I have never seen a use of SLAB_DEBUG_INITIAL. It is only supported by
SLAB.
I think its purpose was to have a callback after an object has been freed
to verify that the state is the constructor state again? The callback is
performed before each freeing of an object.
I would think that it is much easier to check the object state manually
before the free. That also places the check near the code object
manipulation of the object.
Also the SLAB_DEBUG_INITIAL callback is only performed if the kernel was
compiled with SLAB debugging on. If there would be code in a constructor
handling SLAB_DEBUG_INITIAL then it would have to be conditional on
SLAB_DEBUG otherwise it would just be dead code. But there is no such code
in the kernel. I think SLUB_DEBUG_INITIAL is too problematic to make real
use of, difficult to understand and there are easier ways to accomplish the
same effect (i.e. add debug code before kfree).
There is a related flag SLAB_CTOR_VERIFY that is frequently checked to be
clear in fs inode caches. Remove the pointless checks (they would even be
pointless without removeal of SLAB_DEBUG_INITIAL) from the fs constructors.
This is the last slab flag that SLUB did not support. Remove the check for
unimplemented flags from SLUB.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is inspired by Arjan's "Patch series to mark struct
file_operations and struct inode_operations const".
Compile tested with gcc & sparse.
Signed-off-by: Josef 'Jeff' Sipek <jsipek@cs.sunysb.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds into write inode path function to write UFS2 inode, and
modifys allocate inode path to allocate and init additional inode chunks.
Also some cleanups:
- remove not used parameters in some functions
- remove i_gen field from ufs_inode_info structure,
there is i_generation in inode structure with same purposes.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These series of patches add UFS2 write-support. UFS2 - is default file system
for recent versions of FreeBSD.
The main differences from UFS1 from write support point of view
are:
1)Not all inodes are allocated during formatation of disk.
2)All meta-data(pointer to data blocks) are 64bit(in UFS1 they
are 32bit).
So patch series consist of
1)make possible mount UFS2 in read-write mode
2)code to write ufs2 inodes and code to initialize inodes chunks.
3)work with 64bit meta-data
I made simple testing like create/deleting/writing/reading/truncating, also I
ran fsx-linux and untar and build kernel on UFS1 and UFS2, after that FreeBSD
fsck do not find any errors in fs.
This patch makes possible to mount ufs2 "rw", and updates UFS2 documentation:
remove note about bug(it fixed by reallocate blocks on the fly patch) and add
me in the list of people who want receive bug reports.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a fix of regression, which triggered by ~2.6.16.
Patch with name ufs-directory-and-page-cache-from-blocks-to-pages.patch: in
additional to conversation from block to page cache mechanism added new
checks of directory integrity, one of them that directory entry do not
across directory chunks.
But some kinds of UFS: OpenStep UFS and Apple UFS (looks like these are the
same filesystems) have different directory chunk size, then common
UFSes(BSD and Solaris UFS).
So this patch adds ability to works with variable size of directory chunks,
and set it for ufstype=openstep to right size.
Tested on darwin ufs.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It would very lame to get buffer overflow via one of the following.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Dave Kleikamp <shaggy@austin.ibm.com>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Replace all uses of kmem_cache_t with struct kmem_cache.
The patch was generated using the following script:
#!/bin/sh
#
# Replace one string by another in all the kernel sources.
#
set -e
for file in `find * -name "*.c" -o -name "*.h"|xargs grep -l $1`; do
quilt add $file
sed -e "1,\$s/$1/$2/g" $file >/tmp/$$
mv /tmp/$$ $file
quilt refresh
done
The script was run like this
sh replace kmem_cache_t "struct kmem_cache"
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
SLAB_KERNEL is an alias of GFP_KERNEL.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* Rougly half of callers already do it by not checking return value
* Code in drivers/acpi/osl.c does the following to be sure:
(void)kmem_cache_destroy(cache);
* Those who check it printk something, however, slab_error already printed
the name of failed cache.
* XFS BUGs on failed kmem_cache_destroy which is not the decision
low-level filesystem driver should make. Converted to ignore.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The quota code plays interesting games with the lock ordering; to quote Jan:
| i_mutex of inode containing quota file is acquired after all other
| quota locks. i_mutex of all other inodes is acquired before quota
| locks. Quota code makes sure (by resetting inode operations and
| setting special flag on inode) that noone tries to enter quota code
| while holding i_mutex on a quota file...
The good news is that all of this special case i_mutex grabbing happens in the
(per filesystem) low level quota write function. For this special case we
need a new I_MUTEX_* nesting level, since this just entirely outside any of
the regular VFS locking rules for i_mutex. I trust Jan on his blue eyes that
this is not ever going to deadlock; and based on that the patch below is what
it takes to inform lockdep of these very interesting new locking rules.
