Include the new linux/kdebug.h instead of asm/kdebug.h.
Simply remove the asm/kdebug.h include if both had been included.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace CONFIG_PNPACPI with CONFIG_PNP, so it loads on ACPI-less PNPBIOS
systems.
Signed-off-by: Marko Vrh <mvrh@freeshells.ch>
Acked-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This fixes a common glitch in how RTC drivers handle two "set alarm" modes,
by getting rid of the surprising/hidden one that was rarely implemented
correctly (and which could expose nonportable hardware-specific behavior).
The glitch comes from the /dev/rtcX logic implementing the legacy
RTC_ALM_SET (limited to 24 hours, needing RTC_AIE_ON) ioctl on top of the
RTC driver call providing access to the newer RTC_WKALM_SET (without those
limitations) by initializing the day/month/year fields to be invalid ...
that second mode.
Now, since few RTC drivers check those fields, and most hardware misbehaves
when faced with invalid date fields, many RTC drivers will set bogus alarm
times on those RTC_ALM_SET code paths. (Several in-tree drivers have that
issue, and I also noticed it with code reviews on several new RTC drivers.)
This patch ensures that RTC drivers never see such invalid alarm fields, by
moving some logic out of rtc-omap into the RTC_ALM_SET code and adding an
explicit check (which will prevent the issue on other code paths).
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Cc: Scott Wood <scottwood@freescale.com>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
David says "884b4aaaa242a2db8c8252796f0118164a680ab5 should be reverted. It
added an rtc_merge_alarm() call to the 2.6.20 kernel, which hasn't yet been
used by any in-tree driver; this patch obviates the need for that call, and
uses a more robust approach."
Cc: Scott Wood <scottwood@freescale.com>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: David Brownell <david-b@pacbell.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This works around a bug seen in some RTC-related ACPI table entries, and
tweaks related diagnostics to follow the ACPI convention.
The bug prevents misleading boot-time messages: platforms affected by this
bug wrongly report they can support alarms up to one year in the future,
when in fact the longest alarm is just 24 hours. That will surprise anyone
trying to use those extended alarms.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Len Brown <lenb@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove /proc/acpi/alarm file when the rtc-cmos "wakealarm" file is available.
Instead, provide hooks that rtc-cmos will use.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Len Brown <lenb@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I finally got around to testing the updated wakeup event hooks for rtc-cmos,
and they follow in two patches:
- Interface update ... when a simple enable_irq_wake() doesn't suffice,
the platform data can hold suspend/resume callback hooks.
- ACPI implementation ... provides callback hooks to do ACPI magic, and
eliminate the legacy /proc/acpi/alarm file.
The interface update could go into 2.6.21, but that's not essential; they
will be NOPs on most PCs, without the ACPI stuff.
I suspect the ACPI folk may have opinions about how to merge that second
patch, and how to obsolete that legacy procfs file. I'd like to see that
merge into 2.6.22 if possible...
As for how to kick it in ... two ways:
- The appended "rtcwake" program; updated since the last time it was
posted, it deals much better with timezones and DST.
- Write the /sys/class/rtc/.../wakealarm file, then go to sleep.
For some reason RTC wake from "swsusp" stopped working on a system where
it previously worked; the alarm setting appears to get clobbered. But
on the bright side, RTC wake from "standby" worked on a system that had
never been able to resume from that state before ... IDEACPI is my guess
as to why it finally started to work. It's the old "two steps forward,
one step back" dance, I guess.
- Dave
/* gcc -Wall -Os -o rtcwake rtcwake.c */
#include <stdio.h>
#include <getopt.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <time.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <linux/rtc.h>
/* constants from legacy PC/AT hardware */
#define RTC_PF 0x40
#define RTC_AF 0x20
#define RTC_UF 0x10
/*
* rtcwake -- enter a system sleep state until specified wakeup time.
*
* This uses cross-platform Linux interfaces to enter a system sleep state,
* and leave it no later than a specified time. It uses any RTC framework
* driver that supports standard driver model wakeup flags.
*
* This is normally used like the old "apmsleep" utility, to wake from a
* suspend state like ACPI S1 (standby) or S3 (suspend-to-RAM). Most
* platforms can implement those without analogues of BIOS, APM, or ACPI.
