Fix the I/O access macros so that they work with externally connected
devices accessed in little-endian mode over any bus width:
* Use a set of macros to define I/O port- and memory operations
borrowed from MIPS.
* Allow subarchitecture to specify address- and data-mangling
* Implement at32ap-specific port mangling (with build-time
configurable bus width. Only one bus width at a time supported
for now.)
* Rewrite iowriteN and friends to use write[bwl] and friends
(not the __raw counterparts.)
This has been tested using pata_pcmcia to access a CompactFlash card
connected to the EBI (16-bit bus width.)
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
* Use generic BUG() handling
* Remove some useless debug statements
* Use a common function _exception() to send signals or oops when
an exception can't be handled. This makes sure init doesn't
enter an infinite exception loop as well. Borrowed from powerpc.
* Add some basic exception tracing support to the page fault code.
* Rework dump_stack(), show_regs() and friends and move everything
into process.c
* Print information about configuration options and chip type when
oopsing
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Clean up the cpu identification code, using definitions from
<asm/sysreg.h> instead of hardcoded constants. Also, add a features
bitmap to struct avr32_cpuinfo to allow other code to make decisions
based upon what the running cpu is actually capable of.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
This patch puts the CPU in sleep 0 when doing nothing, idle. This will
turn of the CPU clock and thus save power. The CPU is waken again when
an interrupt occurs.
Signed-off-by: Hans-Christian Egtvedt <hcegtvedt@atmel.com>
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Due to limitation of the count-compare system timer (not able to
count when CPU is in sleep), the system timer had to be changed to
use a peripheral timer/counter.
The old COUNT-COMPARE code is still present in time.c as weak
functions. The new timer is added to the architecture directory.
This patch sets up TC0 as system timer The new timer has been tested
on AT32AP7000/ATSTK1000 at 100 Hz, 250 Hz, 300 Hz and 1000 Hz.
For more details about the timer/counter see the datasheet for
AT32AP700x available at
http://www.atmel.com/dyn/products/product_card.asp?part_id=3903
Signed-off-by: Hans-Christian Egtvedt <hcegtvedt@atmel.com>
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Complete the SMC configuration code by adding nwait and tdf
parameter. After this change, we support the same parameters as the
hardware.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
UBI (Latin: "where?") manages multiple logical volumes on a single
flash device, specifically supporting NAND flash devices. UBI provides
a flexible partitioning concept which still allows for wear-levelling
across the whole flash device.
In a sense, UBI may be compared to the Logical Volume Manager
(LVM). Whereas LVM maps logical sector numbers to physical HDD sector
numbers, UBI maps logical eraseblocks to physical eraseblocks.
More information may be found at
http://www.linux-mtd.infradead.org/doc/ubi.html
Partitioning/Re-partitioning
An UBI volume occupies a certain number of erase blocks. This is
limited by a configured maximum volume size, which could also be
viewed as the partition size. Each individual UBI volume's size can
be changed independently of the other UBI volumes, provided that the
sum of all volume sizes doesn't exceed a certain limit.
UBI supports dynamic volumes and static volumes. Static volumes are
read-only and their contents are protected by CRC check sums.
Bad eraseblocks handling
UBI transparently handles bad eraseblocks. When a physical
eraseblock becomes bad, it is substituted by a good physical
eraseblock, and the user does not even notice this.
Scrubbing
On a NAND flash bit flips can occur on any write operation,
sometimes also on read. If bit flips persist on the device, at first
they can still be corrected by ECC, but once they accumulate,
correction will become impossible. Thus it is best to actively scrub
the affected eraseblock, by first copying it to a free eraseblock
and then erasing the original. The UBI layer performs this type of
scrubbing under the covers, transparently to the UBI volume users.
Erase Counts
UBI maintains an erase count header per eraseblock. This frees
higher-level layers (like file systems) from doing this and allows
for centralized erase count management instead. The erase counts are
used by the wear-levelling algorithm in the UBI layer. The algorithm
itself is exchangeable.
Booting from NAND
For booting directly from NAND flash the hardware must at least be
capable of fetching and executing a small portion of the NAND
flash. Some NAND flash controllers have this kind of support. They
usually limit the window to a few kilobytes in erase block 0. This
"initial program loader" (IPL) must then contain sufficient logic to
load and execute the next boot phase.
