This reverts commit f64da958df.
Andi Kleen is unhappy with the changes, and they really do not seem
worth it. IPMI could use DIE_NMI_IPI instead of the new callback, even
though that ends up having its own set of problems too, mainly because
the IPMI code cannot really know the NMI was from IPMI or not.
Manually fix up conflicts in arch/x86_64/kernel/traps.c and
drivers/char/ipmi/ipmi_watchdog.c.
Cc: Andi Kleen <ak@suse.de>
Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Cc: Corey Minyard <minyard@acm.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch wires the eventfd system call to the x86 architectures.
Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch wires the timerfd system call to the x86 architectures.
Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Andi Kleen <ak@suse.de>
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch wires the signalfd system call to the x86 architectures.
Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These files are almost all the same.
This patch could be made even simpler if we don't mind POLLREMOVE turning
up in a few architectures that didn't have it previously (which should be
OK as POLLREMOVE is not used anywhere in the current tree).
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add epoll_pwait()
(akpm: stolen from Andi's queue, because I want to send the signalfd patches
which also add syscalls. Not sure what the __IGNORE_getcpu is for).
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
o x86_64 kernel needs to be compiled for 2MB aligned addresses. Currently
we are using BUILD_BUG_ON() to warn the user if he has not done so. But
looks like folks are not finding message very intutive and don't open
the respective c file to find problem source. (Bug 8439)
arch/x86_64/kernel/head64.c: In function 'x86_64_start_kernel':
arch/x86_64/kernel/head64.c:70: error: size of array 'type name' is negative
o Using preprocessor directive #error to print a better message if
CONFIG_PHYSICAL_START is not aligned to 2MB boundary.
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Cc: Andi Kleen <ak@suse.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A recent change makes my Dell 1501 hang on boot. It's an AMD MK-36. I use
an x86_64 kernel. It is 100% reproducible.
I debugged this problem a bit and my compiler[1]interprets the =A constraint
as %rax instead of %edx:%eax on x86_64 which causes the problem. The appended
patch provides a workaround for this and fixed the hang on my machine.
[1] gcc version 4.1.3 20070429 (prerelease) (Debian 4.1.2-5)
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Benny Halevy <bhalevy@panasas.com>
Cc: Pete Zaitcev <zaitcev@redhat.com>
Cc: "Joerg Roedel" <joerg.roedel@amd.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This finally renames the thread_info field in task structure to stack, so that
the assumptions about this field are gone and archs have more freedom about
placing the thread_info structure.
Nonbroken archs which have a proper thread pointer can do the access to both
current thread and task structure via a single pointer.
It'll allow for a few more cleanups of the fork code, from which e.g. ia64
could benefit.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
[akpm@linux-foundation.org: build fix]
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ian Molton <spyro@f2s.com>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Greg Ungerer <gerg@uclinux.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Richard Curnow <rc@rc0.org.uk>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp>
Cc: Andi Kleen <ak@muc.de>
Cc: Chris Zankel <chris@zankel.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently a few direct accesses to the thread_info in the task structure snuck
back, so this wraps them with the appropriate wrapper.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hard_smp_processor_id used to be just a macro that hard-coded
hard_smp_processor_id to 0 in the non SMP case. When booting non SMP kernels
on hardware where the boot ioapic id is not 0 this turns out to be a problem.
This is happens frequently in the case of kdump and once in a great while in
the case of real hardware.
Use the APIC to determine the hardware processor id in both UP and SMP kernels
to fix this issue.
Notice that hard_smp_processor_id is only used by SMP code or by code that
works with apics so we do not need to handle the case when apics are not
present and hard_smp_processor_id should never be called there.
Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Cc: "Luck, Tony" <tony.luck@intel.com>
Acked-by: Andi Kleen <ak@suse.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the advent of kdump, the assumption that the boot CPU when booting an UP
kernel is always the CPU with a particular hardware ID (often 0) (usually
referred to as BSP on some architectures) is not valid anymore. The reason
being that the dump capture kernel boots on the crashed CPU (the CPU that
invoked crash_kexec), which may be or may not be that particular CPU.