*
* On some systems, this can also be used like "nvram-wakeup", waking
* from states like ACPI S4 (suspend to disk). Not all systems have
* persistent media that are appropriate for such suspend modes.
*
* The best way to set the system's RTC is so that it holds the current
* time in UTC. Use the "-l" flag to tell this program that the system
* RTC uses a local timezone instead (maybe you dual-boot MS-Windows).
*/
static char *progname;
#ifdef DEBUG
#define VERSION "1.0 dev (" __DATE__ " " __TIME__ ")"
#else
#define VERSION "0.9"
#endif
static unsigned verbose;
static int rtc_is_utc = -1;
static int may_wakeup(const char *devname)
{
char buf[128], *s;
FILE *f;
snprintf(buf, sizeof buf, "/sys/class/rtc/%s/device/power/wakeup",
devname);
f = fopen(buf, "r");
if (!f) {
perror(buf);
return 0;
}
fgets(buf, sizeof buf, f);
fclose(f);
s = strchr(buf, '\n');
if (!s)
return 0;
*s = 0;
/* wakeup events could be disabled or not supported */
return strcmp(buf, "enabled") == 0;
}
/* all times should be in UTC */
static time_t sys_time;
static time_t rtc_time;
static int get_basetimes(int fd)
{
struct tm tm;
struct rtc_time rtc;
/* this process works in RTC time, except when working
* with the system clock (which always uses UTC).
*/
if (rtc_is_utc)
setenv("TZ", "UTC", 1);
tzset();
/* read rtc and system clocks "at the same time", or as
* precisely (+/- a second) as we can read them.
*/
if (ioctl(fd, RTC_RD_TIME, &rtc) < 0) {
perror("read rtc time");
return 0;
}
sys_time = time(0);
if (sys_time == (time_t)-1) {
perror("read system time");
return 0;
}
/* convert rtc_time to normal arithmetic-friendly form,
* updating tm.tm_wday as used by asctime().
*/
memset(&tm, 0, sizeof tm);
tm.tm_sec = rtc.tm_sec;
tm.tm_min = rtc.tm_min;
tm.tm_hour = rtc.tm_hour;
tm.tm_mday = rtc.tm_mday;
tm.tm_mon = rtc.tm_mon;
tm.tm_year = rtc.tm_year;
tm.tm_isdst = rtc.tm_isdst; /* stays unspecified? */
rtc_time = mktime(&tm);
if (rtc_time == (time_t)-1) {
perror("convert rtc time");
return 0;
}
if (verbose) {
if (!rtc_is_utc) {
printf("\ttzone = %ld\n", timezone);
printf("\ttzname = %s\n", tzname[daylight]);
gmtime_r(&rtc_time, &tm);
}
printf("\tsystime = %ld, (UTC) %s",
(long) sys_time, asctime(gmtime(&sys_time)));
printf("\trtctime = %ld, (UTC) %s",
(long) rtc_time, asctime(&tm));
}
return 1;
}
static int setup_alarm(int fd, time_t *wakeup)
{
struct tm *tm;
struct rtc_wkalrm wake;
tm = gmtime(wakeup);
wake.time.tm_sec = tm->tm_sec;
wake.time.tm_min = tm->tm_min;
wake.time.tm_hour = tm->tm_hour;
wake.time.tm_mday = tm->tm_mday;
wake.time.tm_mon = tm->tm_mon;
wake.time.tm_year = tm->tm_year;
wake.time.tm_wday = tm->tm_wday;
wake.time.tm_yday = tm->tm_yday;
wake.time.tm_isdst = tm->tm_isdst;
/* many rtc alarms only support up to 24 hours from 'now' ... */
if ((rtc_time + (24 * 60 * 60)) > *wakeup) {
if (ioctl(fd, RTC_ALM_SET, &wake.time) < 0) {
perror("set rtc alarm");
return 0;
}
if (ioctl(fd, RTC_AIE_ON, 0) < 0) {
perror("enable rtc alarm");
return 0;
}
/* ... so use the "more than 24 hours" request only if we must */
} else {
/* avoid an extra AIE_ON call */
wake.enabled = 1;
if (ioctl(fd, RTC_WKALM_SET, &wake) < 0) {
perror("set rtc wake alarm");
return 0;
}
}
return 1;
}
static void suspend_system(const char *suspend)
{
FILE *f = fopen("/sys/power/state", "w");
if (!f) {
perror("/sys/power/state");
return;
}
fprintf(f, "%s\n", suspend);
fflush(f);
/* this executes after wake from suspend */
fclose(f);
}
int main(int argc, char **argv)
{
static char *devname = "rtc0";
static unsigned seconds = 0;
static char *suspend = "standby";
int t;
int fd;
time_t alarm = 0;
progname = strrchr(argv[0], '/');
if (progname)
progname++;
else
progname = argv[0];
if (chdir("/dev/") < 0) {
perror("chdir /dev");
return 1;
}
while ((t = getopt(argc, argv, "d:lm:s:t:uVv")) != EOF) {
switch (t) {
case 'd':
devname = optarg;
break;
case 'l':
rtc_is_utc = 0;
break;
/* what system power mode to use? for now handle only
* standardized mode names; eventually when systems define
* their own state names, parse /sys/power/state.