Due to bad eraseblocks, which may be randomly scattered over the
flash device, it is problematic to store the "secondary program
loader" (SPL) statically. Also, due to bit-flips it may become
corrupted over time. UBI allows to solve this problem gracefully by
storing the SPL in a small static UBI volume.
UBI volumes vs. static partitions
UBI volumes are still very similar to static MTD partitions:
* both consist of eraseblocks (logical eraseblocks in case of UBI
volumes, and physical eraseblocks in case of static partitions;
* both support three basic operations - read, write, erase.
But UBI volumes have the following advantages over traditional
static MTD partitions:
* there are no eraseblock wear-leveling constraints in case of UBI
volumes, so the user should not care about this;
* there are no bit-flips and bad eraseblocks in case of UBI volumes.
So, UBI volumes may be considered as flash devices with relaxed
restrictions.
Where can it be found?
Documentation, kernel code and applications can be found in the MTD
gits.
What are the applications for?
The applications help to create binary flash images for two purposes: pfi
files (partial flash images) for in-system update of UBI volumes, and plain
binary images, with or without OOB data in case of NAND, for a manufacturing
step. Furthermore some tools are/and will be created that allow flash content
analysis after a system has crashed..
Who did UBI?
The original ideas, where UBI is based on, were developed by Andreas
Arnez, Frank Haverkamp and Thomas Gleixner. Josh W. Boyer and some others
were involved too. The implementation of the kernel layer was done by Artem
B. Bityutskiy. The user-space applications and tools were written by Oliver
Lohmann with contributions from Frank Haverkamp, Andreas Arnez, and Artem.
Joern Engel contributed a patch which modifies JFFS2 so that it can be run on
a UBI volume. Thomas Gleixner did modifications to the NAND layer. Alexander
Schmidt made some testing work as well as core functionality improvements.
Signed-off-by: Artem B. Bityutskiy <dedekind@linutronix.de>
Signed-off-by: Frank Haverkamp <haver@vnet.ibm.com>
This patch makes the wext bits in struct net_device depend on
CONFIG_WIRELESS_EXT.
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch cleans up the call paths from the core code into wext.
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Delete the old RxRPC code as it's now no longer used.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add an interface to the AF_RXRPC module so that the AFS filesystem module can
more easily make use of the services available. AFS still opens a socket but
then uses the action functions in lieu of sendmsg() and registers an intercept
functions to grab messages before they're queued on the socket Rx queue.
This permits AFS (or whatever) to:
(1) Avoid the overhead of using the recvmsg() call.
(2) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(3) Avoid calling request_key() at the point of issue of a call or opening of
a socket. This is done instead by AFS at the point of open(), unlink() or
other VFS operation and the key handed through.
(4) Request the use of something other than GFP_KERNEL to allocate memory.
Furthermore:
(*) The socket buffer markings used by RxRPC are made available for AFS so
that it can interpret the cooked RxRPC messages itself.
(*) rxgen (un)marshalling abort codes are made available.
The following documentation for the kernel interface is added to
Documentation/networking/rxrpc.txt:
=========================
AF_RXRPC KERNEL INTERFACE
=========================
The AF_RXRPC module also provides an interface for use by in-kernel utilities
such as the AFS filesystem. This permits such a utility to:
(1) Use different keys directly on individual client calls on one socket
rather than having to open a whole slew of sockets, one for each key it
might want to use.
(2) Avoid having RxRPC call request_key() at the point of issue of a call or
opening of a socket. Instead the utility is responsible for requesting a
key at the appropriate point. AFS, for instance, would do this during VFS
operations such as open() or unlink(). The key is then handed through
when the call is initiated.
(3) Request the use of something other than GFP_KERNEL to allocate memory.
(4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be
intercepted before they get put into the socket Rx queue and the socket
buffers manipulated directly.
To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket,
bind an addess as appropriate and listen if it's to be a server socket, but
then it passes this to the kernel interface functions.
The kernel interface functions are as follows:
(*) Begin a new client call.
struct rxrpc_call *
rxrpc_kernel_begin_call(struct socket *sock,
struct sockaddr_rxrpc *srx,
struct key *key,
unsigned long user_call_ID,
gfp_t gfp);
This allocates the infrastructure to make a new RxRPC call and assigns
call and connection numbers. The call will be made on the UDP port that
the socket is bound to. The call will go to the destination address of a
connected client socket unless an alternative is supplied (srx is
non-NULL).
