Impact: new tracer plugin
This patch adapts kmemtrace raw events tracing to the unified tracing API.
To enable and use this tracer, just do the following:
echo kmemtrace > /debugfs/tracing/current_tracer
cat /debugfs/tracing/trace
You will have the following output:
# tracer: kmemtrace
#
#
# ALLOC TYPE REQ GIVEN FLAGS POINTER NODE CALLER
# FREE | | | | | | | |
# |
type_id 1 call_site 18446744071565527833 ptr 18446612134395152256
type_id 0 call_site 18446744071565585597 ptr 18446612134405955584 bytes_req 4096 bytes_alloc 4096 gfp_flags 208 node -1
type_id 1 call_site 18446744071565585534 ptr 18446612134405955584
type_id 0 call_site 18446744071565585597 ptr 18446612134405955584 bytes_req 4096 bytes_alloc 4096 gfp_flags 208 node -1
type_id 0 call_site 18446744071565636711 ptr 18446612134345164672 bytes_req 240 bytes_alloc 240 gfp_flags 208 node -1
type_id 1 call_site 18446744071565585534 ptr 18446612134405955584
type_id 0 call_site 18446744071565585597 ptr 18446612134405955584 bytes_req 4096 bytes_alloc 4096 gfp_flags 208 node -1
type_id 0 call_site 18446744071565636711 ptr 18446612134345164912 bytes_req 240 bytes_alloc 240 gfp_flags 208 node -1
type_id 1 call_site 18446744071565585534 ptr 18446612134405955584
type_id 0 call_site 18446744071565585597 ptr 18446612134405955584 bytes_req 4096 bytes_alloc 4096 gfp_flags 208 node -1
type_id 0 call_site 18446744071565636711 ptr 18446612134345165152 bytes_req 240 bytes_alloc 240 gfp_flags 208 node -1
type_id 0 call_site 18446744071566144042 ptr 18446612134346191680 bytes_req 1304 bytes_alloc 1312 gfp_flags 208 node -1
type_id 1 call_site 18446744071565585534 ptr 18446612134405955584
type_id 0 call_site 18446744071565585597 ptr 18446612134405955584 bytes_req 4096 bytes_alloc 4096 gfp_flags 208 node -1
type_id 1 call_site 18446744071565585534 ptr 18446612134405955584
That was to stay backward compatible with the format output produced in
inux/tracepoint.h.
This is the default ouput, but note that I tried something else.
If you change an option:
echo kmem_minimalistic > /debugfs/trace_options
and then cat /debugfs/trace, you will have the following output:
# tracer: kmemtrace
#
#
# ALLOC TYPE REQ GIVEN FLAGS POINTER NODE CALLER
# FREE | | | | | | | |
# |
- C 0xffff88007c088780 file_free_rcu
+ K 4096 4096 000000d0 0xffff88007cad6000 -1 getname
- C 0xffff88007cad6000 putname
+ K 4096 4096 000000d0 0xffff88007cad6000 -1 getname
+ K 240 240 000000d0 0xffff8800790dc780 -1 d_alloc
- C 0xffff88007cad6000 putname
+ K 4096 4096 000000d0 0xffff88007cad6000 -1 getname
+ K 240 240 000000d0 0xffff8800790dc870 -1 d_alloc
- C 0xffff88007cad6000 putname
+ K 4096 4096 000000d0 0xffff88007cad6000 -1 getname
+ K 240 240 000000d0 0xffff8800790dc960 -1 d_alloc
+ K 1304 1312 000000d0 0xffff8800791d7340 -1 reiserfs_alloc_inode
- C 0xffff88007cad6000 putname
+ K 4096 4096 000000d0 0xffff88007cad6000 -1 getname
- C 0xffff88007cad6000 putname
+ K 992 1000 000000d0 0xffff880079045b58 -1 alloc_inode
+ K 768 1024 000080d0 0xffff88007c096400 -1 alloc_pipe_info
+ K 240 240 000000d0 0xffff8800790dca50 -1 d_alloc
+ K 272 320 000080d0 0xffff88007c088780 -1 get_empty_filp
+ K 272 320 000080d0 0xffff88007c088000 -1 get_empty_filp
Yeah I shall confess kmem_minimalistic should be: kmem_alternative.
Whatever, I find it more readable but this a personal opinion of course.
We can drop it if you want.
On the ALLOC/FREE column, + means an allocation and - a free.
On the type column, you have K = kmalloc, C = cache, P = page
I would like the flags to be GFP_* strings but that would not be easy to not
break the column with strings....
About the node...it seems to always be -1. I don't know why but that shouldn't
be difficult to find.
I moved linux/tracepoint.h to trace/tracepoint.h as well. I think that would
be more easy to find the tracer headers if they are all in their common
directory.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: avoid conflicts with kmemcheck
kmemcheck modifies the same area of slab.c and slub.c - move the
include lines up a bit.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds kmemtrace hooks for __kmalloc_track_caller() and
__kmalloc_node_track_caller(). Currently, they set the call site pointer
to the value recieved as a parameter. (This could change if we implement
stack trace exporting in kmemtrace.)
