The btrfs attr patches unconditionally inherited the inode flags field
without honoring nodatacow and nodatasum. This fix makes sure
we properly record the nodatacow/sum mount options in new inodes.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The new backref format has restriction on type of backref item. If a tree
block isn't referenced by its owner tree, full backrefs must be used for the
pointers in it. When a tree block loses its owner tree's reference, backrefs
for the pointers in it should be updated to full backrefs. Current
btrfs_drop_snapshot misses the code that updates backrefs, so it's unsafe for
general use.
This patch adds backrefs update code to btrfs_drop_snapshot. It isn't a
problem in the restricted form btrfs_drop_snapshot is used today, but for
general snapshot deletion this update is required.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Using Eric Sandeen's xfstest for fallocate, you can easily trigger a ENOSPC
panic on btrfs. This is because we do not account for data we may use when
doing the fallocate. This patch fixes the problem by properly reserving space,
and then just freeing it when we are done. The reservation stuff was made with
delalloc in mind, so its a little crude for this case, but it keeps the box
from panicing.
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
commit_fs_roots skips updating root items for fs trees that aren't modified.
This is unsafe now that relocation code modifies root item's last_snapshot
field without modifying corresponding fs tree.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
During tree log replay, we read in the tree log roots,
process them and then free them. A recent change
takes an extra reference on the root node of the tree
when the root is read in, and stores that reference
in root->commit_root.
This reference was not being freed, leaving us with
one buffer pinned in ram for each subvol with
a tree log root after a crash.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
lookup_inline_extent_backref only checks for duplicate backref for data
extents. It assumes backrefs for tree block never conflict.
This patch makes lookup_inline_extent_backref check for duplicate backrefs
for both data and tree block, so that we can detect potential bug earlier.
This is a safety check, strictly speaking it is not required.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch fixes a bug which may result race condition
between btrfs_start_workers() and worker_loop().
btrfs_start_workers() executed in a parent thread writes
on workers->worker and worker_loop() in a child thread
reads workers->worker. However, there is no synchronization
enforcing the order of two operations.
This patch makes btrfs_start_workers() fill workers->worker
before it starts a child thread with worker_loop()
Signed-off-by: Chris Mason <chris.mason@oracle.com>
write_dev_supers is called in sequence. First is it called with wait == 0,
which starts IO on all of the super blocks for a given device. Then it is
called with wait == 1 to make sure they all reach the disk.
It doesn't currently pin the buffers between the two calls, and it also
assumes the buffers won't go away between the two calls, leading to
an oops if the VM manages to free the buffers in the middle of the sync.
This fixes that assumption and updates the code to return an error if things
are not up to date when the wait == 1 run is done.
Signed-off-by: Hisashi Hifumi <hifumi.hisashi@oss.ntt.co.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
On multi-device filesystems, btrfs writes supers to all of the devices
before considering a sync complete. There wasn't any additional
locking between super writeout and the device list management code
because device management was done inside a transaction and
super writeout only happened with no transation writers running.
With the btrfs fsync log and other async transaction updates, this
has been racey for some time. This adds a mutex to protect
the device list. The existing volume mutex could not be reused due to
transaction lock ordering requirements.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
... otherwise generic_permission() will allow *anything* for all
files you don't own and that have some group permissions.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
In btrfs, fdatasync and fsync are identical, but
fdatasync should skip committing transaction when
inode->i_state is set just I_DIRTY_SYNC and this indicates
only atime or/and mtime updates.
Following patch improves fdatasync throughput.
