.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch adds readonly inode flag support. A file with this flag
can't be modified, but can be deleted.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This forces file data extents down the disk along with the metadata that
references them. The current implementation is fairly simple, and just
writes out all of the dirty pages in an inode before the commit.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This is intended to prevent accidentally filling the drive. A determined
user can still make things oops.
It includes some accounting of the current bytes under delayed allocation,
but this will change as things get optimized
Signed-off-by: Chris Mason <chris.mason@oracle.com>
A number of workloads do not require copy on write data or checksumming.
mount -o nodatasum to disable checksums and -o nodatacow to disable
both copy on write and checksumming.
In nodatacow mode, copy on write is still performed when a given extent
is under snapshot.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch adds a helper function 'update_pinned_extents' to
extent-tree.c. The usage of the helper function is similar to
'update_block_group', the last parameter of the function indicates
pin vs unpin.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The fixes do a number of things:
1) Most btrfs_drop_extent callers will try to leave the inline extents in
place. It can truncate bytes off the beginning of the inline extent if
required.
2) writepage can now update the inline extent, allowing mmap writes to
go directly into the inline extent.
3) btrfs_truncate_in_transaction truncates inline extents
4) extent_map.c fixed to not merge inline extent mappings and hole
mappings together
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This reduces the number of calls to btrfs_extend_item and greatly lowers
the cpu usage while writing large files.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This allows us to defrag huge directories, but skip the expensive defrag
case in more common usage, where it does not help as much.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
No reason to grab the BKL before calling into the btrfs ioctl code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Dead roots are trees left over after a crash, and they were either in the
process of being removed or were waiting to be removed when the box crashed.
Before, a search of the entire tree of root pointers was done on mount
looking for dead roots. Now, the search is done the first time we load
a root.
This makes mount faster when there are a large number of snapshots, and it
enables the block accounting code to properly update the block counts on
the latest root as old versions of the root are reaped after a crash.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
File data checksums are only done during writepage, so we have to make sure
all pages are written when the snapshot is taken. This also adds some
locking so that new writes don't race in and add new dirty pages.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This adds two types of btree defrag, a run time form that tries to
defrag recently allocated blocks in the btree when they are still in ram,
and an ioctl that forces defrag of all btree blocks.
File data blocks are not defragged yet, but this can make a huge difference
in sequential btree reads.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Before, snapshot deletion was a single atomic unit. This caused considerable
lock contention and required an unbounded amount of space. Now,
the drop_progress field in the root item is used to indicate how far along
snapshot deletion is, and to resume where it left off.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The super block written during commit was not consistent with the state of
the trees. This change adds an in-memory copy of the super so that we can
make sure to write out consistent data during a commit.
Signed-off-by: Chris Mason <chris.mason@oracle.com>