Signed-off-by: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
This adds hooks for the SLUB allocator, to allow tracing with kmemtrace.
Signed-off-by: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
This patch replaces __builtin_return_address(0) with _RET_IP_, since a
previous patch moved _RET_IP_ and _THIS_IP_ to include/linux/kernel.h and
they're widely available now. This makes for shorter and easier to read
code.
[penberg@cs.helsinki.fi: remove _RET_IP_ casts to void pointer]
Signed-off-by: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
If a slab cache is mergeable and the sysfs alias cannot be added, the
target cache shall have its refcount decremented. kmem_cache_create()
will return NULL, so if kmem_cache_destroy() is ever called on the target
cache, it will never be freed if the refcount has been leaked.
Likewise, if a slab cache is not mergeable and the sysfs link cannot be
added, the new cache shall be removed from the slab_caches list.
kmem_cache_create() will return NULL, so it will be impossible to call
kmem_cache_destroy() on it.
Both of these operations require slub_lock since refcount of all slab
caches and slab_caches are protected by the lock.
In the mergeable case, it would be better to restore objsize and offset
back to their original values, but this could race with another merge
since slub_lock was dropped.
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Currently SLUB doesn't warn about __GFP_WAIT. Add it into slab_alloc().
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Currently fault-injection capability for SLAB allocator is only
available to SLAB. This patch makes it available to SLUB, too.
[penberg@cs.helsinki.fi: unify slab and slub implementations]
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Impact: change calling convention of existing cpumask APIs
Most cpumask functions started with cpus_: these have been replaced by
cpumask_ ones which take struct cpumask pointers as expected.
These four functions don't have good replacement names; fortunately
they're rarely used, so we just change them over.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Mike Travis <travis@sgi.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: paulus@samba.org
Cc: mingo@redhat.com
Cc: tony.luck@intel.com
Cc: ralf@linux-mips.org
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: cl@linux-foundation.org
Cc: srostedt@redhat.com
Miles Lane tailing /sys files hit a BUG which Pekka Enberg has tracked
to my 966c8c12dc sprint_symbol(): use
less stack exposing a bug in slub's list_locations() -
kallsyms_lookup() writes a 0 to namebuf[KSYM_NAME_LEN-1], but that was
beyond the end of page provided.
The 100 slop which list_locations() allows at end of page looks roughly
enough for all the other stuff it might print after the symbol before
it checks again: break out KSYM_SYMBOL_LEN earlier than before.
Latencytop and ftrace and are using KSYM_NAME_LEN buffers where they
need KSYM_SYMBOL_LEN buffers, and vmallocinfo a 2*KSYM_NAME_LEN buffer
where it wants a KSYM_SYMBOL_LEN buffer: fix those before anyone copies
them.
[akpm@linux-foundation.org: ftrace.h needs module.h]
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc Miles Lane <miles.lane@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Steven Rostedt <srostedt@redhat.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fixes for memcg/memory hotplug.
While memory hotplug allocate/free memmap, page_cgroup doesn't free
page_cgroup at OFFLINE when page_cgroup is allocated via bootomem.
(Because freeing bootmem requires special care.)
Then, if page_cgroup is allocated by bootmem and memmap is freed/allocated
by memory hotplug, page_cgroup->page == page is no longer true.
But current MEM_ONLINE handler doesn't check it and update
page_cgroup->page if it's not necessary to allocate page_cgroup. (This
was not found because memmap is not freed if SPARSEMEM_VMEMMAP is y.)
And I noticed that MEM_ONLINE can be called against "part of section".
So, freeing page_cgroup at CANCEL_ONLINE will cause trouble. (freeing
used page_cgroup) Don't rollback at CANCEL.
One more, current memory hotplug notifier is stopped by slub because it
sets NOTIFY_STOP_MASK to return vaule. So, page_cgroup's callback never
be called. (low priority than slub now.)
I think this slub's behavior is not intentional(BUG). and fixes it.
Another way to be considered about page_cgroup allocation:
- free page_cgroup at OFFLINE even if it's from bootmem
and remove specieal handler. But it requires more changes.
Addresses http://bugzilla.kernel.org/show_bug.cgi?id=12041
Signed-off-by: KAMEZAWA Hiruyoki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Tested-by: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The return value for early_kmem_cache_node_alloc() is unused, so it is
better defined as void.
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
This patch replaces __builtin_return_address(0) with _RET_IP_, since a
previous patch moved _RET_IP_ and _THIS_IP_ to include/linux/kernel.h and
they're widely available now. This makes for shorter and easier to read
code.
[penberg@cs.helsinki.fi: remove _RET_IP_ casts to void pointer]
Signed-off-by: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Lose dummy ->write hook in case of SLUB, it's possible now.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Initialized total objects atomic for the node in init_kmem_cache_node. The
uninitialized value was ruining the stats in /proc/slabinfo.
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Salman Qazi <sqazi@google.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Switch remote node defragmentation off by default. The current settings can
cause excessive node local allocations with hackbench:
SLAB:
% cat /proc/meminfo
MemTotal: 7701760 kB
MemFree: 5940096 kB
Slab: 123840 kB
SLUB:
% cat /proc/meminfo
MemTotal: 7701376 kB
MemFree: 4740928 kB
Slab: 1591680 kB
[Note: this feature is not related to slab defragmentation.]