Move definition of hard_smp_processor_id for the UP case to
architecture-specific code ("asm/smp.h") where it belongs, so that each
architecture can provide its own implementation.
Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Cc: "Luck, Tony" <tony.luck@intel.com>
Acked-by: Andi Kleen <ak@suse.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'hwmon-for-linus' of git://jdelvare.pck.nerim.net/jdelvare-2.6: (32 commits)
Use menuconfig objects - hwmon
hwmon/smsc47b397: Use dynamic sysfs callbacks
hwmon/smsc47b397: Convert to a platform driver
hwmon/w83781d: Deprecate W83627HF support
hwmon/w83781d: Use dynamic sysfs callbacks
hwmon/w83781d: Be less i2c_client-centric
hwmon/w83781d: Clean up conversion macros
hwmon/w83781d: No longer use i2c-isa
hwmon/ams: Do not print error on systems without apple motion sensor
hwmon/ams: Fix I2C read retry logic
hwmon: New AD7416, AD7417 and AD7418 driver
hwmon/coretemp: Add documentation
hwmon: New coretemp driver
i386: Use functions from library in msr driver
i386: Add safe variants of rdmsr_on_cpu and wrmsr_on_cpu
hwmon/lm75: Use dynamic sysfs callbacks
hwmon/lm78: Use dynamic sysfs callbacks
hwmon/lm78: Be less i2c_client-centric
hwmon/lm78: No longer use i2c-isa
hwmon: New max6650 driver
...
Make x86 COM ports into platform devices and don't probe for them
if we have PNP.
This prevents double discovery, where a device was found both by
the legacy probe and by 8250_pnp, e.g.,
serial8250: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A
00:02: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A
This also means IRDA devices without a UART PNP ID will no longer be
claimed by the serial driver, which might require changes in IRDA
drivers and administration.
In addition to this patch, you may need to configure a setserial init
script, e.g., /etc/init.d/setserial, so it doesn't poke legacy UART
stuff back in. On Debian, "dpkg-reconfigure setserial" with the "kernel"
option does this.
To force the old legacy probe behavior even when we have PNPBIOS or
ACPI, load the new legacy_serial module (or build 8250 static) with
the "legacy_serial.force" option.
[akpm@linux-foundation.org: fix makefiles]
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Cc: Keith Owens <kaos@ocs.com.au>
Cc: Len Brown <lenb@kernel.org>
Cc: Adam Belay <ambx1@neo.rr.com>
Cc: Matthieu CASTET <castet.matthieu@free.fr>
Cc: Jean Tourrilhes <jt@hpl.hp.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Ville Syrjala <syrjala@sci.fi>
Cc: Russell King <rmk+serial@arm.linux.org.uk>
Cc: Samuel Ortiz <samuel@sortiz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
i386:
Rearrange the cmpxchg code to allow atomic.h to get it without needing to
include system.h. This kills warnings in the UML build from atomic.h about
implicit declarations of cmpxchg symbols. The i386 build presumably isn't
seeing this because a separate inclusion of system.h is covering it over.
The cmpxchg stuff is moved to asm-i386/cmpxchg.h, with an include left in
system.h for the benefit of generic code which expects cmpxchg there.
Meanwhile, atomic.h includes cmpxchg.h.
This causes no noticable damage to the i386 build.
x86_64:
Move cmpxchg into its own header. atomic.h already included system.h, so
this is changed to include cmpxchg.h.
This is purely cleanup - it's not fixing any warnings - so if the x86_64
system.h isn't considered as cleanup-worthy as i386, then this can be
dropped.