--file-block-size=4K --file-total-size=16G --file-test-mode=rndwr
--file-fsync-mode=fdatasync run
Results:
-2.6.30-rc8
Test execution summary:
total time: 1980.6540s
total number of events: 10001
total time taken by event execution: 1192.9804
per-request statistics:
min: 0.0000s
avg: 0.1193s
max: 15.3720s
approx. 95 percentile: 0.7257s
Threads fairness:
events (avg/stddev): 625.0625/151.32
execution time (avg/stddev): 74.5613/9.46
-2.6.30-rc8-patched
Test execution summary:
total time: 1695.9118s
total number of events: 10000
total time taken by event execution: 871.3214
per-request statistics:
min: 0.0000s
avg: 0.0871s
max: 10.4644s
approx. 95 percentile: 0.4787s
Threads fairness:
events (avg/stddev): 625.0000/131.86
execution time (avg/stddev): 54.4576/8.98
Signed-off-by: Hisashi Hifumi <hifumi.hisashi@oss.ntt.co.jp>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
There's no need to preserve this abstraction; it used to let us use
hardware crc32c support directly, but libcrc32c is already doing that for us
through the crypto API -- so we're already using the Intel crc32c
acceleration where appropriate.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Add support for the standard attributes set via chattr and read via
lsattr. Currently we store the attributes in the flags value in
the btrfs inode, but I wonder whether we should split it into two so
that we don't have to keep converting between the two formats.
Remove the btrfs_clear_flag/btrfs_set_flag/btrfs_test_flag macros
as they were confusing the existing code and got in the way of the
new additions.
Also add the FS_IOC_GETVERSION ioctl for getting i_generation as it's
trivial.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
During mount, btrfs will check the queue nonrot flag
for all the devices found in the FS. If they are all
non-rotating, SSD mode is enabled by default.
If the FS was mounted with -o nossd, the non-rotating
flag is ignored.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Some SSDs perform best when reusing block numbers often, while
others perform much better when clustering strictly allocates
big chunks of unused space.
The default mount -o ssd will find rough groupings of blocks
where there are a bunch of free blocks that might have some
allocated blocks mixed in.
mount -o ssd_spread will make sure there are no allocated blocks
mixed in. It should perform better on lower end SSDs.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
In SSD mode for data, and all the time for metadata the allocator
will try to find a cluster of nearby blocks for allocations. This
commit adds extra checks to make sure that each free block in the
cluster is close to the last one.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The btrfs IO submission threads try to service a bunch of devices with a small
number of threads. They do a congestion check to try and avoid waiting
on requests for a busy device.
The checks make sure we've sent a few requests down to a given device just so
that we aren't bouncing between busy devices without actually sending down
any IO. The counter used to decide if we can switch to the next device
is somewhat overloaded. It is also being used to decide if we've done
a good batch of requests between the WRITE_SYNC or regular priority lists.
It may get reset to zero often, leaving us hammering on a busy device
instead of moving on to another disk.
This commit adds a new counter for the number of bios sent while
servicing a device. It doesn't get reset or fiddled with. On
multi-device filesystems, this fixes IO stalls in streaming
write workloads.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs uses dedicated threads to submit bios when checksumming is on,
which allows us to make sure the threads dedicated to checksumming don't get
stuck waiting for requests. For each btrfs device, there are
two lists of bios. One list is for WRITE_SYNC bios and the other
is for regular priority bios.
The IO submission threads used to process all of the WRITE_SYNC bios first and
then switch to the regular bios. This commit makes sure we don't completely
starve the regular bios by rotating between the two lists.
WRITE_SYNC bios are still favored 2:1 over the regular bios, and this tries
to run in batches to avoid seeking. Benchmarking shows this eliminates
stalls during streaming buffered writes on both multi-device and
single device filesystems.
If the regular bios starve, the system can end up with a large amount of ram
pinned down in writeback pages. If we are a little more fair between the two
classes, we're able to keep throughput up and make progress on the bulk of
our dirty ram.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Once a metadata block has been written, it must be recowed, so the
btrfs dirty balancing call has a check to make sure a fair amount of metadata
was actually dirty before it started writing it back to disk.
A previous commit had changed the dirty tracking for metadata without
updating the btrfs dirty balancing checks. This commit switches it
to use the correct counter.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The block allocator in SSD mode will try to find groups of free blocks
that are close together. This commit makes it loop less on a given
group size before bumping it.
The end result is that we are less likely to fill small holes in the
available free space, but we don't waste as much CPU building the
large cluster used by ssd mode.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
With the new back reference code, the cost of a balance has gone down
in terms of the number of back reference updates done. This commit
makes us more aggressively balance leaves and nodes as they become
less full.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When the delayed reference code was added, some checks were added
to avoid extra balancing while the delayed references were being flushed.