*
* "on" is used just to test the RTC alarm mechanism,
* bypassing all the wakeup-from-sleep infrastructure.
*/
case 'm':
if (strcmp(optarg, "standby") == 0
|| strcmp(optarg, "mem") == 0
|| strcmp(optarg, "disk") == 0
|| strcmp(optarg, "on") == 0
) {
suspend = optarg;
break;
}
printf("%s: unrecognized suspend state '%s'\n",
progname, optarg);
goto usage;
/* alarm time, seconds-to-sleep (relative) */
case 's':
t = atoi(optarg);
if (t < 0) {
printf("%s: illegal interval %s seconds\n",
progname, optarg);
goto usage;
}
seconds = t;
break;
/* alarm time, time_t (absolute, seconds since 1/1 1970 UTC) */
case 't':
t = atoi(optarg);
if (t < 0) {
printf("%s: illegal time_t value %s\n",
progname, optarg);
goto usage;
}
alarm = t;
break;
case 'u':
rtc_is_utc = 1;
break;
case 'v':
verbose++;
break;
case 'V':
printf("%s: version %s\n", progname, VERSION);
break;
default:
usage:
printf("usage: %s [options]"
"\n\t"
"-d rtc0|rtc1|...\t(select rtc)"
"\n\t"
"-l\t\t\t(RTC uses local timezone)"
"\n\t"
"-m standby|mem|...\t(sleep mode)"
"\n\t"
"-s seconds\t\t(seconds to sleep)"
"\n\t"
"-t time_t\t\t(time to wake)"
"\n\t"
"-u\t\t\t(RTC uses UTC)"
"\n\t"
"-v\t\t\t(verbose messages)"
"\n\t"
"-V\t\t\t(show version)"
"\n",
progname);
return 1;
}
}
if (!alarm && !seconds) {
printf("%s: must provide wake time\n", progname);
goto usage;
}
/* REVISIT: if /etc/adjtime exists, read it to see what
* the util-linux version of hwclock assumes.
*/
if (rtc_is_utc == -1) {
printf("%s: assuming RTC uses UTC ...\n", progname);
rtc_is_utc = 1;
}
/* this RTC must exist and (if we'll sleep) be wakeup-enabled */
fd = open(devname, O_RDONLY);
if (fd < 0) {
perror(devname);
return 1;
}
if (strcmp(suspend, "on") != 0 && !may_wakeup(devname)) {
printf("%s: %s not enabled for wakeup events\n",
progname, devname);
return 1;
}
/* relative or absolute alarm time, normalized to time_t */
if (!get_basetimes(fd))
return 1;
if (verbose)
printf("alarm %ld, sys_time %ld, rtc_time %ld, seconds %u\n",
alarm, sys_time, rtc_time, seconds);
if (alarm) {
if (alarm < sys_time) {
printf("%s: time doesn't go backward to %s",
progname, ctime(&alarm));
return 1;
}
alarm += sys_time - rtc_time;
} else
alarm = rtc_time + seconds + 1;
if (setup_alarm(fd, &alarm) < 0)
return 1;
sync();
printf("%s: wakeup from \"%s\" using %s at %s",
progname, suspend, devname,
ctime(&alarm));
fflush(stdout);
usleep(10 * 1000);
if (strcmp(suspend, "on") != 0)
suspend_system(suspend);
else {
unsigned long data;
do {
t = read(fd, &data, sizeof data);
if (t < 0) {
perror("rtc read");
break;
}
if (verbose)
printf("... %s: %03lx\n", devname, data);
} while (!(data & RTC_AF));
}
if (ioctl(fd, RTC_AIE_OFF, 0) < 0)
perror("disable rtc alarm interrupt");
close(fd);
return 0;
}
This patch:
Make rtc-cmos do the relevant magic so this RTC can wake the system from a
sleep state. That magic comes in two basic flavors:
- Straightforward: enable_irq_wake(), the way it'd work on most SOC chips;
or generally with system sleep states which don't disable core IRQ logic.