It causes no noticable damage to the x86_64 build.
uml:
The i386 and x86_64 cmpxchg patches require an asm-um/cmpxchg.h for the
UML build.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
tas() has no users, so get rid of it.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: <linux-arch@vger.kernel.org>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
atomic_add_unless as inline. Remove system.h atomic.h circular dependency.
I agree (with Andi Kleen) this typeof is not needed and more error
prone. All the original atomic.h code that uses cmpxchg (which includes
the atomic_add_unless) uses defines instead of inline functions,
probably to circumvent a circular dependency between system.h and
atomic.h on powerpc (which my patch addresses). Therefore, it makes
sense to use inline functions that will provide type checking.
atomic_add_unless as inline. Remove system.h atomic.h circular dependency.
Digging into the FRV architecture shows me that it is also affected by
such a circular dependency. Here is the diff applying this against the
rest of my atomic.h patches.
It applies over the atomic.h standardization patches.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement utimensat(2) which is an extension to futimesat(2) in that it
a) supports nano-second resolution for the timestamps
b) allows to selectively ignore the atime/mtime value
c) allows to selectively use the current time for either atime or mtime
d) supports changing the atime/mtime of a symlink itself along the lines
of the BSD lutimes(3) functions
For this change the internally used do_utimes() functions was changed to
accept a timespec time value and an additional flags parameter.
Additionally the sys_utime function was changed to match compat_sys_utime
which already use do_utimes instead of duplicating the work.
Also, the completely missing futimensat() functionality is added. We have
such a function in glibc but we have to resort to using /proc/self/fd/* which
not everybody likes (chroot etc).
Test application (the syscall number will need per-arch editing):
#include <errno.h>
#include <fcntl.h>
#include <time.h>
#include <sys/time.h>
#include <stddef.h>
#include <syscall.h>
#define __NR_utimensat 280
#define UTIME_NOW ((1l << 30) - 1l)
#define UTIME_OMIT ((1l << 30) - 2l)
int
main(void)
{
int status = 0;
int fd = open("ttt", O_RDWR|O_CREAT|O_EXCL, 0666);
if (fd == -1)
error (1, errno, "failed to create test file \"ttt\"");
struct stat64 st1;
if (fstat64 (fd, &st1) != 0)
error (1, errno, "fstat failed");
struct timespec t[2];
t[0].tv_sec = 0;
t[0].tv_nsec = 0;
t[1].tv_sec = 0;
t[1].tv_nsec = 0;
if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0)
error (1, errno, "utimensat failed");
struct stat64 st2;
if (fstat64 (fd, &st2) != 0)
error (1, errno, "fstat failed");
if (st2.st_atim.tv_sec != 0 || st2.st_atim.tv_nsec != 0)
{
puts ("atim not reset to zero");
status = 1;
}
if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0)
{
puts ("mtim not reset to zero");
status = 1;
}
if (status != 0)
goto out;
t[0] = st1.st_atim;
t[1].tv_sec = 0;
t[1].tv_nsec = UTIME_OMIT;
if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0)
error (1, errno, "utimensat failed");
if (fstat64 (fd, &st2) != 0)
error (1, errno, "fstat failed");
if (st2.st_atim.tv_sec != st1.st_atim.tv_sec
|| st2.st_atim.tv_nsec != st1.st_atim.tv_nsec)
{
puts ("atim not set");
status = 1;
}
if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0)
{
puts ("mtim changed from zero");
status = 1;
}
if (status != 0)
goto out;
t[0].tv_sec = 0;