This made for less efficient btrees, but it reduced the chances of
loops where no forward progress was made because the balances made
more delayed ref updates.
With the new dead root removal code and the mixed back references,
the extent allocation tree is no longer using precise back refs, and
the delayed reference updates don't carry the risk of looping forever
anymore. So, the balance avoidance is no longer required.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This commit introduces a new kind of back reference for btrfs metadata.
Once a filesystem has been mounted with this commit, IT WILL NO LONGER
BE MOUNTABLE BY OLDER KERNELS.
When a tree block in subvolume tree is cow'd, the reference counts of all
extents it points to are increased by one. At transaction commit time,
the old root of the subvolume is recorded in a "dead root" data structure,
and the btree it points to is later walked, dropping reference counts
and freeing any blocks where the reference count goes to 0.
The increments done during cow and decrements done after commit cancel out,
and the walk is a very expensive way to go about freeing the blocks that
are no longer referenced by the new btree root. This commit reduces the
transaction overhead by avoiding the need for dead root records.
When a non-shared tree block is cow'd, we free the old block at once, and the
new block inherits old block's references. When a tree block with reference
count > 1 is cow'd, we increase the reference counts of all extents
the new block points to by one, and decrease the old block's reference count by
one.
This dead tree avoidance code removes the need to modify the reference
counts of lower level extents when a non-shared tree block is cow'd.
But we still need to update back ref for all pointers in the block.
This is because the location of the block is recorded in the back ref
item.
We can solve this by introducing a new type of back ref. The new
back ref provides information about pointer's key, level and in which
tree the pointer lives. This information allow us to find the pointer
by searching the tree. The shortcoming of the new back ref is that it
only works for pointers in tree blocks referenced by their owner trees.
This is mostly a problem for snapshots, where resolving one of these
fuzzy back references would be O(number_of_snapshots) and quite slow.
The solution used here is to use the fuzzy back references in the common
case where a given tree block is only referenced by one root,
and use the full back references when multiple roots have a reference
on a given block.
This commit adds per subvolume red-black tree to keep trace of cached
inodes. The red-black tree helps the balancing code to find cached
inodes whose inode numbers within a given range.
This commit improves the balancing code by introducing several data
structures to keep the state of balancing. The most important one
is the back ref cache. It caches how the upper level tree blocks are
referenced. This greatly reduce the overhead of checking back ref.
The improved balancing code scales significantly better with a large
number of snapshots.
This is a very large commit and was written in a number of
pieces. But, they depend heavily on the disk format change and were
squashed together to make sure git bisect didn't end up in a
bad state wrt space balancing or the format change.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
There are some 'start = state->end + 1;' like code in set_extent_bit
and clear_extent_bit. They overflow when end == (u64)-1.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
In commit code, we scan buffers attached to a transaction. During this
scan, we sometimes have to drop j_list_lock and then we recheck whether
the journal buffer head didn't get freed by journal_try_to_free_buffers().
But checking for buffer_jbd(bh) isn't enough because a new journal head
could get attached to our buffer head. So add a check whether the journal
head remained the same and whether it's still at the same transaction and
list.
This is a nasty bug and can cause problems like memory corruption (use after
free) or trigger various assertions in JBD code (observed).
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: <stable@kernel.org>
Cc: <linux-ext4@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The recent ->lookup() deadlock correction required the directory inode
mutex to be dropped while waiting for expire completion. We were
concerned about side effects from this change and one has been identified.
I saw several error messages.
They cause autofs to become quite confused and don't really point to the
actual problem.
Things like:
handle_packet_missing_direct:1376: can't find map entry for (43,1827932)
which is usually totally fatal (although in this case it wouldn't be
except that I treat is as such because it normally is).
do_mount_direct: direct trigger not valid or already mounted
/test/nested/g3c/s1/ss1
which is recoverable, however if this problem is at play it can cause
autofs to become quite confused as to the dependencies in the mount tree
because mount triggers end up mounted multiple times. It's hard to
accurately check for this over mounting case and automount shouldn't need
to if the kernel module is doing its job.
There was one other message, similar in consequence of this last one but I
can't locate a log example just now.
