Changing CONFIG_LOCALVERSION rebuilds too much, for no apparent reason.
Use system_utsname for progress and debug header.
Signed-off-by: Olaf Hering <olh@suse.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
make udbg_init_uart set the ppc_md udbg methods.
Signed-off-by: Milton Miller <miltonm@bga.com>
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch moves power4_enable_pmcs() to arch/ppc64/kernel/pmc.c.
I've tested it on P5 LPAR and P4. It does what it used to.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Make firmware_has_feature() evaluate at compile time for the non pSeries
case and tidy up code where possible.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Create the firmware_has_feature() inline and move the firmware feature
stuff into its own header file.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The firmware_features field of struct cpu_spec should really be a separate
variable as the firmware features do not depend on the chip and the
bitmask is constructed independently. By removing it, we save 112 bytes
from the cpu_specs array and we access the bitmask directly instead of via
the cur_cpu_spec pointer.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
- separate out sleep logic in dedicated_idle, it was so far indented
that it got squashed against the right side of the screen.
- add runlatch support, looping on runlatch disable.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch fixes up iSeries, pSeries, pmac and maple to set the correct idle
function for each platform.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
dedicated_idle() and shared_idle() are only used by pSeries, so move them into
pSeries_setup.c
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch implements the kexec support for ppc64 platforms.
A couple of notes:
1) We copy the pages in virtual mode, using the full base kernel
and a statically allocated stack. At kexec_prepare time we
scan the pages and if any overlap our (0, _end[]) range we
return -ETXTBSY.
On PowerPC 64 systems running in LPAR (logical partitioning)
mode, only a small region of memory, referred to as the RMO,
can be accessed in real mode. Since Linux runs with only one
zone of memory in the memory allocator, and it can be orders of
magnitude more memory than the RMO, looping until we allocate
pages in the source region is not feasible. Copying in virtual
means we don't have to write a hash table generation and call
hypervisor to insert translations, instead we rely on the pinned
kernel linear mapping. The kernel already has move to linked
location built in, so there is no requirement to load it at 0.
If we want to load something other than a kernel, then a stub
can be written to copy a linear chunk in real mode.
2) The start entry point gets passed parameters from the kernel.
Slaves are started at a fixed address after copying code from
the entry point.
All CPUs get passed their firmware assigned physical id in r3
(most calling conventions use this register for the first
argument).
This is used to distinguish each CPU from all other CPUs.
Since firmware is not around, there is no other way to obtain
this information other than to pass it somewhere.
A single CPU, referred to here as the master and the one executing
the kexec call, branches to start with the address of start in r4.
While this can be calculated, we have to load it through a gpr to
branch to this point so defining the register this is contained
in is free. A stack of unspecified size is available at r1
(also common calling convention).
All remaining running CPUs are sent to start at absolute address
0x60 after copying the first 0x100 bytes from start to address 0.
This convention was chosen because it matches what the kernel
has been doing itself. (only gpr3 is defined).
Note: This is not quite the convention of the kexec bootblock v2
in the kernel. A stub has been written to convert between them,
and we may adjust the kernel in the future to allow this directly
without any stub.
3) Destination pages can be placed anywhere, even where they
would not be accessible in real mode. This will allow us to
place ram disks above the RMO if we choose.
Signed-off-by: Milton Miller <miltonm@bga.com>
Signed-off-by: R Sharada <sharada@in.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
For I/O DLPAR to work properly, the kernel needs to allow for dynamic
assignment of the irq field of the pci_dev structure upon dynamic bus
addition. This patch moves the assignment of that field from
pSeries_final_fixup() to pcibios_fixup_bus(), which enables dynamic
assignment for the children of a newly added bus.
Currently, pci_devs receive their irq numbers in one of two ways. The
irq line is either read at boot for all pci_devs, or read by the rpaphp
module at slot enable time. The latter is no longer sufficient for
DLPAR addition of slots that don't qualify as PCI-hotplug capable.
This solution handles the cases of boot and dynamic add.
Signed-off-by: John Rose <johnrose@austin.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The pSeries_progress function is called from some places in the rtas code,
which may also be used by non-pSeries platforms.
Though pSeries is currently the only platform type that implements
display-character, the code is actually generic enough to be part of
the rtas subsystem.
I hit a bug here because the generic rtas code tried calling ppc_md.progress,
which points to an __init function on most platforms.
We could also clear the ppc_md.progress pointer when freeing the init memory
to make it more explicit that ppc_md.progress must not be called after
bootup.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The rtc rtas functions are not pSeries specific but can
also be used by BPA and other SLOF based platforms
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
pSeries and maple have almost the same code for calibrate_decr,
and BPA would need yet another copy. Instead, I'm moving the
code to arch/ppc64/kernel/time.c.
Some of the related declarations were missing from header
files, so I'm moving those as well.
It makes sense to merge this with the pmac function of the
same name, so we end up having just one implemetation for
iSeries and one for Open Firmware based machines.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch fixes ppc64 __ioremap() so that it stops adding implicitely
_PAGE_GUARDED when the cache is not writeback, and instead, let the callers
provide the flag they want here. This allows things like framebuffers to
explicitely request a non-cacheable and non-guarded mapping which is more
efficient for that type of memory without side effects. The patch also
fixes all current callers to add _PAGE_GUARDED except btext, which is fine
without it.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!