t[0].tv_nsec = UTIME_OMIT;
t[1] = st1.st_mtim;
if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0)
error (1, errno, "utimensat failed");
if (fstat64 (fd, &st2) != 0)
error (1, errno, "fstat failed");
if (st2.st_atim.tv_sec != st1.st_atim.tv_sec
|| st2.st_atim.tv_nsec != st1.st_atim.tv_nsec)
{
puts ("mtim changed from original time");
status = 1;
}
if (st2.st_mtim.tv_sec != st1.st_mtim.tv_sec
|| st2.st_mtim.tv_nsec != st1.st_mtim.tv_nsec)
{
puts ("mtim not set");
status = 1;
}
if (status != 0)
goto out;
sleep (2);
t[0].tv_sec = 0;
t[0].tv_nsec = UTIME_NOW;
t[1].tv_sec = 0;
t[1].tv_nsec = UTIME_NOW;
if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0)
error (1, errno, "utimensat failed");
if (fstat64 (fd, &st2) != 0)
error (1, errno, "fstat failed");
struct timeval tv;
gettimeofday(&tv,NULL);
if (st2.st_atim.tv_sec <= st1.st_atim.tv_sec
|| st2.st_atim.tv_sec > tv.tv_sec)
{
puts ("atim not set to NOW");
status = 1;
}
if (st2.st_mtim.tv_sec <= st1.st_mtim.tv_sec
|| st2.st_mtim.tv_sec > tv.tv_sec)
{
puts ("mtim not set to NOW");
status = 1;
}
if (symlink ("ttt", "tttsym") != 0)
error (1, errno, "cannot create symlink");
t[0].tv_sec = 0;
t[0].tv_nsec = 0;
t[1].tv_sec = 0;
t[1].tv_nsec = 0;
if (syscall(__NR_utimensat, AT_FDCWD, "tttsym", t, AT_SYMLINK_NOFOLLOW) != 0)
error (1, errno, "utimensat failed");
if (lstat64 ("tttsym", &st2) != 0)
error (1, errno, "lstat failed");
if (st2.st_atim.tv_sec != 0 || st2.st_atim.tv_nsec != 0)
{
puts ("symlink atim not reset to zero");
status = 1;
}
if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0)
{
puts ("symlink mtim not reset to zero");
status = 1;
}
if (status != 0)
goto out;
t[0].tv_sec = 1;
t[0].tv_nsec = 0;
t[1].tv_sec = 1;
t[1].tv_nsec = 0;
if (syscall(__NR_utimensat, fd, NULL, t, 0) != 0)
error (1, errno, "utimensat failed");
if (fstat64 (fd, &st2) != 0)
error (1, errno, "fstat failed");
if (st2.st_atim.tv_sec != 1 || st2.st_atim.tv_nsec != 0)
{
puts ("atim not reset to one");
status = 1;
}
if (st2.st_mtim.tv_sec != 1 || st2.st_mtim.tv_nsec != 0)
{
puts ("mtim not reset to one");
status = 1;
}
if (status == 0)
puts ("all OK");
out:
close (fd);
unlink ("ttt");
unlink ("tttsym");
return status;
}
[akpm@linux-foundation.org: add missing i386 syscall table entry]
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Cc: Alexey Dobriyan <adobriyan@openvz.org>
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Eliminate 19439 (!!) sparse warnings like:
include/linux/mm.h:321:22: warning: constant 0xffff810000000000 is so big it is unsigned long
Eliminate 56 sparse warnings like:
arch/x86_64/kernel/setup.c:248:16: warning: constant 0xffffffff80000000 is so big it is unsigned long
Eliminate 5 sparse warnings like:
arch/x86_64/kernel/module.c:49:13: warning: constant 0xfffffffffff00000 is so big it is unsigned long
Eliminate 23 sparse warnings like:
arch/x86_64/mm/init.c:551:37: warning: constant 0xffffc20000000000 is so big it is unsigned long
Eliminate 6 sparse warnings like:
arch/x86_64/kernel/module.c:49:13: warning: constant 0xffffffff88000000 is so big it is unsigned long
Eliminate 23 sparse warnings like:
arch/x86_64/mm/init.c:552:6: warning: constant 0xffffe1ffffffffff is so big it is unsigned long
Eliminate 3 sparse warnings like:
arch/x86_64/kernel/e820.c:186:17: warning: constant 0x3fffffffffff is so big it is long
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make a global linux/const.h header file instead of having multiple,
per-arch files, and convert current users of asm/const.h to use
linux/const.h.