The new locking rule for the I_MUTEX_QUOTA nesting level is that this is the
deepest possible level of nesting for i_mutex, and that this only should be
used in quota write (and possibly read) function of filesystems. This makes
the lock ordering of the I_MUTEX_* levels:
I_MUTEX_PARENT -> I_MUTEX_CHILD -> I_MUTEX_NORMAL -> I_MUTEX_QUOTA
Has no effect on non-lockdep kernels.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kara <jack@ucw.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
ufs super block contains some statistic about file systems, like amount of
directories, free blocks, inodes and so on.
UFS1 hold this information in one location and uses 32bit integers for such
information, UFS2 hold statistic in another location and uses 64bit integers.
There is transition variant, if UFS1 has type 44BSD and flags field in super
block has some special value this mean that we work with statistic like UFS2
does. and this also means that nobody care about old(UFS1) statistic.
So if start fsck against such file system, after usage linux ufs driver, it
found error: at now only UFS1 like statistic is updated.
This patch should fix this. Also it contains some minor cleanup: CodingSytle
and remove unused variables.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Super block of UFS usually has size >512, because of fragment size may be 512,
this cause some problems.
Currently, there are two methods to work with ufs super block:
1) split structure which describes ufs super blocks into structures with
size <=512
2) use one structure which describes ufs super block, and hope that array
of "buffer_head" which holds "super block", has such construction:
bh[n]->b_data + bh[n]->b_size == bh[n + 1]->b_data
The second variant may cause some problems in the future, and usage of two
variants cause unnecessary code duplication.
This patch remove the second variant. Also patch contains some CodingStyle
fixes.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
fs/ufs/super.c: In function `ufs_print_super_stuff':
fs/ufs/super.c:103: warning: unsigned int format, different type arg (arg 2) fs/ufs/super.c: In function `ufs2_print_super_stuff': fs/ufs/super.c:147: warning: unsigned int format, different type arg (arg 2) fs/ufs/super.c: In function `ufs_print_cylinder_stuff':
fs/ufs/super.c:175: warning: unsigned int format, different type arg (arg 2)
Cc: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Currently to turn on debug mode "user" has to edit ~10 files, to turn off he
has to do it again.
This patch introduce such changes:
1)turn on(off) debug messages via ".config"
2)remove unnecessary duplication of code
3)make "UFSD" macros more similar to function
4)fix some compiler warnings
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
There are two ugly macros in ufs code:
#define UCPI_UBH ((struct ufs_buffer_head *)ucpi)
#define USPI_UBH ((struct ufs_buffer_head *)uspi)
when uspi looks like
struct {
struct ufs_buffer_head ;
}
and USPI_UBH has some sence,
ucpi looks like
struct {
struct not_ufs_buffer_head;
}
To prevent bugs in future, this patch convert macros to inline function and
fix "ucpi" structure.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Give the statfs superblock operation a dentry pointer rather than a superblock
pointer.
This complements the get_sb() patch. That reduced the significance of
sb->s_root, allowing NFS to place a fake root there. However, NFS does
require a dentry to use as a target for the statfs operation. This permits
the root in the vfsmount to be used instead.
linux/mount.h has been added where necessary to make allyesconfig build
successfully.
Interest has also been expressed for use with the FUSE and XFS filesystems.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nathan Scott <nathans@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Extend the get_sb() filesystem operation to take an extra argument that
permits the VFS to pass in the target vfsmount that defines the mountpoint.
The filesystem is then required to manually set the superblock and root dentry
pointers. For most filesystems, this should be done with simple_set_mnt()
which will set the superblock pointer and then set the root dentry to the
superblock's s_root (as per the old default behaviour).
The get_sb() op now returns an integer as there's now no need to return the
superblock pointer.
This patch permits a superblock to be implicitly shared amongst several mount
points, such as can be done with NFS to avoid potential inode aliasing. In
such a case, simple_set_mnt() would not be called, and instead the mnt_root
and mnt_sb would be set directly.
The patch also makes the following changes:
(*) the get_sb_*() convenience functions in the core kernel now take a vfsmount
pointer argument and return an integer, so most filesystems have to change
very little.
(*) If one of the convenience function is not used, then get_sb() should
normally call simple_set_mnt() to instantiate the vfsmount. This will
always return 0, and so can be tail-called from get_sb().
(*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the
dcache upon superblock destruction rather than shrink_dcache_anon().
This is required because the superblock may now have multiple trees that
aren't actually bound to s_root, but that still need to be cleaned up. The
currently called functions assume that the whole tree is rooted at s_root,
and that anonymous dentries are not the roots of trees which results in
dentries being left unculled.
However, with the way NFS superblock sharing are currently set to be
implemented, these assumptions are violated: the root of the filesystem is
simply a dummy dentry and inode (the real inode for '/' may well be
inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries
with child trees.
