There's no need for these functions to be accessed from outside of xen/smp.c
Signed-off-by: Alex Nixon <alex.nixon@citrix.com>
Acked-by: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Note the changes from 2.6.18-xen CPU hotplugging:
A vcpu_down request from the remote admin via Xenbus both hotunplugs the
CPU, and disables it by removing it from the cpu_present map, and removing
its entry in /sys.
A vcpu_up request from the remote admin only re-enables the CPU, and does
not immediately bring the CPU up. A udev event is emitted, which can be
caught by the user if he wishes to automatically re-up CPUs when available,
or implement a more complex policy.
Signed-off-by: Alex Nixon <alex.nixon@citrix.com>
Acked-by: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
ftrace requires certain low-level code, like spinlocks and timestamps,
to be compiled without -pg in order to avoid infinite recursion. This
patch splits out the core paravirt spinlocks and the Xen spinlocks
into separate files which can be compiled without -pg.
Also do xen/time.c while we're about it. As a result, we can now use
ftrace within a Xen domain.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'cpus4096-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (31 commits)
NR_CPUS: Replace NR_CPUS in speedstep-centrino.c
cpumask: Provide a generic set of CPUMASK_ALLOC macros, FIXUP
NR_CPUS: Replace NR_CPUS in cpufreq userspace routines
NR_CPUS: Replace per_cpu(..., smp_processor_id()) with __get_cpu_var
NR_CPUS: Replace NR_CPUS in arch/x86/kernel/genapic_flat_64.c
NR_CPUS: Replace NR_CPUS in arch/x86/kernel/genx2apic_uv_x.c
NR_CPUS: Replace NR_CPUS in arch/x86/kernel/cpu/proc.c
NR_CPUS: Replace NR_CPUS in arch/x86/kernel/cpu/mcheck/mce_64.c
cpumask: Optimize cpumask_of_cpu in lib/smp_processor_id.c, fix
cpumask: Use optimized CPUMASK_ALLOC macros in the centrino_target
cpumask: Provide a generic set of CPUMASK_ALLOC macros
cpumask: Optimize cpumask_of_cpu in lib/smp_processor_id.c
cpumask: Optimize cpumask_of_cpu in kernel/time/tick-common.c
cpumask: Optimize cpumask_of_cpu in drivers/misc/sgi-xp/xpc_main.c
cpumask: Optimize cpumask_of_cpu in arch/x86/kernel/ldt.c
cpumask: Optimize cpumask_of_cpu in arch/x86/kernel/io_apic_64.c
cpumask: Replace cpumask_of_cpu with cpumask_of_cpu_ptr
Revert "cpumask: introduce new APIs"
cpumask: make for_each_cpu_mask a bit smaller
net: Pass reference to cpumask variable in net/sunrpc/svc.c
...
Fix up trivial conflicts in drivers/cpufreq/cpufreq.c manually
The standard ticket spinlocks are very expensive in a virtual
environment, because their performance depends on Xen's scheduler
giving vcpus time in the order that they're supposed to take the
spinlock.
This implements a Xen-specific spinlock, which should be much more
efficient.
The fast-path is essentially the old Linux-x86 locks, using a single
lock byte. The locker decrements the byte; if the result is 0, then
they have the lock. If the lock is negative, then locker must spin
until the lock is positive again.
When there's contention, the locker spin for 2^16[*] iterations waiting
to get the lock. If it fails to get the lock in that time, it adds
itself to the contention count in the lock and blocks on a per-cpu
event channel.
When unlocking the spinlock, the locker looks to see if there's anyone
blocked waiting for the lock by checking for a non-zero waiter count.
If there's a waiter, it traverses the per-cpu "lock_spinners"
variable, which contains which lock each CPU is waiting on. It picks
one CPU waiting on the lock and sends it an event to wake it up.
This allows efficient fast-path spinlock operation, while allowing
spinning vcpus to give up their processor time while waiting for a
contended lock.
[*] 2^16 iterations is threshold at which 98% locks have been taken
according to Thomas Friebel's Xen Summit talk "Preventing Guests from
Spinning Around". Therefore, we'd expect the lock and unlock slow
paths will only be entered 2% of the time.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <clameter@linux-foundation.org>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: Virtualization <virtualization@lists.linux-foundation.org>
Cc: Xen devel <xen-devel@lists.xensource.com>
Cc: Thomas Friebel <thomas.friebel@amd.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Switch to using the lock-byte spinlock implementation, to avoid the
worst of the performance hit from ticket locks.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <clameter@linux-foundation.org>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: Virtualization <virtualization@lists.linux-foundation.org>
Cc: Xen devel <xen-devel@lists.xensource.com>
Cc: Thomas Friebel <thomas.friebel@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We set up entrypoints for syscall and sysenter. sysenter is only used
for 32-bit compat processes, whereas syscall can be used in by both 32
and 64-bit processes.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Stephen Tweedie <sct@redhat.com>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Someone's got to do it.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Stephen Tweedie <sct@redhat.com>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
A number of random changes to make xen/smp.c compile in 64-bit mode.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>a
Cc: Stephen Tweedie <sct@redhat.com>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Move all the smp_ops setup into smp.c, allowing a lot of things to
become static.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Stephen Tweedie <sct@redhat.com>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It's never used and the comments refer to nonatomic and retry
interchangably. So get rid of it.