Built on x86_64 and sparc64.
[akpm@linux-foundation.org: fix include/asm-x86_64/Kbuild]
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most architectures defined three macros, MK_IOSPACE_PFN(), GET_IOSPACE()
and GET_PFN() in pgtable.h. However, the only callers of any of these
macros are in Sparc specific code, either in arch/sparc, arch/sparc64 or
drivers/sbus.
This patch removes the redundant macros from all architectures except
sparc and sparc64.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the size of the per-cpu region reserved to save crash notes is
set by the per-architecture value MAX_NOTE_BYTES. Which in turn is
currently set to 1024 on all supported architectures.
While testing ia64 I recently discovered that this value is in fact too
small. The particular setup I was using actually needs 1172 bytes. This
lead to very tedious failure mode where the tail of one elf note would
overwrite the head of another if they ended up being alocated sequentially
by kmalloc, which was often the case.
It seems to me that a far better approach is to caclculate the size that
the area needs to be. This patch does just that.
If a simpler stop-gap patch for ia64 to be squeezed into 2.6.21(.X) is
needed then this should be as easy as making MAX_NOTE_BYTES larger in
arch/asm-ia64/kexec.h. Perhaps 2048 would be a good choice. However, I
think that the approach in this patch is a much more robust idea.
Acked-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Simon Horman <horms@verge.net.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch moves the die notifier handling to common code. Previous
various architectures had exactly the same code for it. Note that the new
code is compiled unconditionally, this should be understood as an appel to
the other architecture maintainer to implement support for it aswell (aka
sprinkling a notify_die or two in the proper place)
arm had a notifiy_die that did something totally different, I renamed it to
arm_notify_die as part of the patch and made it static to the file it's
declared and used at. avr32 used to pass slightly less information through
this interface and I brought it into line with the other architectures.
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: fix vmalloc_sync_all bustage]
[bryan.wu@analog.com: fix vmalloc_sync_all in nommu]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: <linux-arch@vger.kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adds the needed TCGETS2/TCSETS2 ioctl calls, structures, defines and the like.
Tested against the test suite and passes. Other platforms should need
roughly the same change.
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Convert over to the new NMI handling for getting IPMI watchdog timeouts via an
NMI. This add config options to know if there is the ability to receive NMIs
and if it has an NMI post processing call. Then it modifies the IPMI watchdog
to take advantage of this so that it can know if an NMI comes in.
It also adds testing that the IPMI NMI watchdog works.
Signed-off-by: Corey Minyard <minyard@acm.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add safe (exception handled) variants of rdmsr_on_cpu and wrmsr_on_cpu.
You should use these when the target MSR may not actually exist, as
doing so could trigger an exception which the regular functions do not
handle. The safe variants are slower, though.
The upcoming coretemp hardware monitoring driver will need this.
Signed-off-by: Rudolf Marek <r.marek@assembler.cz>
Cc: Alexey Dobriyan <adobriyan@openvz.org>
Cc: Dave Jones <davej@redhat.com>
Signed-off-by: Jean Delvare <khali@linux-fr.org>
This was broken. It adds complexity, for no good reason. Rather than
separate __pa() and __pa_symbol(), we should deprecate __pa_symbol(),
and preferably __pa() too - and just use "virt_to_phys()" instead, which
is more readable and has nicer semantics.
However, right now, just undo the separation, and make __pa_symbol() be
the exact same as __pa(). That fixes the bugs this patch introduced,
and we can do the fairly obvious cleanups later.
Do the new __phys_addr() function (which is now the actual workhorse for
the unified __pa()/__pa_symbol()) as a real external function, that way
all the potential issues with compile/link-time optimizations of
constant symbol addresses go away, and we can also, if we choose to, add
more sanity-checking of the argument.