[*] Anonymous until discovered from another tree.
(*) The documentation has been adjusted, including the additional bit of
changing ext2_* into foo_* in the documentation.
[akpm@osdl.org: convert ipath_fs, do other stuff]
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nathan Scott <nathans@sgi.com>
Cc: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Rewrap the overly long source code lines resulting from the previous
patch's addition of the slab cache flag SLAB_MEM_SPREAD. This patch
contains only formatting changes, and no function change.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Mark file system inode and similar slab caches subject to SLAB_MEM_SPREAD
memory spreading.
If a slab cache is marked SLAB_MEM_SPREAD, then anytime that a task that's
in a cpuset with the 'memory_spread_slab' option enabled goes to allocate
from such a slab cache, the allocations are spread evenly over all the
memory nodes (task->mems_allowed) allowed to that task, instead of favoring
allocation on the node local to the current cpu.
The following inode and similar caches are marked SLAB_MEM_SPREAD:
file cache
==== =====
fs/adfs/super.c adfs_inode_cache
fs/affs/super.c affs_inode_cache
fs/befs/linuxvfs.c befs_inode_cache
fs/bfs/inode.c bfs_inode_cache
fs/block_dev.c bdev_cache
fs/cifs/cifsfs.c cifs_inode_cache
fs/coda/inode.c coda_inode_cache
fs/dquot.c dquot
fs/efs/super.c efs_inode_cache
fs/ext2/super.c ext2_inode_cache
fs/ext2/xattr.c (fs/mbcache.c) ext2_xattr
fs/ext3/super.c ext3_inode_cache
fs/ext3/xattr.c (fs/mbcache.c) ext3_xattr
fs/fat/cache.c fat_cache
fs/fat/inode.c fat_inode_cache
fs/freevxfs/vxfs_super.c vxfs_inode
fs/hpfs/super.c hpfs_inode_cache
fs/isofs/inode.c isofs_inode_cache
fs/jffs/inode-v23.c jffs_fm
fs/jffs2/super.c jffs2_i
fs/jfs/super.c jfs_ip
fs/minix/inode.c minix_inode_cache
fs/ncpfs/inode.c ncp_inode_cache
fs/nfs/direct.c nfs_direct_cache
fs/nfs/inode.c nfs_inode_cache
fs/ntfs/super.c ntfs_big_inode_cache_name
fs/ntfs/super.c ntfs_inode_cache
fs/ocfs2/dlm/dlmfs.c dlmfs_inode_cache
fs/ocfs2/super.c ocfs2_inode_cache
fs/proc/inode.c proc_inode_cache
fs/qnx4/inode.c qnx4_inode_cache
fs/reiserfs/super.c reiser_inode_cache
fs/romfs/inode.c romfs_inode_cache
fs/smbfs/inode.c smb_inode_cache
fs/sysv/inode.c sysv_inode_cache
fs/udf/super.c udf_inode_cache
fs/ufs/super.c ufs_inode_cache
net/socket.c sock_inode_cache
net/sunrpc/rpc_pipe.c rpc_inode_cache
The choice of which slab caches to so mark was quite simple. I marked
those already marked SLAB_RECLAIM_ACCOUNT, except for fs/xfs, dentry_cache,
inode_cache, and buffer_head, which were marked in a previous patch. Even
though SLAB_RECLAIM_ACCOUNT is for a different purpose, it marks the same
potentially large file system i/o related slab caches as we need for memory
spreading.
Given that the rule now becomes "wherever you would have used a
SLAB_RECLAIM_ACCOUNT slab cache flag before (usually the inode cache), use
the SLAB_MEM_SPREAD flag too", this should be easy enough to maintain.
Future file system writers will just copy one of the existing file system
slab cache setups and tend to get it right without thinking.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
"rm" command, on file system with "ufs1" type cause system hang up. This
is, in fact, not so bad as it seems to be, because of after that in "kernel
control path" there are 3-4 places which may cause "oops".
So the first patch fix oopses, and the second patch fix "kernel hang up".
"oops" appears because of reading of group's summary info partly wrong, and
access to not first group's summary info cause "oops".
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Here is update of ufs cleanup patch, brought on by the recently fixed
ubh_get_usb_second() bug that made some ugly code rather painfully
obvious. It also includes
- fix compilation warnings which appears if debug mode turn on
- remove unnecessary duplication of code to support UFS2
I tested it on ufs1 and ufs2 file-systems.
Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch converts the inode semaphore to a mutex. I have tested it on
XFS and compiled as much as one can consider on an ia64. Anyway your
luck with it might be different.
Modified-by: Ingo Molnar <mingo@elte.hu>
(finished the conversion)
Signed-off-by: Jes Sorensen <jes@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This is the fs/ part of the big kfree cleanup patch.
Remove pointless checks for NULL prior to calling kfree() in fs/.
Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!