If a key is supplied then this will be used to secure the call instead of
the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls
secured in this way will still share connections if at all possible.
The user_call_ID is equivalent to that supplied to sendmsg() in the
control data buffer. It is entirely feasible to use this to point to a
kernel data structure.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) End a client call.
void rxrpc_kernel_end_call(struct rxrpc_call *call);
This is used to end a previously begun call. The user_call_ID is expunged
from AF_RXRPC's knowledge and will not be seen again in association with
the specified call.
(*) Send data through a call.
int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg,
size_t len);
This is used to supply either the request part of a client call or the
reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the
data buffers to be used. msg_iov may not be NULL and must point
exclusively to in-kernel virtual addresses. msg.msg_flags may be given
MSG_MORE if there will be subsequent data sends for this call.
The msg must not specify a destination address, control data or any flags
other than MSG_MORE. len is the total amount of data to transmit.
(*) Abort a call.
void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code);
This is used to abort a call if it's still in an abortable state. The
abort code specified will be placed in the ABORT message sent.
(*) Intercept received RxRPC messages.
typedef void (*rxrpc_interceptor_t)(struct sock *sk,
unsigned long user_call_ID,
struct sk_buff *skb);
void
rxrpc_kernel_intercept_rx_messages(struct socket *sock,
rxrpc_interceptor_t interceptor);
This installs an interceptor function on the specified AF_RXRPC socket.
All messages that would otherwise wind up in the socket's Rx queue are
then diverted to this function. Note that care must be taken to process
the messages in the right order to maintain DATA message sequentiality.
The interceptor function itself is provided with the address of the socket
and handling the incoming message, the ID assigned by the kernel utility
to the call and the socket buffer containing the message.
The skb->mark field indicates the type of message:
MARK MEANING
=============================== =======================================
RXRPC_SKB_MARK_DATA Data message
RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call
RXRPC_SKB_MARK_BUSY Client call rejected as server busy
RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer
RXRPC_SKB_MARK_NET_ERROR Network error detected
RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered
RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance
The remote abort message can be probed with rxrpc_kernel_get_abort_code().
The two error messages can be probed with rxrpc_kernel_get_error_number().
A new call can be accepted with rxrpc_kernel_accept_call().
Data messages can have their contents extracted with the usual bunch of
socket buffer manipulation functions. A data message can be determined to
be the last one in a sequence with rxrpc_kernel_is_data_last(). When a
data message has been used up, rxrpc_kernel_data_delivered() should be
called on it..
Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose
of. It is possible to get extra refs on all types of message for later
freeing, but this may pin the state of a call until the message is finally
freed.
(*) Accept an incoming call.
struct rxrpc_call *
rxrpc_kernel_accept_call(struct socket *sock,
unsigned long user_call_ID);
This is used to accept an incoming call and to assign it a call ID. This
function is similar to rxrpc_kernel_begin_call() and calls accepted must
be ended in the same way.
If this function is successful, an opaque reference to the RxRPC call is
returned. The caller now holds a reference on this and it must be
properly ended.
(*) Reject an incoming call.
int rxrpc_kernel_reject_call(struct socket *sock);
This is used to reject the first incoming call on the socket's queue with
a BUSY message. -ENODATA is returned if there were no incoming calls.
Other errors may be returned if the call had been aborted (-ECONNABORTED)
or had timed out (-ETIME).
(*) Record the delivery of a data message and free it.
void rxrpc_kernel_data_delivered(struct sk_buff *skb);
This is used to record a data message as having been delivered and to
update the ACK state for the call. The socket buffer will be freed.
(*) Free a message.
void rxrpc_kernel_free_skb(struct sk_buff *skb);
This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC
socket.
(*) Determine if a data message is the last one on a call.
bool rxrpc_kernel_is_data_last(struct sk_buff *skb);
This is used to determine if a socket buffer holds the last data message
to be received for a call (true will be returned if it does, false
if not).
The data message will be part of the reply on a client call and the
request on an incoming call. In the latter case there will be more
messages, but in the former case there will not.
