Commit Graph

8 Commits

Author SHA1 Message Date
Christoph Lameter
e18b890bb0 [PATCH] slab: remove kmem_cache_t
Replace all uses of kmem_cache_t with struct kmem_cache.

The patch was generated using the following script:

	#!/bin/sh
	#
	# Replace one string by another in all the kernel sources.
	#

	set -e

	for file in `find * -name "*.c" -o -name "*.h"|xargs grep -l $1`; do
		quilt add $file
		sed -e "1,\$s/$1/$2/g" $file >/tmp/$$
		mv /tmp/$$ $file
		quilt refresh
	done

The script was run like this

	sh replace kmem_cache_t "struct kmem_cache"

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:25 -08:00
Christoph Lameter
e94b176609 [PATCH] slab: remove SLAB_KERNEL
SLAB_KERNEL is an alias of GFP_KERNEL.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07 08:39:24 -08:00
Alexey Dobriyan
1a1d92c10d [PATCH] Really ignore kmem_cache_destroy return value
* Rougly half of callers already do it by not checking return value
* Code in drivers/acpi/osl.c does the following to be sure:

	(void)kmem_cache_destroy(cache);

* Those who check it printk something, however, slab_error already printed
  the name of failed cache.
* XFS BUGs on failed kmem_cache_destroy which is not the decision
  low-level filesystem driver should make. Converted to ignore.

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27 08:26:10 -07:00
David Howells
726c334223 [PATCH] VFS: Permit filesystem to perform statfs with a known root dentry
Give the statfs superblock operation a dentry pointer rather than a superblock
pointer.

This complements the get_sb() patch.  That reduced the significance of
sb->s_root, allowing NFS to place a fake root there.  However, NFS does
require a dentry to use as a target for the statfs operation.  This permits
the root in the vfsmount to be used instead.

linux/mount.h has been added where necessary to make allyesconfig build
successfully.

Interest has also been expressed for use with the FUSE and XFS filesystems.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nathan Scott <nathans@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 07:42:45 -07:00
David Howells
454e2398be [PATCH] VFS: Permit filesystem to override root dentry on mount
Extend the get_sb() filesystem operation to take an extra argument that
permits the VFS to pass in the target vfsmount that defines the mountpoint.

The filesystem is then required to manually set the superblock and root dentry
pointers.  For most filesystems, this should be done with simple_set_mnt()
which will set the superblock pointer and then set the root dentry to the
superblock's s_root (as per the old default behaviour).

The get_sb() op now returns an integer as there's now no need to return the
superblock pointer.

This patch permits a superblock to be implicitly shared amongst several mount
points, such as can be done with NFS to avoid potential inode aliasing.  In
such a case, simple_set_mnt() would not be called, and instead the mnt_root
and mnt_sb would be set directly.

The patch also makes the following changes:

 (*) the get_sb_*() convenience functions in the core kernel now take a vfsmount
     pointer argument and return an integer, so most filesystems have to change
     very little.

 (*) If one of the convenience function is not used, then get_sb() should
     normally call simple_set_mnt() to instantiate the vfsmount. This will
     always return 0, and so can be tail-called from get_sb().

 (*) generic_shutdown_super() now calls shrink_dcache_sb() to clean up the
     dcache upon superblock destruction rather than shrink_dcache_anon().

     This is required because the superblock may now have multiple trees that
     aren't actually bound to s_root, but that still need to be cleaned up. The
     currently called functions assume that the whole tree is rooted at s_root,
     and that anonymous dentries are not the roots of trees which results in
     dentries being left unculled.

     However, with the way NFS superblock sharing are currently set to be
     implemented, these assumptions are violated: the root of the filesystem is
     simply a dummy dentry and inode (the real inode for '/' may well be
     inaccessible), and all the vfsmounts are rooted on anonymous[*] dentries
     with child trees.

     [*] Anonymous until discovered from another tree.

 (*) The documentation has been adjusted, including the additional bit of
     changing ext2_* into foo_* in the documentation.