You can find the original discussion here:
http://lkml.org/lkml/2008/8/4/308
Reported-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
This patch changes the static MIN_PARTIAL to a dynamic per-cache ->min_partial
value that is calculated from object size. The bigger the object size, the more
pages we keep on the partial list.
I tested SLAB, SLUB, and SLUB with this patch on Jens Axboe's 'netio' example
script of the fio benchmarking tool. The script stresses the networking
subsystem which should also give a fairly good beating of kmalloc() et al.
To run the test yourself, first clone the fio repository:
git clone git://git.kernel.dk/fio.git
and then run the following command n times on your machine:
time ./fio examples/netio
The results on my 2-way 64-bit x86 machine are as follows:
[ the minimum, maximum, and average are captured from 50 individual runs ]
real time (seconds)
min max avg sd
SLAB 22.76 23.38 22.98 0.17
SLUB 22.80 25.78 23.46 0.72
SLUB (dynamic) 22.74 23.54 23.00 0.20
sys time (seconds)
min max avg sd
SLAB 6.90 8.28 7.70 0.28
SLUB 7.42 16.95 8.89 2.28
SLUB (dynamic) 7.17 8.64 7.73 0.29
user time (seconds)
min max avg sd
SLAB 36.89 38.11 37.50 0.29
SLUB 30.85 37.99 37.06 1.67
SLUB (dynamic) 36.75 38.07 37.59 0.32
As you can see from the above numbers, this patch brings SLUB to the same level
as SLAB for this particular workload fixing a ~2% regression. I'd expect this
change to help similar workloads that allocate a lot of objects that are close
to the size of a page.
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
This patch removes the obsolete and no longer used exports of ksize.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Kmem cache passed to constructor is only needed for constructors that are
themselves multiplexeres. Nobody uses this "feature", nor does anybody uses
passed kmem cache in non-trivial way, so pass only pointer to object.
Non-trivial places are:
arch/powerpc/mm/init_64.c
arch/powerpc/mm/hugetlbpage.c
This is flag day, yes.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Matt Mackall <mpm@selenic.com>
[akpm@linux-foundation.org: fix arch/powerpc/mm/hugetlbpage.c]
[akpm@linux-foundation.org: fix mm/slab.c]
[akpm@linux-foundation.org: fix ubifs]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLUB reuses two page bits for internal purposes, it overlays PG_active and
PG_error. This is hidden away in slub.c. Document these overlays
explicitly in the main page-flags enum along with all the others.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The limit of 128 bytes is too small when debugging slab corruption of the skb
cache, for example. So increase the limit to PAGE_SIZE to make debugging
corruptions easier.
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
on_each_cpu() expands to function call on UP, too.
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
We can detect kfree()s on non slab objects by checking for PageCompound().
Works in the same way as for ksize. This helped me catch an invalid
kfree().
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Vegard Nossum reported a crash in kmem_cache_alloc():
BUG: unable to handle kernel paging request at da87d000
IP: [<c01991c7>] kmem_cache_alloc+0xc7/0xe0
*pde = 28180163 *pte = 1a87d160
Oops: 0002 [#1] PREEMPT SMP DEBUG_PAGEALLOC
Pid: 3850, comm: grep Not tainted (2.6.26-rc9-00059-gb190333 #5)
EIP: 0060:[<c01991c7>] EFLAGS: 00210203 CPU: 0
EIP is at kmem_cache_alloc+0xc7/0xe0
EAX: 00000000 EBX: da87c100 ECX: 1adad71a EDX: 6b6b6b6b
ESI: 00200282 EDI: da87d000 EBP: f60bfe74 ESP: f60bfe54
DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068
and analyzed it:
"The register %ecx looks innocent but is very important here. The disassembly:
mov %edx,%ecx
shr $0x2,%ecx
rep stos %eax,%es:(%edi) <-- the fault
So %ecx has been loaded from %edx... which is 0x6b6b6b6b/POISON_FREE.
(0x6b6b6b6b >> 2 == 0x1adadada.)
%ecx is the counter for the memset, from here:
memset(object, 0, c->objsize);
i.e. %ecx was loaded from c->objsize, so "c" must have been freed.
Where did "c" come from? Uh-oh...
c = get_cpu_slab(s, smp_processor_id());
This looks like it has very much to do with CPU hotplug/unplug. Is
there a race between SLUB/hotplug since the CPU slab is used after it
has been freed?"
Good analysis.
Yeah, it's possible that a caller of kmem_cache_alloc() -> slab_alloc()
can be migrated on another CPU right after local_irq_restore() and
before memset(). The inital cpu can become offline in the mean time (or
a migration is a consequence of the CPU going offline) so its
'kmem_cache_cpu' structure gets freed ( slab_cpuup_callback).
At some point of time the caller continues on another CPU having an
obsolete pointer...
Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Reported-by: Vegard Nossum <vegard.nossum@gmail.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove all clameter@sgi.com addresses from the kernel tree since they will
become invalid on June 27th. Change my maintainer email address for the
slab allocators to cl@linux-foundation.org (which will be the new email
address for the future).