(*) Get the abort code from an abort message.
u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb);
This is used to extract the abort code from a remote abort message.
(*) Get the error number from a local or network error message.
int rxrpc_kernel_get_error_number(struct sk_buff *skb);
This is used to extract the error number from a message indicating either
a local error occurred or a network error occurred.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Provide AF_RXRPC sockets that can be used to talk to AFS servers, or serve
answers to AFS clients. KerberosIV security is fully supported. The patches
and some example test programs can be found in:
http://people.redhat.com/~dhowells/rxrpc/
This will eventually replace the old implementation of kernel-only RxRPC
currently resident in net/rxrpc/.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Export the keyring key type definition and document its availability.
Add alternative types into the key's type_data union to make it more useful.
Not all users necessarily want to use it as a list_head (AF_RXRPC doesn't, for
example), so make it clear that it can be used in other ways.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
del_timer_sync() buys nothing for cancel_delayed_work(), but it is less
efficient since it locks the timer unconditionally, and may wait for the
completion of the delayed_work_timer_fn().
cancel_delayed_work() == 0 means:
before this patch:
work->func may still be running or queued
after this patch:
work->func may still be running or queued, or
delayed_work_timer_fn->__queue_work() in progress.
The latter doesn't differ from the caller's POV,
delayed_work_timer_fn() is called with _PENDING
bit set.
cancel_delayed_work() == 1 with this patch adds a new possibility:
delayed_work->work was cancelled, but delayed_work_timer_fn
is still running (this is only possible for the re-arming
works on single-threaded workqueue).
In this case the timer was re-started by work->func(), nobody
else can do this. This in turn means that delayed_work_timer_fn
has already passed __queue_work() (and wont't touch delayed_work)
because nobody else can queue delayed_work->work.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
do_sync_file_range() accepts a file * from which it takes an address_space to
sync. Abstract out the bulk of the function into do_sync_mapping_range()
which takes the address_space directly. This way callers who want to sync an
address_space directly can take advantage of the functionality provided.
do_sync_file_range() is preserved as a small wrapper around
do_sync_mapping_range().
Ocfs2 in particular would like to use this to initiate a sync of a specific
inode range during truncate, where a file * may not be available.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This starts bringing the PowerPC and Sparc64 implemetations back closer
together.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
__get_phys is only called from init.c as is prom_virt_to_phys(),
__get_iospace() is not called at all, and sun4u_get_pte() is largely
misnamed.
Privatize the implementation and helper functions of
sun4u_get_phys() to mm/init.c, and rename to
kvaddr_to_paddr().
The only used of this thing is flush_icache_range(), and thus
things can be considerably further simplified. For example,
we should only see module or PAGE_OFFSET kernel addresses here,
so we don't need the OBP firmware range handling at all.
Signed-off-by: David S. Miller <davem@davemloft.net>
Decrease the SECTION_SIZE_BITS --> MAX_PHYSADDR_BITS
range a little bit.
The cost of going to SPARSEMEM_STATIC becomes 8K of BSS space, and in
return we save a pointer dereferences on every page struct lookup.
Even better we hit the main kernel image for the base address which is
in a hugepage locked TLB entry.
Signed-off-by: David S. Miller <davem@davemloft.net>
We don't do the "Simba APB is a PBM" bogosity for Sabre
controllers any longer, so this pbms_same_domain thing
is no longer necessary.
Signed-off-by: David S. Miller <davem@davemloft.net>
The only user was bus_dvma_to_mem() which is no longer used
by any driver, so kill that, and the export of pci_memspace_mask.
The only user now is the PCI mmap support code.
Signed-off-by: David S. Miller <davem@davemloft.net>
Almost entirely taken from the 64-bit PowerPC PCI code.
This allowed to eliminate a ton of cruft from the sparc64
PCI layer.
Signed-off-by: David S. Miller <davem@davemloft.net>
Also, do not try to compute resources by hand, instead use
the pre-computed ones in the of_device.
Signed-off-by: David S. Miller <davem@davemloft.net>
This starts bringing the PowerPC and Sparc implemetations back closer
together.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Finally, we actually change the functions themselves.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
I'd like to thank John Stul and others for helping
me along the way.
A lot of cleanups fell out of this. For example, the get_compare()
tick_op was totally unused, so was deleted. And the most often used
tick_op members were grouped together for cache-friendlyness.