When checking if a mount has already completed prior to adding a new mount
request to the wait queue we check if the dentry is hashed and, if so, if
it is a mount point. But, if a mount successfully completed while we
slept on the wait queue mutex the dentry must exist for the mount to have
completed so the test is not really needed.
Mounts can also be done on top of a global root dentry, so for the above
case, where a mount request completes and the wait queue entry has already
been removed, the hashed test returning false can cause an incorrect
callback to the daemon. Also, d_mountpoint() is not sufficient to check
if a mount has completed for the multi-mount case when we don't have a
real mount at the base of the tree.
Signed-off-by: Ian Kent <raven@themaw.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CONFIG_IMA=y inode activity leaks iint_cache and radix_tree_node objects
until the system runs out of memory. Nowhere is calling ima_inode_free()
a.k.a. ima_iint_delete(). Fix that by calling it from destroy_inode().
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
OK, that's probably the easiest way to do that, as much as I don't like it...
Since iget() et.al. will not accept I_FREEING (will wait to go away
and restart), and since we'd better have serialization between new/free
on fs data structures anyway, we can afford simply skipping I_FREEING
et.al. in insert_inode_locked().
We do that from new_inode, so it won't race with free_inode in any interesting
ways and it won't race with iget (of any origin; nfsd or in case of fs
corruption a lookup) since both still will wait for I_LOCK.
Reviewed-by: "Theodore Ts'o" <tytso@mit.edu>
Acked-by: Jan Kara <jack@suse.cz>
Tested-by: David Watson <dbwatson@ukfsn.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The nobh_truncate_page() function is used by ext2, exofs, and jfs. Of
these three, only ext2 and jfs's get_block() function pays attention
to bh->b_size --- which is normally always the filesystem blocksize
except when the get_block() function is called by either
mpage_readpage(), mpage_readpages(), or the direct I/O routines in
fs/direct_io.c.
Unfortunately, nobh_truncate_page() does not initialize map_bh before
calling the filesystem-supplied get_block() function. So ext2 and jfs
will try to calculate the number of blocks to map by taking stack
garbage and shifting it left by inode->i_blkbits. This should be
*mostly* harmless (except the filesystem will do some unnneeded work)
unless the stack garbage is less than filesystem's blocksize, in which
case maxblocks will be zero, and the attempt to find out whether or
not the filesystem has a hole at a given logical block will fail, and
the page cache entry might not get zero'ed out.
Also if the stack garbage in in map_bh->state happens to have the
BH_Mapped bit set, there could be an attempt to call readpage() on a
non-existent page, which could cause nobh_truncate_page() to return an
error when it should not.
Fix this by initializing map_bh->state and map_bh->size.
Fortunately, it's probably fairly unlikely that ext2 and jfs users
mount with nobh these days.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: Fix oops and use after free during space balancing
Btrfs: set device->total_disk_bytes when adding new device
The btrfs allocator uses list_for_each to walk the available block
groups when searching for free blocks. It starts off with a hint
to help find the best block group for a given allocation.
The hint is resolved into a block group, but we don't properly check
to make sure the block group we find isn't in the middle of being
freed due to filesystem shrinking or balancing. If it is being
freed, the list pointers in it are bogus and can't be trusted. But,
the code happily goes along and uses them in the list_for_each loop,
leading to all kinds of fun.
The fix used here is to check to make sure the block group we find really
is on the list before we use it. list_del_init is used when removing
it from the list, so we can do a proper check.
The allocation clustering code has a similar bug where it will trust
the block group in the current free space cluster. If our allocation
flags have changed (going from single spindle dup to raid1 for example)
because the drives in the FS have changed, we're not allowed to use
the old block group any more.
The fix used here is to check the current cluster against the
current allocation flags.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for-linus' of git://oss.sgi.com/xfs/xfs:
xfs: prevent deadlock in xfs_qm_shake()
xfs: fix overflow in xfs_growfs_data_private
xfs: fix double unlock in xfs_swap_extents()
It's possible to recurse into filesystem from the memory
allocation, which deadlocks in xfs_qm_shake(). Add check
for __GFP_FS, and bail out if it is not set.
