The patch allows physical bring-up of new processors (not initially present
in the configuration) from facilities such as driver/utility implemented on
a platform. The actual method of making processors available is up to the
platform implementation.
Signed-off-by: Natalie Protasevich <Natalie.Protasevich@unisys.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Zwane Mwaikambo <zwane@holomorphy.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Most of these guys are simply not needed (pulled by other stuff
via asm-i386/hardirq.h). One that is not entirely useless is hilarious -
arch/i386/oprofile/nmi_timer_int.c includes linux/irq.h... as a way to
get linux/errno.h
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Use the add_taint() interface for setting tainted bit flags instead of
doing it manually.
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Replace schedule_timeout() with msleep() to guarantee the task delays as
expected.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Domen Puncer <domen@coderock.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
for_each_cpu walks through all processors in cpu_possible_map, which is
defined as cpu_callout_map on i386 and isn't initialised until all
processors have been booted. This breaks things which do for_each_cpu
iterations early during boot. So, define cpu_possible_map as a bitmap with
NR_CPUS bits populated. This was triggered by a patch i'm working on which
does alloc_percpu before bringing up secondary processors.
From: Alexander Nyberg <alexn@telia.com>
i386-boottime-for_each_cpu-broken.patch
i386-boottime-for_each_cpu-broken-fix.patch
The SMP version of __alloc_percpu checks the cpu_possible_map before
allocating memory for a certain cpu. With the above patches the BSP cpuid
is never set in cpu_possible_map which breaks CONFIG_SMP on uniprocessor
machines (as soon as someone tries to dereference something allocated via
__alloc_percpu, which in fact is never allocated since the cpu is not set
in cpu_possible_map).
Signed-off-by: Zwane Mwaikambo <zwane@arm.linux.org.uk>
Signed-off-by: Alexander Nyberg <alexn@telia.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add a clone operation for pgd updates.
This helps complete the encapsulation of updates to page tables (or pages
about to become page tables) into accessor functions rather than using
memcpy() to duplicate them. This is both generally good for consistency
and also necessary for running in a hypervisor which requires explicit
updates to page table entries.
The new function is:
clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
dst - pointer to pgd range anwhere on a pgd page
src - ""
count - the number of pgds to copy.
dst and src can be on the same page, but the range must not overlap
and must not cross a page boundary.
Note that I ommitted using this call to copy pgd entries into the
software suspend page root, since this is not technically a live paging
structure, rather it is used on resume from suspend. CC'ing Pavel in case
he has any feedback on this.
Thanks to Chris Wright for noticing that this could be more optimal in
PAE compiles by eliminating the memset.
Signed-off-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add a new section called ".data.read_mostly" for data items that are read
frequently and rarely written to like cpumaps etc.
If these maps are placed in the .data section then these frequenly read
items may end up in cachelines with data is is frequently updated. In that
case all processors in an SMP system must needlessly reload the cachelines
again and again containing elements of those frequently used variables.
The ability to share these cachelines will allow each cpu in an SMP system
to keep local copies of those shared cachelines thereby optimizing
performance.
Signed-off-by: Alok N Kataria <alokk@calsoftinc.com>
Signed-off-by: Shobhit Dayal <shobhit@calsoftinc.com>
Signed-off-by: Christoph Lameter <christoph@scalex86.org>
Signed-off-by: Shai Fultheim <shai@scalex86.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Clean CPU states in order to reuse smp boot code for CPU hotplug.
Signed-off-by: Li Shaohua<shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Trival patch for CPU hotplug. In CPU identify part, only did cleaup for intel
CPUs. Need do for other CPUs if they support S3 SMP.
Signed-off-by: Li Shaohua<shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make sibling map init per-cpu. Hotplug CPU may change the map at runtime.
Signed-off-by: Li Shaohua<shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make SEP init per-cpu, so it is hotplug safe.