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The 192 byte cache is not necessary if we have a basic alignment of 128
byte. If it would be used then the 192 would be aligned to the next 128 byte
boundary which would result in another 256 byte cache. Two 256 kmalloc caches
cause sysfs to complain about a duplicate entry.
MIPS needs 128 byte aligned kmalloc caches and spits out warnings on boot without
this patch.
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
It's not even passed on to smp_call_function() anymore, since that
was removed. So kill it.
Acked-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Add a WARN_ON for pages that don't have PageSlab nor PageCompound set to catch
the worst abusers of ksize() in the kernel.
Acked-by: Christoph Lameter <clameter@sgi.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
any_slab_objects() does an atomic_read on an atomic_long_t, this
fixes it to use atomic_long_read instead.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we make SLUB_DEBUG depend on SYSFS then we can simplify some
#ifdefs and avoid others.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Fix some issues with wrapping and use strict_strtoul to make parameter
passing from sysfs safer.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
x86 is the only arch right now, which provides an optimized for
div_long_long_rem and it has the downside that one has to be very careful that
the divide doesn't overflow.
The API is a little akward, as the arguments for the unsigned divide are
signed. The signed version also doesn't handle a negative divisor and
produces worse code on 64bit archs.
There is little incentive to keep this API alive, so this converts the few
users to the new API.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can see an ever repeating problem pattern with objects of any kind in the
kernel:
1) freeing of active objects
2) reinitialization of active objects
Both problems can be hard to debug because the crash happens at a point where
we have no chance to decode the root cause anymore. One problem spot are
kernel timers, where the detection of the problem often happens in interrupt
context and usually causes the machine to panic.
While working on a timer related bug report I had to hack specialized code
into the timer subsystem to get a reasonable hint for the root cause. This
debug hack was fine for temporary use, but far from a mergeable solution due
to the intrusiveness into the timer code.
The code further lacked the ability to detect and report the root cause
instantly and keep the system operational.
Keeping the system operational is important to get hold of the debug
information without special debugging aids like serial consoles and special
knowledge of the bug reporter.
The problems described above are not restricted to timers, but timers tend to
expose it usually in a full system crash. Other objects are less explosive,
but the symptoms caused by such mistakes can be even harder to debug.
Instead of creating specialized debugging code for the timer subsystem a
generic infrastructure is created which allows developers to verify their code
and provides an easy to enable debug facility for users in case of trouble.
The debugobjects core code keeps track of operations on static and dynamic
objects by inserting them into a hashed list and sanity checking them on
object operations and provides additional checks whenever kernel memory is
freed.
The tracked object operations are:
- initializing an object
- adding an object to a subsystem list
- deleting an object from a subsystem list
Each operation is sanity checked before the operation is executed and the
subsystem specific code can provide a fixup function which allows to prevent
the damage of the operation. When the sanity check triggers a warning message
and a stack trace is printed.
The list of operations can be extended if the need arises. For now it's
limited to the requirements of the first user (timers).
The core code enqueues the objects into hash buckets. The hash index is
generated from the address of the object to simplify the lookup for the check
on kfree/vfree. Each bucket has it's own spinlock to avoid contention on a
global lock.
The debug code can be compiled in without being active. The runtime overhead
is minimal and could be optimized by asm alternatives. A kernel command line
option enables the debugging code.
Thanks to Ingo Molnar for review, suggestions and cleanup patches.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Greg KH <greg@kroah.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a trivial patch that defines the priority of slab_memory_callback in
the callback chain as a constant. This is to prepare for next patch in the
series.
Signed-off-by: Nadia Derbey <Nadia.Derbey@bull.net>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Mingming Cao <cmm@us.ibm.com>
Cc: Pierre Peiffer <pierre.peiffer@bull.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6:
slub: pack objects denser
slub: Calculate min_objects based on number of processors.
slub: Drop DEFAULT_MAX_ORDER / DEFAULT_MIN_OBJECTS
slub: Simplify any_slab_object checks
slub: Make the order configurable for each slab cache
slub: Drop fallback to page allocator method
slub: Fallback to minimal order during slab page allocation
slub: Update statistics handling for variable order slabs
slub: Add kmem_cache_order_objects struct
slub: for_each_object must be passed the number of objects in a slab
slub: Store max number of objects in the page struct.
slub: Dump list of objects not freed on kmem_cache_close()
slub: free_list() cleanup
slub: improve kmem_cache_destroy() error message
slob: fix bug - when slob allocates "struct kmem_cache", it does not force alignment.
Not all architectures define cache_line_size() so as suggested by Andrew move
the private implementations in mm/slab.c and mm/slob.c to <linux/cache.h>.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Filtering zonelists requires very frequent use of zone_idx(). This is costly
as it involves a lookup of another structure and a substraction operation. As
the zone_idx is often required, it should be quickly accessible. The node idx
could also be stored here if it was found that accessing zone->node is
significant which may be the case on workloads where nodemasks are heavily
used.
This patch introduces a struct zoneref to store a zone pointer and a zone
index. The zonelist then consists of an array of these struct zonerefs which
are looked up as necessary. Helpers are given for accessing the zone index as
well as the node index.
[kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers]
[hugh@veritas.com: mm-have-zonelist: fix memcg ooms]
[hugh@veritas.com: just return do_try_to_free_pages]
[hugh@veritas.com: do_try_to_free_pages gfp_mask redundant]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently a node has two sets of zonelists, one for each zone type in the
system and a second set for GFP_THISNODE allocations. Based on the zones
allowed by a gfp mask, one of these zonelists is selected. All of these
zonelists consume memory and occupy cache lines.
This patch replaces the multiple zonelists per-node with two zonelists. The
first contains all populated zones in the system, ordered by distance, for
fallback allocations when the target/preferred node has no free pages. The
second contains all populated zones in the node suitable for GFP_THISNODE
allocations.
An iterator macro is introduced called for_each_zone_zonelist() that interates
through each zone allowed by the GFP flags in the selected zonelist.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a node_zonelist() helper function. It is used to lookup the
appropriate zonelist given a node and a GFP mask. The patch on its own is a
cleanup but it helps clarify parts of the two-zonelist-per-node patchset. If
necessary, it can be merged with the next patch in this set without problems.
Reviewed-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since we now have more orders available use a denser packing.
Increase slab order if more than 1/16th of a slab would be wasted.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
The mininum objects per slab is calculated based on the number of processors
that may come online.
Processors min_objects
---------------------------
1 8
2 12
4 16
8 20
16 24
32 28
64 32
1024 48
4096 56
The higher the number of processors the large the order sizes used for various
slab caches will become. This has been shown to address the performance issues
in hackbench on 16p etc.
The calculation is only performed if slub_min_objects is zero (default). If one
specifies a slub_min_objects on boot then that setting is taken.
As suggested by Zhang Yanmin's performance tests on 16-core Tigerton, use the
formula '4 * (fls(nr_cpu_ids) + 1)':
./hackbench 100 process 2000:
1) 2.6.25-rc6slab: 23.5 seconds
2) 2.6.25-rc7SLUB+slub_min_objects=20: 31 seconds
3) 2.6.25-rc7SLUB+slub_min_objects=24: 23.5 seconds
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
We can now fallback to order 0 slabs. So set the slub_max_order to
PAGE_CACHE_ORDER_COSTLY but keep the slub_min_objects at 4. This
will mostly preserve the orders used in 2.6.25. F.e. The 2k kmalloc slab
will use order 1 allocs and the 4k kmalloc slab order 2.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Since we now have total_objects counter per node use that to
check for the presence of any objects. The loop over all cpu slabs
is not that useful since any cpu slab would require an object allocation
first. So drop that.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Makes /sys/kernel/slab/<slabname>/order writable. The allocation
order of a slab cache can then be changed dynamically during runtime.
This can be used to override the objects per slabs value establisheed
with the slub_min_objects setting that was manually specified or
calculated on bootup.
The changes of the slab order can occur while allocate_slab() runs.
Allocate slab needs the order and the number of slab objects that
are both changed by the change of order. Both are put into
a single word (struct kmem_cache_order_objects). They can then
be atomically updated and retrieved.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
There is now a generic method of falling back to a slab page of minimal
order. No need anymore for the fallback to kmalloc_large().
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
If any higher order allocation fails then fall back the smallest order
necessary to contain at least one object. This enables fallback for all
allocations to order 0 pages. The fallback will waste more memory (objects
will not fit neatly) and the fallback slabs will be not as efficient as larger
slabs since they contain less objects.
Note that SLAB also depends on order 1 allocations for some slabs that waste
too much memory if forced into PAGE_SIZE'd page. SLUB now can now deal with
failing order 1 allocs which SLAB cannot do.
Add a new field min that will contain the objects for the smallest possible order
for a slab cache.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Change the statistics to consider that slabs of the same slabcache
can have different number of objects in them since they may be of
different order.
Provide a new sysfs field
total_objects
which shows the total objects that the allocated slabs of a slabcache
could hold.
Add a max field that holds the largest slab order that was ever used
for a slab cache.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Pack the order and the number of objects into a single word.
This saves some memory in the kmem_cache_structure and more importantly
allows us to fetch both values atomically.
Later the slab orders become runtime configurable and we need to fetch these
two items together in order to properly allocate a slab and initialize its
objects.
Fix the race by fetching the order and the number of objects in one word.
[penberg@cs.helsinki.fi: fix memset() page order in new_slab()]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Pass the number of objects to the for_each_object macro. Most of these are
debug related.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Split the inuse field up to be able to store the number of objects in this
page in the page struct as well. Necessary if we want to have pages of
various orders for a slab. Also avoids touching struct kmem_cache cachelines in
__slab_alloc().
Update diagnostic code to check the number of objects and make sure that
the number of objects always stays within the bounds of a 16 bit unsigned
integer.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Dump a list of unfreed objects if a slab cache is closed but
objects still remain.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
free_list looked a bit screwy so here is an attempt to clean it up.
free_list is is only used for freeing partial lists. We do not need to return a
parameter if we decrement nr_partial within the function which allows a
simplification of the whole thing.