- Roundabout, using non-IRQ platform hooks. This is needed with ACPI and
one almost-clone chip which uses a special wakeup-only alarm. (That's
the RTC used on Footbridge boards, FWIW, which don't do PM in Linux.)
A separate patch implements those hooks for ACPI platforms, so that rtc_cmos
can issue system wakeup events (and its sysfs "wakealarm" attribute works on
at least some systems).
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Len Brown <lenb@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix a goof in the revised classdev support for RTCs: make sure the /dev
node info is ready before the device is registered, not after. Otherwise
the /sys/class/rtc/rtcN/dev attribute won't be created and then udev won't
have the information it needs to create the /dev/rtcN node.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
RTC class suspend/resume support, re-initializing the system clock on resume
from the clock used to initialize it at boot time.
- The reinit-on-resume is hooked to the existing RTC_HCTOSYS config
option, on the grounds that a clock good enough for init must also
be good enough for re-init.
- Inlining a version of the code used by ARM, to save and restore the
delta between a selected RTC and the current system wall-clock time.
- Removes calls to that ARM code from AT91, OMAP1, and S3C RTCs. This
means that systems using those RTCs across suspend/resume will likely
want to change their kernel configs to enable RTC_HCTOSYS.
If HCTOSYS isn't using a second RTC (with battery?), this changes the
system's initial date from Jan 1970 to the epoch this hardware uses:
1998 for AT91, 2000 for OMAP1 (assuming no split power mode), etc.
This goes on top of the patch series removing "struct class_device" usage
from the RTC framework. That's all needed for class suspend()/resume().
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-By: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This simplifies the RTC procfs support by removing the class_interface that
hooks it into the rtc core. If it's configured, then sysfs support is now
part of the RTC core, and is never a separate module.
It also removes the class_interface hook, now that its last remaining user is
gone. (That API is usable only with a "struct class_device".)
It's another step towards being able to remove "struct class_device".
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-By: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This simplifies the RTC sysfs support by removing the class_interface that
hooks it into the rtc core. If it's configured, then sysfs support is now
part of the RTC core, and is never a separate module.
It's another step towards being able to remove "struct class_device".
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-By: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch removes class_device from the programming interface that the RTC
framework exposes to the rest of the kernel. Now an rtc_device is passed,
which is more type-safe and streamlines all the relevant code.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-By: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This simplifies the /dev support by removing a superfluous class_device (the
/sys/class/rtc-dev stuff) and the class_interface that hooks it into the rtc
core. Accordingly, if it's configured then /dev support is now part of the
RTC core, and is never a separate module.
It's another step towards being able to remove "struct class_device".
[bunk@stusta.de: drivers/rtc/rtc-dev.c should #include "rtc-core.h"]
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-By: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The CAPI 2.0 interface uses a semaphore as mutex. Use the mutex API instead
of the (binary) semaphore.
Signed-off-by: Matthias Kaehlcke <matthias.kaehlcke@gmail.com>
Cc: Karsten Keil <kkeil@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix incorrect spinlock use in hysdn_log_close(). The function declared a
spinlock on the stack and used it to 'protect' a shared driver structure.
The patch simply removes the useless code.
Signed-off-by: Matthias Kaehlcke <matthias.kaehlcke@gmail.com>
Cc: Karsten Keil <kkeil@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As pointed out by Robert P. J. Day, here is a patch to remove unused
header files from Eicon/Dialogic ISDN driver.