Signed-off-by: Li Shaohua<shaohua.li@intel.com>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
(The i386 CPU hotplug patch provides infrastructure for some work which Pavel
is doing as well as for ACPI S3 (suspend-to-RAM) work which Li Shaohua
<shaohua.li@intel.com> is doing)
The following provides i386 architecture support for safely unregistering and
registering processors during runtime, updated for the current -mm tree. In
order to avoid dumping cpu hotplug code into kernel/irq/* i dropped the
cpu_online check in do_IRQ() by modifying fixup_irqs(). The difference being
that on cpu offline, fixup_irqs() is called before we clear the cpu from
cpu_online_map and a long delay in order to ensure that we never have any
queued external interrupts on the APICs. There are additional changes to s390
and ppc64 to account for this change.
1) Add CONFIG_HOTPLUG_CPU
2) disable local APIC timer on dead cpus.
3) Disable preempt around irq balancing to prevent CPUs going down.
4) Print irq stats for all possible cpus.
5) Debugging check for interrupts on offline cpus.
6) Hacky fixup_irqs() to redirect irqs when cpus go off/online.
7) play_dead() for offline cpus to spin inside.
8) Handle offline cpus set in flush_tlb_others().
9) Grab lock earlier in smp_call_function() to prevent CPUs going down.
10) Implement __cpu_disable() and __cpu_die().
11) Enable local interrupts in cpu_enable() after fixup_irqs()
12) Don't fiddle with NMI on dead cpu, but leave intact on other cpus.
13) Program IRQ affinity whilst cpu is still in cpu_online_map on offline.
Signed-off-by: Zwane Mwaikambo <zwane@linuxpower.ca>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
x86_64's cpu_khz is unsigned int and there is no reason why x86 needs to use
unsigned long.
So make cpu_khz unsigned int on x86 as well.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* EXPORT_SYMBOL's moved to other files
* #include <linux/config.h>, <linux/module.h> where needed
* #include's in i386_ksyms.c cleaned up
* After copy-paste, redundant due to Makefiles rules preprocessor directives
removed:
#ifdef CONFIG_FOO
EXPORT_SYMBOL(foo);
#endif
obj-$(CONFIG_FOO) += foo.o
* Tiny reformat to fit in 80 columns
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This fixes 'smp_num_siblings' value on the systems with a buggy bios,
which sets number of siblings to '2' even when HT is disabled. (more
details are at http://bugzilla.kernel.org/show_bug.cgi?id=4359)
I am planning to do more cleanup in this area (like moving smp_num_siblings
to per cpuinfo) shortly.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
A bug against an xSeries system showed up recently noting that the
check_nmi_watchdog() test was failing.
I have been investigating it and discovered in both i386 and x86_64 the
recent change to the routine to use the cpu_callin_map has uncovered a
problem. Prior to that change, on an SMP box, the test was trivally
passing because all cpu's were found to not yet be online, but now with the
callin_map they are discovered, it goes on to test the counter and they
have not yet begun to increment, so it announces a CPU is stuck and bails
out.
On all the systems I have access to test, the announcement of failure is
also bougs... by the time you can login and check /proc/interrupts, the
NMI count is happily incrementing on all CPUs. Its just that the test is
being done too early.
I have tried moving the call to the test around a bit, and it was always
too early. I finally hit on this proposed solution, it delays the routine
via a late_initcall(), seems like the right solution to me.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Appended patch adds the support for Intel dual-core detection and displaying
the core related information in /proc/cpuinfo.
It adds two new fields "core id" and "cpu cores" to x86 /proc/cpuinfo and the
"core id" field for x86_64("cpu cores" field is already present in x86_64).
Number of processor cores in a die is detected using cpuid(4) and this is
documented in IA-32 Intel Architecture Software Developer's Manual (vol 2a)
(http://developer.intel.com/design/pentium4/manuals/index_new.htm#sdm_vol2a)
This patch also adds cpu_core_map similar to cpu_sibling_map.
Slightly hacked by AK.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!