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@in.ibm.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://one.firstfloor.org/home/andi/git/linux-2.6: (231 commits)
[PATCH] i386: Don't delete cpu_devs data to identify different x86 types in late_initcall
[PATCH] i386: type may be unused
[PATCH] i386: Some additional chipset register values validation.
[PATCH] i386: Add missing !X86_PAE dependincy to the 2G/2G split.
[PATCH] x86-64: Don't exclude asm-offsets.c in Documentation/dontdiff
[PATCH] i386: avoid redundant preempt_disable in __unlazy_fpu
[PATCH] i386: white space fixes in i387.h
[PATCH] i386: Drop noisy e820 debugging printks
[PATCH] x86-64: Fix allnoconfig error in genapic_flat.c
[PATCH] x86-64: Shut up warnings for vfat compat ioctls on other file systems
[PATCH] x86-64: Share identical video.S between i386 and x86-64
[PATCH] x86-64: Remove CONFIG_REORDER
[PATCH] x86-64: Print type and size correctly for unknown compat ioctls
[PATCH] i386: Remove copy_*_user BUG_ONs for (size < 0)
[PATCH] i386: Little cleanups in smpboot.c
[PATCH] x86-64: Don't enable NUMA for a single node in K8 NUMA scanning
[PATCH] x86: Use RDTSCP for synchronous get_cycles if possible
[PATCH] i386: Add X86_FEATURE_RDTSCP
[PATCH] i386: Implement X86_FEATURE_SYNC_RDTSC on i386
[PATCH] i386: Implement alternative_io for i386
...
Fix up trivial conflict in include/linux/highmem.h manually.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* master.kernel.org:/pub/scm/linux/kernel/git/gregkh/pci-2.6: (59 commits)
PCI: Free resource files in error path of pci_create_sysfs_dev_files()
pci-quirks: disable MSI on RS400-200 and RS480
PCI hotplug: Use menuconfig objects
PCI: ZT5550 CPCI Hotplug driver fix
PCI: rpaphp: Remove semaphores
PCI: rpaphp: Ensure more pcibios_add/pcibios_remove symmetry
PCI: rpaphp: Use pcibios_remove_pci_devices() symmetrically
PCI: rpaphp: Document is_php_dn()
PCI: rpaphp: Document find_php_slot()
PCI: rpaphp: Rename rpaphp_register_pci_slot() to rpaphp_enable_slot()
PCI: rpaphp: refactor tail call to rpaphp_register_slot()
PCI: rpaphp: remove rpaphp_set_attention_status()
PCI: rpaphp: remove print_slot_pci_funcs()
PCI: rpaphp: Remove setup_pci_slot()
PCI: rpaphp: remove a call that does nothing but a pointer lookup
PCI: rpaphp: Remove another wrappered function
PCI: rpaphp: Remve another call that is a wrapper
PCI: rpaphp: remove a function that does nothing but wrap debug printks
PCI: rpaphp: Remove un-needed goto
PCI: rpaphp: Fix a memleak; slot->location string was never freed
...
Most architectures' scatterlist.h use the type dma_addr_t, but omit to
include <asm/types.h> which defines it. This could lead to build failures,
so let's add the missing includes.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Use safe_apic_wait_icr_idle to check ICR idle bit if the vector is
NMI_VECTOR to avoid potential hangups in the event of crash when kdump
tries to stop the other CPUs.
Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Signed-off-by: Andi Kleen <ak@suse.de>
2007-05-02 19:27:18 +02:00
Fernando Luis [** ISO-8859-1 charset **] VzquezCao
Implement __send_IPI_dest_field which can be used to send IPIs when the
"destination shorthand" field of the ICR is set to 00 (destination
field). Use it whenever possible.
Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Signed-off-by: Andi Kleen <ak@suse.de>
apic_wait_icr_idle looks like this:
static __inline__ void apic_wait_icr_idle(void)
{
while (apic_read(APIC_ICR) & APIC_ICR_BUSY)
cpu_relax();
}
The busy loop in this function would not be problematic if the
corresponding status bit in the ICR were always updated, but that does
not seem to be the case under certain crash scenarios. Kdump uses an IPI
to stop the other CPUs in the event of a crash, but when any of the
other CPUs are locked-up inside the NMI handler the CPU that sends the
IPI will end up looping forever in the ICR check, effectively
hard-locking the whole system.
Quoting from Intel's "MultiProcessor Specification" (Version 1.4), B-3:
"A local APIC unit indicates successful dispatch of an IPI by
resetting the Delivery Status bit in the Interrupt Command
Register (ICR). The operating system polls the delivery status
bit after sending an INIT or STARTUP IPI until the command has
been dispatched.
A period of 20 microseconds should be sufficient for IPI dispatch
to complete under normal operating conditions. If the IPI is not
successfully dispatched, the operating system can abort the
command. Alternatively, the operating system can retry the IPI by
writing the lower 32-bit double word of the ICR. This “time-out”
mechanism can be implemented through an external interrupt, if
interrupts are enabled on the processor, or through execution of
an instruction or time-stamp counter spin loop."
Intel's documentation suggests the implementation of a time-out
mechanism, which, by the way, is already being open-coded in some parts
of the kernel that tinker with ICR.
Create a apic_wait_icr_idle replacement that implements the time-out
mechanism and that can be used to solve the aforementioned problem.
AK: moved both functions out of line
AK: Added improved loop from Keith Owens
Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Signed-off-by: Andi Kleen <ak@suse.de>
Applied fix by Andew Morton:
http://lkml.org/lkml/2007/4/8/88 - Fix `make headers_check'.
AMD and Intel x86 CPU manuals state that it is the responsibility of
system software to initialize and maintain MTRR consistency across
all processors in Multi-Processing Environments.
Quote from page 188 of the AMD64 System Programming manual (Volume 2):
7.6.5 MTRRs in Multi-Processing Environments
"In multi-processing environments, the MTRRs located in all processors must
characterize memory in the same way. Generally, this means that identical
values are written to the MTRRs used by the processors." (short omission here)
"Failure to do so may result in coherency violations or loss of atomicity.
Processor implementations do not check the MTRR settings in other processors
to ensure consistency. It is the responsibility of system software to
initialize and maintain MTRR consistency across all processors."
Current Linux MTRR code already implements the above in the case that the
BIOS does not properly initialize MTRRs on the secondary processors,
but the case where the fixed-range MTRRs of the boot processor are changed
after Linux started to boot, before the initialsation of a secondary
processor, is not handled yet.
In this case, secondary processors are currently initialized by Linux
with MTRRs which the boot processor had very early, when mtrr_bp_init()
did run, but not with the MTRRs which the boot processor uses at the
time when that secondary processors is actually booted,
causing differing MTRR contents on the secondary processors.
Such situation happens on Acer Ferrari 1000 and 5000 notebooks where the
BIOS enables and sets AMD-specific IORR bits in the fixed-range MTRRs
of the boot processor when it transitions the system into ACPI mode.
The SMI handler of the BIOS does this in SMM, entered while Linux ACPI
code runs acpi_enable().
Other occasions where the SMI handler of the BIOS may change bits in
the MTRRs could occur as well. To initialize newly booted secodary
processors with the fixed-range MTRRs which the boot processor uses
at that time, this patch saves the fixed-range MTRRs of the boot
processor before new secondary processors are started. When the
secondary processors run their Linux initialisation code, their
fixed-range MTRRs will be updated with the saved fixed-range MTRRs.
If CONFIG_MTRR is not set, we define mtrr_save_state
as an empty statement because there is nothing to do.
Possible TODOs:
*) CPU-hotplugging outside of SMP suspend/resume is not yet tested
with this patch.