Signed-off-by: Felix Blyakher <felixb@sgi.com>
Signed-off-by: Hedi Berriche <hedi@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Felix Blyakher <felixb@sgi.com>
In the case where growing a filesystem would leave the last AG
too small, the fixup code has an overflow in the calculation
of the new size with one fewer ag, because "nagcount" is a 32
bit number. If the new filesystem has > 2^32 blocks in it
this causes a problem resulting in an EINVAL return from growfs:
# xfs_io -f -c "truncate 19998630180864" fsfile
# mkfs.xfs -f -bsize=4096 -dagsize=76288719b,size=3905982455b fsfile
# mount -o loop fsfile /mnt
# xfs_growfs /mnt
meta-data=/dev/loop0 isize=256 agcount=52,
agsize=76288719 blks
= sectsz=512 attr=2
data = bsize=4096 blocks=3905982455, imaxpct=5
= sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0
log =internal bsize=4096 blocks=32768, version=2
= sectsz=512 sunit=0 blks, lazy-count=0
realtime =none extsz=4096 blocks=0, rtextents=0
xfs_growfs: XFS_IOC_FSGROWFSDATA xfsctl failed: Invalid argument
Reported-by: richard.ems@cape-horn-eng.com
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Felix Blyakher <felixb@sgi.com>
Signed-off-by: Felix Blyakher <felixb@sgi.com>
Regreesion from commit ef8f7fc, which rearranged the code in
xfs_swap_extents() leading to double unlock of xfs inode ilock.
That resulted in xfs_fsr deadlocking itself on platforms, which
don't handle double unlock of rw_semaphore nicely. It caused the
count go negative, which represents the write holder, without
really having one. ia64 is one of the platforms where deadlock
was easily reproduced and the fix was tested.
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Reviewed-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Felix Blyakher <felixb@sgi.com>
The nilfs_cpfile_delete_checkpoints() wrongly skips brelse() for the
header block of checkpoint file in case of errors. This fixes the
leak bug.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
* git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core-2.6:
Driver Core: do not oops when driver_unregister() is called for unregistered drivers
sysfs: file.c: use create_singlethread_workqueue()
* 'for-2.6.30' of git://linux-nfs.org/~bfields/linux:
svcrdma: dma unmap the correct length for the RPCRDMA header page.
nfsd: Revert "svcrpc: take advantage of tcp autotuning"
nfsd: fix hung up of nfs client while sync write data to nfs server
The flat loader uses an architecture's flat_stack_align() to align the
stack but assumes word-alignment is enough for the data sections.
However, on the Xtensa S6000 we have registers up to 128bit width
which can be used from userspace and therefor need userspace stack and
data-section alignment of at least this size.
This patch drops flat_stack_align() and uses the same alignment that
is required for slab caches, ARCH_SLAB_MINALIGN, or wordsize if it's
not defined by the architecture.
It also fixes m32r which was obviously kaput, aligning an
uninitialized stack entry instead of the stack pointer.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Oskar Schirmer <os@emlix.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Bryan Wu <cooloney@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Cc: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: Johannes Weiner <jw@emlix.com>
Acked-by: Mike Frysinger <vapier.adi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
proc_pident_instantiate() has following call flow.
proc_pident_lookup()
proc_pident_instantiate()
proc_pid_make_inode()
And, proc_pident_lookup() has following error handling.
const struct pid_entry *p, *last;
error = ERR_PTR(-ENOENT);
if (!task)
goto out_no_task;
Then, proc_pident_instantiate should return ENOENT too when racing against
exit(2) occur.
EINAL has two bad reason.
- it implies caller is wrong. bad the race isn't caller's mistake.
- man 2 open don't explain EINVAL. user often don't handle it.
Note: Other proc_pid_make_inode() caller already use ENOENT properly.
Acked-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Erase errors such as:
"Newly-erased block contained word 0xa4ef223e at offset 0x0296a014"
and failure to write the clean marker,
moves the offending erase block to erasing list before calling
jffs2_erase_failed(). This is bad as jffs2_erase_failed() will
also move the block to the bad_list, but is now moving the
wrong block, causing FS corruption.
Signed-off-by: Joakim Tjernlund <Joakim.Tjernlund@transmode.se>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
We don't need a kernel thread per CPU for this application.
Acked-by: Alex Chiang <achiang@hp.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>