[akpm@osdl.org: convert ipath_fs, do other stuff]
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Nathan Scott <nathans@sgi.com>
Cc: Roland Dreier <rolandd@cisco.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23 07:42:45 -07:00
Paul Jackson
4b6a9316fa [PATCH] cpuset memory spread: slab cache filesystems
Mark file system inode and similar slab caches subject to SLAB_MEM_SPREAD
memory spreading.

If a slab cache is marked SLAB_MEM_SPREAD, then anytime that a task that's
in a cpuset with the 'memory_spread_slab' option enabled goes to allocate
from such a slab cache, the allocations are spread evenly over all the
memory nodes (task->mems_allowed) allowed to that task, instead of favoring
allocation on the node local to the current cpu.

The following inode and similar caches are marked SLAB_MEM_SPREAD:

    file                               cache
    ====                               =====
    fs/adfs/super.c                    adfs_inode_cache
    fs/affs/super.c                    affs_inode_cache
    fs/befs/linuxvfs.c                 befs_inode_cache
    fs/bfs/inode.c                     bfs_inode_cache
    fs/block_dev.c                     bdev_cache
    fs/cifs/cifsfs.c                   cifs_inode_cache
    fs/coda/inode.c                    coda_inode_cache
    fs/dquot.c                         dquot
    fs/efs/super.c                     efs_inode_cache
    fs/ext2/super.c                    ext2_inode_cache
    fs/ext2/xattr.c (fs/mbcache.c)     ext2_xattr
    fs/ext3/super.c                    ext3_inode_cache
    fs/ext3/xattr.c (fs/mbcache.c)     ext3_xattr
    fs/fat/cache.c                     fat_cache
    fs/fat/inode.c                     fat_inode_cache
    fs/freevxfs/vxfs_super.c           vxfs_inode
    fs/hpfs/super.c                    hpfs_inode_cache
    fs/isofs/inode.c                   isofs_inode_cache
    fs/jffs/inode-v23.c                jffs_fm
    fs/jffs2/super.c                   jffs2_i
    fs/jfs/super.c                     jfs_ip
    fs/minix/inode.c                   minix_inode_cache
    fs/ncpfs/inode.c                   ncp_inode_cache
    fs/nfs/direct.c                    nfs_direct_cache
    fs/nfs/inode.c                     nfs_inode_cache
    fs/ntfs/super.c                    ntfs_big_inode_cache_name
    fs/ntfs/super.c                    ntfs_inode_cache
    fs/ocfs2/dlm/dlmfs.c               dlmfs_inode_cache
    fs/ocfs2/super.c                   ocfs2_inode_cache
    fs/proc/inode.c                    proc_inode_cache
    fs/qnx4/inode.c                    qnx4_inode_cache
    fs/reiserfs/super.c                reiser_inode_cache
    fs/romfs/inode.c                   romfs_inode_cache
    fs/smbfs/inode.c                   smb_inode_cache
    fs/sysv/inode.c                    sysv_inode_cache
    fs/udf/super.c                     udf_inode_cache
    fs/ufs/super.c                     ufs_inode_cache
    net/socket.c                       sock_inode_cache
    net/sunrpc/rpc_pipe.c              rpc_inode_cache

The choice of which slab caches to so mark was quite simple.  I marked
those already marked SLAB_RECLAIM_ACCOUNT, except for fs/xfs, dentry_cache,
inode_cache, and buffer_head, which were marked in a previous patch.  Even
though SLAB_RECLAIM_ACCOUNT is for a different purpose, it marks the same
potentially large file system i/o related slab caches as we need for memory
spreading.

Given that the rule now becomes "wherever you would have used a
SLAB_RECLAIM_ACCOUNT slab cache flag before (usually the inode cache), use
the SLAB_MEM_SPREAD flag too", this should be easy enough to maintain.
Future file system writers will just copy one of the existing file system
slab cache setups and tend to get it right without thinking.

Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-24 07:33:23 -08:00
Adrian Bunk
c98d8cfbc6 [PATCH] fs/coda/: proper prototypes
Introduce a file fs/coda/coda_int.h with proper prototypes for some code.

Signed-off-by: Adrian Bunk <bunk@stusta.de>
Acked-by: Jan Harkes <jaharkes@cs.cmu.edu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-24 07:33:21 -08:00
Linus Torvalds
1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00