*) If, even in this case, an AP never runs i386/do_boot_cpu or x86_64/cpu_up,
then the calls to mtrr_save_state() could be replaced by calls to
mtrr_save_fixed_ranges(NULL) and mtrr_save_state() would not be
needed.
That would need either verification of the CPU-hotplug code or
at least a test on a >2 CPU machine.
*) The MTRRs of other running processors are not yet checked at this
time but it might be interesting to syncronize the MTTRs of all
processors before booting. That would be an incremental patch,
but of rather low priority since there is no machine known so
far which would require this.
AK: moved prototypes on x86-64 around to fix warnings
Signed-off-by: Bernhard Kaindl <bk@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Cc: Dave Jones <davej@codemonkey.org.uk>
In this current implementation which is used in other patches,
mtrr_save_fixed_ranges() accepts a dummy void pointer because
in the current implementation of one of these patches, this
function may be called from smp_call_function_single() which
requires that this function takes a void pointer argument.
This function calls get_fixed_ranges(), passing mtrr_state.fixed_ranges
which is the element of the static struct which stores our current
backup of the fixed-range MTRR values which all CPUs shall be
using.
Because mtrr_save_fixed_ranges calls get_fixed_ranges after
kernel initialisation time, __init needs to be removed from
the declaration of get_fixed_ranges().
If CONFIG_MTRR is not set, we define mtrr_save_fixed_ranges
as an empty statement because there is nothing to do.
AK: Moved prototypes for x86-64 around to fix warnings
Signed-off-by: Bernhard Kaindl <bk@suse.de>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andi Kleen <ak@suse.de>
Cc: Dave Jones <davej@codemonkey.org.uk>
The other symbols used to delineate the alt-instructions sections have the
form __foo/__foo_end. Rename parainstructions to match.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add hooks to allow a paravirt implementation to track the lifetime of
an mm. Paravirtualization requires three hooks, but only two are
needed in common code. They are:
arch_dup_mmap, which is called when a new mmap is created at fork
arch_exit_mmap, which is called when the last process reference to an
mm is dropped, which typically happens on exit and exec.
The third hook is activate_mm, which is called from the arch-specific
activate_mm() macro/function, and so doesn't need stub versions for
other architectures. It's called when an mm is first used.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: linux-arch@vger.kernel.org
Cc: James Bottomley <James.Bottomley@SteelEye.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
This patch is based on Rusty's recent cleanup of the EFLAGS-related
macros; it extends the same kind of cleanup to control registers and
MSRs.
It also unifies these between i386 and x86-64; at least with regards
to MSRs, the two had definitely gotten out of sync.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Andi Kleen <ak@suse.de>
It doesn't put the CPU into deeper sleep states, so it's better to use the standard
idle loop to save power. But allow to reenable it anyways for benchmarking.
I also removed the obsolete idle=halt on i386
Cc: andreas.herrmann@amd.com
Signed-off-by: Andi Kleen <ak@suse.de>
Most of asm-x86_64/bugs.h is code which should be in a C file, so put it there.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
As per i386 patch: move X86_EFLAGS_IF et al out to a new header:
processor-flags.h, so we can include it from irqflags.h and use it in
raw_irqs_disabled_flags().
As a side-effect, we could now use these flags in .S files.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andi Kleen <ak@suse.de>
Rather than using a single constant PERCPU_ENOUGH_ROOM, compute it as
the sum of kernel_percpu + PERCPU_MODULE_RESERVE. This is now common
to all architectures; if an architecture wants to set
PERCPU_ENOUGH_ROOM to something special, then it may do so (ia64 is
the only one which does).
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Andi Kleen <ak@suse.de>
- there's no reason for duplicating the prototype from
include/linux/syscalls.h in include/asm-x86_64/unistd.h
- every file should #include the headers containing the prototypes for
it's global functions
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andi Kleen <ak@suse.de>