Signed-off-by: Armin Schindler <armin@melware.de>
Acked-by: Karsten Keil <kkeil@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch makes it so that simple_fill_super and get_sb_pseudo assign their
root inodes to be number 1. It also fixes up a couple of callers of
simple_fill_super that were passing in files arrays that had an index at
number 1, and adds a warning for any caller that sends in such an array.
It would have been nice to have made it so that it wasn't possible to make
such a collision, but some callers need to be able to control what inode
number their entries get, so I think this is the best that can be done.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here is a driver for the Alchemy au1550 PSC (Programmable Serial
Controller) in SPI master mode.
It supports dma transfers using the Alchemy descriptor based dma controller
for 4-8 bits per word SPI transfers. For 9-24 bits per word transfers, pio
irq based mode is used to avoid setup of dma channels from scratch on each
number of bits per word change.
Tested with au1550; this may also work on other MIPS Alchemy cpus, like
au1200/au1210/au1250. Used extensively with SD card connected via SPI;
this handles 8.1MHz SPI clock transfers using dma without any problem (the
highest SPI clock freq possible with au1550 running on 324MHz).
The driver supports sharing of SPI bus by multiple devices. All features
of Alchemy SPI mode are supported (all SPI modes, msb/lsb first, bits per
word in 4-24 range).
As the SPI clock of the controller depends on main input clock that shall
be configured externally, platform data structure for au1550 SPI controller
driver contains mainclk_hz attribute to define the input clock rate. From
this value, dividers of the controller for SPI clock are set up for
required frequency.
Signed-off-by: Jan Nikitenko <jan.nikitenko@gmail.com>
Whitespace and section fixups. Remove partial workaround for platform
setup bug in dma_mask setup; it couldn't work with multiple controllers.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Various documentation updates for the SPI infrastructure, to clarify things
that may not have been clear, to cope with lack of editing, and fix
omissions.
Also, plug SPI into the kernel-api DocBook template, and fix all the
resulting glitches in document generation.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Cc: "Randy.Dunlap" <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a filesystem API for <linux/spi/spi.h> stack. The initial version of
this interface is purely synchronous.
dbrownell@users.sourceforge.net:
Cleaned up, bugfixed; much simplified; added preliminary documentation.
Works with mdev given CONFIG_SYSFS_DEPRECATED; and presumably udev.
Updated SPI_IOC_MESSAGE ioctl to full spi_message semantics, supporting
groups of one or more transfers (each of which may be full duplex if
desired).
This is marked as EXPERIMENTAL with an explicit disclaimer that the API
(notably the ioctls) is subject to change.
Signed-off-by: Andrea Paterniani <a.paterniani@swapp-eng.it>
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Simplify the spi_butterfly driver by removing incomplete/unused support for
the second SPI bus, implemented by the USI controller. This should make
this a clearer example of how to write a parport bitbang driver.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove some obviously old interrupt disable/enable code that has been
commented out.
Signed-off-by: Josh Boyer <jwboyer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The misc character device driver uses a semaphore as mutex. Use the mutex API
instead of the (binary) semaphore.
Signed-off-by: Matthias Kaehlcke <matthias.kaehlcke@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The hdaps driver uses a semaphore as mutex. Use the mutex API instead of the
(binary) semaphore.
Signed-off-by: Matthias Kaehlcke <matthias.kaehlcke@gmail.com>
Cc: Robert Love <rlove@rlove.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The TPM driver uses two semaphores as mutexes. Use the mutex API instead of
the (binary) semaphores.
Signed-off-by: Matthias Kaehlcke <matthias.kaehlcke@gmail.com>
Cc: Kylene Hall <kjhall@us.ibm.com>
Cc: Marcel Selhorst <tpm@selhorst.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The RocketPort driver uses a semaphore as mutex. Use the mutex API instead of
the (binary) semaphore.
Signed-off-by: Matthias Kaehlcke <matthias.kaehlcke@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I noticed that the moxa input checking security bug described by
CVE-2005-0504 appears to remain unfixed upstream.
The issue is described here:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0504
Debian has been shipping the following patch from Andres Salomon.
(akpm: it's a privileged operation)
Signed-off-by: dann frazier <dannf@hp.com>
Signed-off-by: Andres Salomon <dilinger@debian.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
flush_scheduled_work() can sleep, and we're calling it under spinlock.