The current version modifies nr_partial outside of the list_lock which is
technically not correct. It was only ok because we should be the only user of
this slab cache at this point.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
As pointed out by Ingo, the SLUB warning of calling kmem_cache_destroy()
with cache that still has objects triggers in practice. So turn this
WARN_ON() into a nice SLUB specific error message to avoid people
confusing it to a SLUB bug.
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
The per node counters are used mainly for showing data through the sysfs API.
If that API is not compiled in then there is no point in keeping track of this
data. Disable counters for the number of slabs and the number of total slabs
if !SLUB_DEBUG. Incrementing the per node counters is also accessing a
potentially contended cacheline so this could actually be a performance
benefit to embedded systems.
SLABINFO support is also affected. It now must depends on SLUB_DEBUG (which
is on by default).
Patch also avoids a check for a NULL kmem_cache_node pointer in new_slab()
if the system is not compiled with NUMA support.
[penberg@cs.helsinki.fi: fix oops and move ->nr_slabs into CONFIG_SLUB_DEBUG]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
__free_slab does some diagnostics. The resetting of mapcount etc
in discard_slab() can interfere with debug processing. So move
the reset immediately before the page is freed.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Only output per cpu stats if the kernel is build for SMP.
Use a capital "C" as a leading character for the processor number
(same as the numa statistics that also use a capital letter "N").
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
count_partial() is used by both slabinfo and the sysfs proc support. Move
the function directly before the beginning of the sysfs code so that it can
be easily found. Rework the preprocessor conditional to take into account
that slub sysfs support depends on CONFIG_SYSFS *and* CONFIG_SLUB_DEBUG.
Make CONFIG_SLUB_STATS depend on CONFIG_SLUB_DEBUG and CONFIG_SYSFS. There
is no point of keeping statistics if no one can restrive them.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Move the definition of kmalloc_caches_dma() into a later #ifdef CONFIG_ZONE_DMA.
This saves one #ifdef and leaves us with a total of two #ifdefs for dma slab support.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
As spotted by kmemcheck, we need to initialize the per-CPU ->stat array before
using it.
[kmem_cache_cpu structures are usually allocated from arrays defined via
DEFINE_PER_CPU that are zeroed so we have not noticed this so far --cl].
Reported-by: Vegard Nossum <vegard.nossum@gmail.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Small typo in the patch recently merged to avoid the unused symbol
message for count_partial(). Discussion thread with confirmation of fix at
http://marc.info/?t=120696854400001&r=1&w=2
Typo in the check if we need the count_partial function that was
introduced by 53625b4204
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 3811dbf671.
The masking was not at all useless, and it was sensible. We handle
GFP_ZERO in the caller, and passing it down to any page allocator logic
is buggy and wrong.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Avoid warnings about unused functions if neither SLUB_DEBUG nor CONFIG_SLABINFO
is defined. This patch will be reversed when slab defrag is merged since slab
defrag requires count_partial() to determine the fragmentation status of
slab caches.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
The fallback path needs to enable interrupts like done for
the other page allocator calls. This was not necessary with
the alternate fast path since we handled irq enable/disable in
the slow path. The regular fastpath handles irq enable/disable
around calls to the slow path so we need to restore the proper
status before calling the page allocator from the slowpath.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
SLUB should pack even small objects nicely into cachelines if that is what
has been asked for. Use the same algorithm as SLAB for this.
The effect of this patch for a system with a cacheline size of 64
bytes is that the 24 byte sized slab caches will now put exactly
2 objects into a cacheline instead of 3 with some overlap into
the next cacheline. This reduces the object density in a 4k slab
from 170 to 128 objects (same as SLAB).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
The remote frees are in the freelist of the page and not in the
percpu freelist.
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
This patch fix possible NULL pointer dereference if kzalloc
failed. To be able to return proper error code the function
return type is changed to ssize_t (according to callees and
sysfs definitions).
Signed-off-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Slub is missing some NUMA support for large kmallocs. Provide that.
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
We only need to look up object from c->page->freelist once in
__slab_alloc().
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Group SLUB_DEBUG code together to reduce the number of #ifdefs. Move some
debug checks under the #ifdef.
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
The BUG_ONs are useless since the pointer derefs will lead to
NULL deref errors anyways. Some of the checks are not necessary
if no debugging is possible.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
No need to access the kmem_cache structure. We have the same value
in kmem_cache_cpu.
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Alloc debug processing is never called with a NULL object pointer.
No reason to check for NULL.
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
There is no page->offset anymore and also no associated limit on the number
of objects. The page->offset field was removed for 2.6.24. So the check
in kmem_cache_flags() is now also obsolete (should have been dropped
earlier, somehow a hunk vanished).
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-by: Christoph Lameter <clameter@sgi.com>
The sysfs callback is better named show_slab_objects since it is always
called from the xxx_show callbacks. We need the name for other purposes
later.
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
This only made sense for the alternate fastpath which was reverted last week.
Mathieu is working on a new version that addresses the fastpath issues but that
new code first needs to go through mm and it is not clear if we need the
unique end pointers with his new scheme.