The sparc64 TSC is given to the kernel as a one-shot timer.
tick_ops->init_timer() simply turns off the privileged bit in
the tick register (when possible), and disables the interrupt
by setting bit 63 in the compare register. The ->disable_irq()
op also sets this bit.
tick_ops->add_compare() is changed to:
1) Add the given delta to "tick" not to "compare"
2) Return a boolean which, if true, means that the tick
value read after writing the compare value was found
to have incremented past the initial tick value. This
mirrors logic used in the HPET driver's ->next_event()
method.
Each tick_ops implementation also now provides a name string.
And we feed this into the clocksource and clockevents layers.
Signed-off-by: David S. Miller <davem@davemloft.net>
Things were scattered all over the place, split between
SMP and non-SMP.
Unify it all so that dyntick support is easier to add.
Signed-off-by: David S. Miller <davem@davemloft.net>
Delete the unreferenced header file include/linux/if_wanpipe_common.h,
as well as the reference to it in the Doc file.
Signed-off-by: Robert P. J. Day <rpjday@mindspring.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Delete the unreferenced header file include/linux/sdla_fr.h.
Signed-off-by: Robert P. J. Day <rpjday@mindspring.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
- make the following needlessly global variables static:
- core/rtnetlink.c: struct rtnl_msg_handlers[]
- netfilter/nf_conntrack_proto.c: struct nf_ct_protos[]
- make the following needlessly global functions static:
- core/rtnetlink.c: rtnl_dump_all()
- netlink/af_netlink.c: netlink_queue_skip()
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
On a system with a lot of SAs, counting SAD entries chews useful
CPU time since you need to dump the whole SAD to user space;
i.e something like ip xfrm state ls | grep -i src | wc -l
I have seen taking literally minutes on a 40K SAs when the system
is swapping.
With this patch, some of the SAD info (that was already being tracked)
is exposed to user space. i.e you do:
ip xfrm state count
And you get the count; you can also pass -s to the command line and
get the hash info.
Signed-off-by: Jamal Hadi Salim <hadi@cyberus.ca>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pause frames should never make it out of the network device into
the stack. But if a device was misconfigured, it might happen.
So drop pause frames in bridge.
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch moves the non-proc SNMP code into addrconf.c and reuses
IPv4 SNMP code where applicable.
As a result we can skip proc.o if /proc is disabled.
Note that I've made a number of functions static since they're only
used by addrconf.c for now. If they ever get used elsewhere we can
always remove the static.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch moves the SNMP code shared between IPv4/IPv6 from proc.c
into net/ipv4/af_inet.c. This makes sense because these functions
aren't specific to /proc.
As a result we can again skip proc.o if /proc is disabled.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
To avoid raw division, use ktime_to_timeval() to get usec.
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds a comment that was part of my rtnl locking patch for
cfg80211 but which I forgot for the merge.
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Do some simple changes to make congestion control API faster/cleaner.
* use ktime_t rather than timeval
* merge rtt sampling into existing ack callback
this means one indirect call versus two per ack.
* use flags bits to store options/settings
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
As scheduled, this patch removes the pointless wext over netlink code.
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch creates the core cfg80211 code along with some sysfs bits.
This is a stripped down version to allow mac80211 to function, but
doesn't include any configuration yet except for creating and removing
virtual interfaces.
This patch includes the nl80211 header file but it only contains the
interface types which the cfg80211 interface for creating virtual
interfaces relies on.
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Hint from David Miller <davem@davemloft.net>.
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Because stats pointer may not be aligned for u64, use memcpy
to fill u64 values.
Issue reported by David Miller <davem@davemloft.net>.
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
It is far too large to be an inline and not in any hot paths.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
The function is quite big and has several call sites and nothing
to collapse by compiler optimization on inlining.
Besides it's nicer to read in a in .c file.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Getting warnings becuase skb_store_bits has skb as constant,
but the function overwrites it. Looks like const was on the
wrong side.
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a packet socket option to allow the orig_dev index to be returned
to userspace when passing traffic through a decapsulated device, such
as the bonding driver.
This is very useful for layer 2 traffic being able to report which
physical device actually received the traffic, instead of having the
encapsulating device hide that information.