Acked-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This converts x86, x86-64, and xen to use the new helpers for
smp_call_function() and friends, and adds support for
smp_call_function_single().
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This patch implements Xen save/restore and migration.
Saving is triggered via xenbus, which is polled in
drivers/xen/manage.c. When a suspend request comes in, the kernel
prepares itself for saving by:
1 - Freeze all processes. This is primarily to prevent any
partially-completed pagetable updates from confusing the suspend
process. If CONFIG_PREEMPT isn't defined, then this isn't necessary.
2 - Suspend xenbus and other devices
3 - Stop_machine, to make sure all the other vcpus are quiescent. The
Xen tools require the domain to run its save off vcpu0.
4 - Within the stop_machine state, it pins any unpinned pgds (under
construction or destruction), performs canonicalizes various other
pieces of state (mostly converting mfns to pfns), and finally
5 - Suspend the domain
Restore reverses the steps used to save the domain, ending when all
the frozen processes are thawed.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Make sure resched interrupts appear in /proc/interrupts in the proper
place.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Change references from for_each_cpu_mask to for_each_cpu_mask_nr
where appropriate
Reviewed-by: Paul Jackson <pj@sgi.com>
Reviewed-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
commit 2d474871e2fb092eb46a0930aba5442e10eb96cc
Author: Mike Travis <travis@sgi.com>
Date: Mon May 12 21:21:13 2008 +0200
Xen supports the notion of a debug interrupt which can be triggered
from the console. For now this is implemented to show pending events,
masks and each CPU's pending event set.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
64-bit Xen supports sysenter for 32-bit guests, so support its
use. (sysenter is faster than int $0x80 in 32-on-64.)
sysexit is still not supported, so we fake it up using iret.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
xen does not use the global cpu_initialized mask, but rather,
a specific one. So we change its name so it won't conflict with the upcoming
movement of cpu_initialized_mask from smp_64.h to smp_32.h.
Signed-off-by: Glauber Costa <gcosta@redhat.com>
CC: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This changes size-specific register names (eip/rip, esp/rsp, etc.) to
generic names in the thread and tss structures.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
'for_each_possible_cpu(i)' when there's a _remote possibility_ of
dereferencing a non-allocated per_cpu variable involved.
All files except mm/vmstat.c are x86 arch.
Thanks to pageexec@freemail.hu for pointing this out.
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: <pageexec@freemail.hu>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add missing IRQs and IRQ descriptions to /proc/interrupts.
/proc/interrupts is most useful when it displays every IRQ vector in use by
the system, not just those somebody thought would be interesting.
This patch inserts the following vector displays to the i386 and x86_64
platforms, as appropriate:
rescheduling interrupts
TLB flush interrupts
function call interrupts
thermal event interrupts
threshold interrupts
spurious interrupts
A threshold interrupt occurs when ECC memory correction is occuring at too
high a frequency. Thresholds are used by the ECC hardware as occasional
ECC failures are part of normal operation, but long sequences of ECC
failures usually indicate a memory chip that is about to fail.
Thermal event interrupts occur when a temperature threshold has been
exceeded for some CPU chip. IIRC, a thermal interrupt is also generated
when the temperature drops back to a normal level.
A spurious interrupt is an interrupt that was raised then lowered by the
device before it could be fully processed by the APIC. Hence the apic sees
the interrupt but does not know what device it came from. For this case
the APIC hardware will assume a vector of 0xff.
Rescheduling, call, and TLB flush interrupts are sent from one CPU to
another per the needs of the OS. Typically, their statistics would be used
to discover if an interrupt flood of the given type has been occuring.
AK: merged v2 and v4 which had some more tweaks
AK: replace Local interrupts with Local timer interrupts
AK: Fixed description of interrupt types.
[ tglx: arch/x86 adaptation ]
[ mingo: small cleanup ]
Signed-off-by: Joe Korty <joe.korty@ccur.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Tim Hockin <thockin@hockin.org>
Cc: Andi Kleen <ak@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* 'xen-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/jeremy/xen:
xfs: eagerly remove vmap mappings to avoid upsetting Xen
xen: add some debug output for failed multicalls
xen: fix incorrect vcpu_register_vcpu_info hypercall argument
xen: ask the hypervisor how much space it needs reserved
xen: lock pte pages while pinning/unpinning
xen: deal with stale cr3 values when unpinning pagetables
xen: add batch completion callbacks
xen: yield to IPI target if necessary
Clean up duplicate includes in arch/i386/xen/
remove dead code in pgtable_cache_init
paravirt: clean up lazy mode handling
paravirt: refactor struct paravirt_ops into smaller pv_*_ops
Convert cpu_sibling_map from a static array sized by NR_CPUS to a per_cpu
variable. This saves sizeof(cpumask_t) * NR unused cpus. Access is mostly
from startup and CPU HOTPLUG functions.
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is from an earlier message from 'Christoph Lameter':
cpu_core_map is currently an array defined using NR_CPUS. This means that
we overallocate since we will rarely really use maximum configured cpu.
If we put the cpu_core_map into the per cpu area then it will be allocated
for each processor as it comes online.
This means that the core map cannot be accessed until the per cpu area
has been allocated. Xen does a weird thing here looping over all processors
and zeroing the masks that are not yet allocated and that will be zeroed
when they are allocated. I commented the code out.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>