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
This reverts commit 1f84260c8c, which is
suspected to be the reason for some very occasional and hard-to-trigger
crashes that usually look related to memory allocation (mostly reported
in networking, but since that's generally the most common source of
shortlived allocations - and allocations in interrupt contexts - that in
itself is not a big clue).
See for example
http://bugzilla.kernel.org/show_bug.cgi?id=9973http://lkml.org/lkml/2008/2/19/278
etc.
One promising suspicion for what the root cause of bug is (which also
explains why it's so hard to trigger in practice) came from Eric
Dumazet:
"I wonder how SLUB_FASTPATH is supposed to work, since it is affected
by a classical ABA problem of lockless algo.
cmpxchg_local(&c->freelist, object, object[c->offset]) can succeed,
while an interrupt came (on this cpu), and several allocations were
done, and one free was performed at the end of this interruption, so
'object' was recycled.
c->freelist can then contain the previous value (object), but
object[c->offset] was changed by IRQ.
We then put back in freelist an already allocated object."
but another reason for the revert is simply that everybody agrees that
this code was the main suspect just by virtue of the pattern of oopses.
Cc: Torsten Kaiser <just.for.lkml@googlemail.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we hand off PAGE_SIZEd kmallocs to the page allocator in the
mistaken belief that the page allocator can handle these allocations
effectively. However, measurements indicate a minimum slowdown by the
factor of 8 (and that is only SMP, NUMA is much worse) vs the slub fastpath
which causes regressions in tbench.
Increase the number of kmalloc caches by one so that we again handle 4k
kmallocs directly from slub. 4k page buffering for the page allocator
will be performed by slub like done by slab.
At some point the page allocator fastpath should be fixed. A lot of the kernel
would benefit from a faster ability to allocate a single page. If that is
done then the 4k allocs may again be forwarded to the page allocator and this
patch could be reverted.
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Slub already has two ways of allocating an object. One is via its own
logic and the other is via the call to kmalloc_large to hand off object
allocation to the page allocator. kmalloc_large is typically used
for objects >= PAGE_SIZE.
We can use that handoff to avoid failing if a higher order kmalloc slab
allocation cannot be satisfied by the page allocator. If we reach the
out of memory path then simply try a kmalloc_large(). kfree() can
already handle the case of an object that was allocated via the page
allocator and so this will work just fine (apart from object
accounting...).
For any kmalloc slab that already requires higher order allocs (which
makes it impossible to use the page allocator fastpath!)
we just use PAGE_ALLOC_COSTLY_ORDER to get the largest number of
objects in one go from the page allocator slowpath.
On a 4k platform this patch will lead to the following use of higher
order pages for the following kmalloc slabs:
8 ... 1024 order 0
2048 .. 4096 order 3 (4k slab only after the next patch)
We may waste some space if fallback occurs on a 2k slab but we
are always able to fallback to an order 0 alloc.
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Currently we determine the gfp flags to pass to the page allocator
each time a slab is being allocated.
Determine the bits to be set at the time the slab is created. Store
in a new allocflags field and add the flags in allocate_slab().
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
This adds a proper function for kmalloc page allocator pass-through. While it
simplifies any code that does slab tracing code a lot, I think it's a
worthwhile cleanup in itself.
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
fix checkpatch --file mm/slub.c errors and warnings.
$ q-code-quality-compare
errors lines of code errors/KLOC
mm/slub.c [before] 22 4204 5.2
mm/slub.c [after] 0 4210 0
no code changed:
text data bss dec hex filename
22195 8634 136 30965 78f5 slub.o.before
22195 8634 136 30965 78f5 slub.o.after
md5:
93cdfbec2d6450622163c590e1064358 slub.o.before.asm
93cdfbec2d6450622163c590e1064358 slub.o.after.asm
[clameter: rediffed against Pekka's cleanup patch, omitted
moves of the name of a function to the start of line]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Slub can use the non-atomic version to unlock because other flags will not
get modified with the lock held.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The statistics provided here allow the monitoring of allocator behavior but
at the cost of some (minimal) loss of performance. Counters are placed in
SLUB's per cpu data structure. The per cpu structure may be extended by the
statistics to grow larger than one cacheline which will increase the cache
footprint of SLUB.
There is a compile option to enable/disable the inclusion of the runtime
statistics and its off by default.
The slabinfo tool is enhanced to support these statistics via two options:
-D Switches the line of information displayed for a slab from size
mode to activity mode.
-A Sorts the slabs displayed by activity. This allows the display of
the slabs most important to the performance of a certain load.
-r Report option will report detailed statistics on
Example (tbench load):
slabinfo -AD ->Shows the most active slabs
Name Objects Alloc Free %Fast
skbuff_fclone_cache 33 111953835 111953835 99 99
:0000192 2666 5283688 5281047 99 99
:0001024 849 5247230 5246389 83 83
vm_area_struct 1349 119642 118355 91 22
:0004096 15 66753 66751 98 98
:0000064 2067 25297 23383 98 78
dentry 10259 28635 18464 91 45
:0000080 11004 18950 8089 98 98
:0000096 1703 12358 10784 99 98
:0000128 762 10582 9875 94 18
:0000512 184 9807 9647 95 81
:0002048 479 9669 9195 83 65
anon_vma 777 9461 9002 99 71
kmalloc-8 6492 9981 5624 99 97
:0000768 258 7174 6931 58 15
So the skbuff_fclone_cache is of highest importance for the tbench load.