The new option is called PACKET_ORIGDEV.
Signed-off-by: Peter P. Waskiewicz Jr. <peter.p.waskiewicz.jr@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This also fixes memory leak in error path.
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add IP(V6)_PMTUDISC_PROBE value for IP(V6)_MTU_DISCOVER. This option forces
us not to fragment, but does not make use of the kernel path MTU discovery.
That is, it allows for user-mode MTU probing (or, packetization-layer path
MTU discovery). This is particularly useful for diagnostic utilities, like
traceroute/tracepath.
Signed-off-by: John Heffner <jheffner@psc.edu>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since we're now holding the rtnl during the entire dump operation, we
can remove qdisc_tree_lock, whose only purpose is to protect dump
callbacks from concurrent changes to the qdisc tree.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Switch cb_lock to mutex and allow netlink kernel users to override it
with a subsystem specific mutex for consistent locking in dump callbacks.
All netlink_dump_start users have been audited not to rely on any
side-effects of the previously used spinlock.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
The attached patch adds gratuitous arp filtering, more precisely: it
allows checking that the IPv4 source address matches the IPv4
destination address inside the ARP header. It also adds a check for the
hardware address type when matching MAC addresses (nothing critical,
just for better consistency).
Signed-off-by: Bart De Schuymer <bdschuym@pandora.be>
Acked-by: Carl-Daniel Hailfinger <c-d.hailfinger.devel.2006@gmx.net>
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
The attached patch by Michael Milner adds support for using iptables and
ip6tables on bridged traffic encapsulated in ppoe frames, similar to
what's already supported for vlan.
Signed-off-by: Michael Milner <milner@blissisland.ca>
Signed-off-by: Bart De Schuymer <bdschuym@pandora.be>
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
This fills in missing documentation for dccp_sock fields.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Change the bridging hook to be simple function with return value
rather than modifying the skb argument. This could generate better
code and is cleaner.
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
When a transmitted packet is looped back directly, CHECKSUM_PARTIAL
maps to the semantics of CHECKSUM_UNNECESSARY. Therefore we should
treat it as such in the stack.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
The skb transport pointer is currently used to specify the start
of the checksum region for transmit checksum offload. Unfortunately,
the same pointer is also used during receive side processing.
This creates a problem when we want to retransmit a received
packet with partial checksums since the skb transport pointer
would be overwritten.
This patch solves this problem by creating a new 16-bit csum_start
offset value to replace the skb transport header for the purpose
of checksums. This offset is calculated from skb->head so that
it does not have to change when skb->data changes.
No extra space is required since csum_offset itself fits within
a 16-bit word so we can use the other 16 bits for csum_start.
For backwards compatibility, just before we push a packet with
partial checksums off into the device driver, we set the skb
transport header to what it would have been under the old scheme.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Replace the probing based MTU estimation, which usually takes 2-3 iterations
to find a fitting value and may underestimate the MTU, by an exact calculation.
Also fix underestimation of the XFRM trailer_len, which causes unnecessary
reallocations.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
When looking up route for destination with rules with
source address restrictions, we may need to find a source
address for the traffic if not given.
Based on patch from Noriaki TAKAMIYA <takamiya@po.ntts.co.jp>.
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Move generic skbuff stuff from XFRM code to generic code so that
AF_RXRPC can use it too.
The kdoc comments I've attached to the functions needs to be checked
by whoever wrote them as I had to make some guesses about the workings
of these functions.
Signed-off-By: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
To clearly state the intent of copying to linear sk_buffs, _offset being a
overly long variant but interesting for the sake of saving some bytes.
Signed-off-by: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Network drivers which keep stats allocate their own stats structure
then write a get_stats() function to return them. It would be nice if
this were done by default.
1) Add a new "stats" field to "struct net_device".
2) Add a new feature field to say "this driver uses the internal one"
3) Have a default "get_stats" which returns NULL if that feature not set.
4) Change callers to check result of get_stats call for NULL, not if
->get_stats is set.
This should not break backwards compatibility with older drivers, yet
allow modern drivers to shed some boilerplate code.
Lightly tested: works for a modified lguest network driver.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
To clearly state the intent of copying from linear sk_buffs, _offset being a
overly long variant but interesting for the sake of saving some bytes.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
For consistency with other skb data accessors, reducing the number of direct
accesses to skb->data.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
The results of FIB rules lookups are cached in the routing cache
except for IPv6 as no such cache exists. So far, it was the
responsibility of the user to flush the cache after modifying any
rules. This lead to many false bug reports due to misunderstanding
of this concept.
This patch automatically flushes the route cache after inserting
or deleting a rule.
Thanks to Muli Ben-Yehuda <muli@il.ibm.com> for catching a bug
in the previous patch.
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
Right now Xen has a horrible hack that lets it forward packets with
partial checksums. One of the reasons that CHECKSUM_PARTIAL and
CHECKSUM_COMPLETE were added is so that we can get rid of this hack
(where it creates two extra bits in the skbuff to essentially mirror
ip_summed without being destroyed by the forwarding code).
I had forgotten that I've already gone through all the deivce drivers
last time around to make sure that they're looking at ip_summed ==
CHECKSUM_PARTIAL rather than ip_summed != 0 on transmit. In any case,
I've now done that again so it should definitely be safe.
Unfortunately nobody has yet added any code to update CHECKSUM_COMPLETE
values on forward so we I'm setting that to CHECKSUM_NONE. This should
be safe to remove for bridging but I'd like to check that code path
first.
So here is the patch that lets us get rid of the hack by preserving
ip_summed (mostly) on forwarded packets.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
The use of nop rules simplifies the usage of goto rules
and adds more flexibility as they allow targets to remain
while the actual content of the branches can change easly.
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
Rules which match against device names in their selector can
remain while the device itself disappears, in fact the device
doesn't have to present when the rule is added in the first
place. The device name is resolved by trying when the rule is
added and later by listening to NETDEV_REGISTER/UNREGISTER
notifications.
This patch adds the flag FIB_RULE_DEV_DETACHED which is set
towards userspace when a rule contains a device match which
is unresolved at the moment. This eases spotting the reason
why certain rules seem not to function properly.
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds a new rule action FR_ACT_GOTO which allows
to skip a set of rules by jumping to another rule. The rule
to jump to is specified via the FRA_GOTO attribute which
carries a rule preference.
Referring to a rule which doesn't exists is explicitely allowed.
Such goto rules are marked with the flag FIB_RULE_UNRESOLVED
and will act like a rule with a non-matching selector. The rule
will become functional as soon as its target is present.
The goto action enables performance optimizations by reducing
the average number of rules that have to be passed per lookup.
Example:
0: from all lookup local
40: not from all to 192.168.23.128 goto 32766
41: from all fwmark 0xa blackhole
42: from all fwmark 0xff blackhole
32766: from all lookup main
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
The days are gone when this was not an issue, there are folks out
there with huge bot networks that can be used to attack the
established hash tables on remote systems.
So just like the routing cache and connection tracking
hash, use Jenkins hash with random secret input.
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch introduces a new NLA_BINARY attribute policy type with the
verification of simply checking the maximum length of the payload.
It also fixes a small typo in the example.
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
As stated in the sctp socket api draft:
sac_info: variable
If the sac_state is SCTP_COMM_LOST and an ABORT chunk was received
for this association, sac_info[] contains the complete ABORT chunk as
defined in the SCTP specification RFC2960 [RFC2960] section 3.3.7.
We now save received ABORT chunks into the sac_info field and pass that
to the user.
Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Parameters only take effect when a corresponding flag bit is set
and a value is specified. This means we need to check the flags
in addition to checking for non-zero value.
Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This option induces partial delivery to run as soon
as the specified amount of data has been accumulated on
the association. However, we give preference to fully
reassembled messages over PD messages. In any case,
window and buffer is freed up.
Signed-off-by: Vlad Yasevich <vladislav.yasevich@.hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This option was introduced in draft-ietf-tsvwg-sctpsocket-13. It
prevents head-of-line blocking in the case of one-to-many endpoint.
Applications enabling this option really must enable SCTP_SNDRCV event
so that they would know where the data belongs. Based on an
earlier patch by Ivan Skytte Jørgensen.
Additionally, this functionality now permits multiple associations
on the same endpoint to enter Partial Delivery. Applications should
be extra careful, when using this functionality, to track EOR indicators.
Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Uninline tcf_destroy and add a helper function to destroy an entire filter
chain.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>