Pretty high load on the 192 sized slab. Look for the aliases
slabinfo -a | grep 000192
:0000192 <- xfs_btree_cur filp kmalloc-192 uid_cache tw_sock_TCP
request_sock_TCPv6 tw_sock_TCPv6 skbuff_head_cache xfs_ili
Likely skbuff_head_cache.
Looking into the statistics of the skbuff_fclone_cache is possible through
slabinfo skbuff_fclone_cache ->-r option implied if cache name is mentioned
.... Usual output ...
Slab Perf Counter Alloc Free %Al %Fr
--------------------------------------------------
Fastpath 111953360 111946981 99 99
Slowpath 1044 7423 0 0
Page Alloc 272 264 0 0
Add partial 25 325 0 0
Remove partial 86 264 0 0
RemoteObj/SlabFrozen 350 4832 0 0
Total 111954404 111954404
Flushes 49 Refill 0
Deactivate Full=325(92%) Empty=0(0%) ToHead=24(6%) ToTail=1(0%)
Looks good because the fastpath is overwhelmingly taken.
skbuff_head_cache:
Slab Perf Counter Alloc Free %Al %Fr
--------------------------------------------------
Fastpath 5297262 5259882 99 99
Slowpath 4477 39586 0 0
Page Alloc 937 824 0 0
Add partial 0 2515 0 0
Remove partial 1691 824 0 0
RemoteObj/SlabFrozen 2621 9684 0 0
Total 5301739 5299468
Deactivate Full=2620(100%) Empty=0(0%) ToHead=0(0%) ToTail=0(0%)
Descriptions of the output:
Total: The total number of allocation and frees that occurred for a
slab
Fastpath: The number of allocations/frees that used the fastpath.
Slowpath: Other allocations
Page Alloc: Number of calls to the page allocator as a result of slowpath
processing
Add Partial: Number of slabs added to the partial list through free or
alloc (occurs during cpuslab flushes)
Remove Partial: Number of slabs removed from the partial list as a result of
allocations retrieving a partial slab or by a free freeing
the last object of a slab.
RemoteObj/Froz: How many times were remotely freed object encountered when a
slab was about to be deactivated. Frozen: How many times was
free able to skip list processing because the slab was in use
as the cpuslab of another processor.
Flushes: Number of times the cpuslab was flushed on request
(kmem_cache_shrink, may result from races in __slab_alloc)
Refill: Number of times we were able to refill the cpuslab from
remotely freed objects for the same slab.
Deactivate: Statistics how slabs were deactivated. Shows how they were
put onto the partial list.
In general fastpath is very good. Slowpath without partial list processing is
also desirable. Any touching of partial list uses node specific locks which
may potentially cause list lock contention.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Provide an alternate implementation of the SLUB fast paths for alloc
and free using cmpxchg_local. The cmpxchg_local fast path is selected
for arches that have CONFIG_FAST_CMPXCHG_LOCAL set. An arch should only
set CONFIG_FAST_CMPXCHG_LOCAL if the cmpxchg_local is faster than an
interrupt enable/disable sequence. This is known to be true for both
x86 platforms so set FAST_CMPXCHG_LOCAL for both arches.
Currently another requirement for the fastpath is that the kernel is
compiled without preemption. The restriction will go away with the
introduction of a new per cpu allocator and new per cpu operations.
The advantages of a cmpxchg_local based fast path are:
1. Potentially lower cycle count (30%-60% faster)
2. There is no need to disable and enable interrupts on the fast path.
Currently interrupts have to be disabled and enabled on every
slab operation. This is likely avoiding a significant percentage
of interrupt off / on sequences in the kernel.
3. The disposal of freed slabs can occur with interrupts enabled.
The alternate path is realized using #ifdef's. Several attempts to do the
same with macros and inline functions resulted in a mess (in particular due
to the strange way that local_interrupt_save() handles its argument and due
to the need to define macros/functions that sometimes disable interrupts
and sometimes do something else).
[clameter: Stripped preempt bits and disabled fastpath if preempt is enabled]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We use a NULL pointer on freelists to signal that there are no more objects.
However the NULL pointers of all slabs match in contrast to the pointers to
the real objects which are in different ranges for different slab pages.
Change the end pointer to be a pointer to the first object and set bit 0.
Every slab will then have a different end pointer. This is necessary to ensure
that end markers can be matched to the source slab during cmpxchg_local.
Bring back the use of the mapping field by SLUB since we would otherwise have
to call a relatively expensive function page_address() in __slab_alloc(). Use
of the mapping field allows avoiding a call to page_address() in various other
functions as well.
There is no need to change the page_mapping() function since bit 0 is set on
the mapping as also for anonymous pages. page_mapping(slab_page) will
therefore still return NULL although the mapping field is overloaded.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
gcc 4.2 spits out an annoying warning if one casts a const void *
pointer to a void * pointer. No warning is generated if the
conversion is done through an assignment.
Signed-off-by: Christoph Lameter <clameter@sgi.com>