AFAICS, moving flush_scheduled_work before spin_lock() should not cause any
problems.
Reason being - The only thing that can race against tpm_release is tpm_open
(tpm_release is called when last reference to the file is closed and only
thing that can happen after that is tpm_open??) and tpm_open acquires
driver_lock and more over it bails out with EBUSY if chip->num_opens is
greater than 0.
I also moved chip->num_pending-- to after deleting timer and setting data
pending as it looks more correct for the paranoid although it probably doesn't
matter as it is guarded by driver_lock. None the less this change should not
cause problems.
While I was at it I noticed a missing NULL check in tpm_register_hardware
which is fixed with this patch as well.
Signed-off-by: Parag Warudkar <parag.warudkar@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ingo Molnar's semaphore to mutex conversions left some noise on a few
trylock calls. Clean it up.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Mauro Carvalho Chehab <mchehab@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The UTF-8 part of the vt driver suffers from the following issues which are
addressed in my patch:
1) If there's no glyph found for a particular valid UTF-8 character, we try
to display U+FFFD. However if this one is not found either, here's what
the current kernel does:
- First, if the Unicode value is less than the number of glyphs, use the
glyph directly from that position of the glyph table. While it may be a
good idea in the 8-bit world, it has absolutely no sense with Unicode
in mind. For example, if a Latin-2 font is loaded and an application
prints U+00FB ("u with circumflex", not present in Latin-2) then as a
fallback solution the glyph from the 0xFB position of the Latin-2
fontset (which is an "u with double accent" - a different character) is
displayed.
- Second, if this fallback fails too, a simple ASCII question mark is
printed, which is visually undistinguishable from a real question mark.
I changed the code to skip the first step (except if in non-UTF-8 mode),
and changed the second step to print the question mark with inverse color
attributes, so it is visually clear that it's not a real question mark,
and resembles more to the common glyph of U+FFFD.
2) The UTF-8 decoder is buggy in many ways:
- Lone continuation bytes (section 3.1 of Markus Kuhn's UTF-8 stress
test) are not caught, they are displayed as some "random" (taken
directly form the font table, see above) glyphs instead the replacement
character.
- Incomplete sequences (sections 3.2 and 3.3 of the stress test) emit no
replacement character, but rather cause the subsequent valid character
to be displayed more times(!).
- The decoder is not safe: overlong sequences are not caught currently,
they are displayed as if these were valid representations. This may
even have security impacts.
- The decoder does not handle D800..DFFF and FFFE..FFFF specially, it
just emits these code points and lets it be looked up in the glyph
table. Since these are invalid code points, I replace them by U+FFFD
and hence give no chance for them to be looked up in the glyph table.
(Assuming no font ships glyphs for these code points, this change is
not visible to the users since the glyph shown will be the same.)
With my fixes to the decoder it now behaves exactly as Markus Kuhn's
stress test recommends.
3) It has no concept of double-width (CJK) characters. It's way beyond the
scope of my patch to try to display them, but at least I think it's
important for the cursor to jump two positions when printing such
characters, since this is what applications (such as text editors)
expect. Currently the cursor only jumps one position, and hence
applications suffer from displaying and refreshing problems, and editing
some English letters that are preceded by some CJK characters in the same
line is a nightmare. With my patch an additional space is inserted after
the CJK character has been printed (which usually means a replacement
symbol of course). (If U+FFFD isn't availble and hence an inverse
question mark is displayed in the first cell, I keep the inverted state
for the space in the 2nd column so it's quite easy to see that they are
tied together.)
4) There is a small built-in table of zero-width spaces that are not to be
printed but silently skipped. U+200A is included there, but it's not a
zero-width character, so I remove it from there.
Signed-off-by: Egmont Koblinger <egmont@uhulinux.hu>
Cc: Jan Engelhardt <jengelh@linux01.gwdg.de>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Antonino A. Daplas" <adaplas@pol.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The serial_txx9 driver have abused device numbers (major 4, minor 128) if
CONFIG_SERIAL_TXX9_STDSERIAL was not set. This patch makes the driver use
proper device numbers assigned for it (major 204, minor 196-203). I
suppose a typical user of this driver set CONFIG_SERIAL_TXX9_STDSERIAL to Y
(i.e. use "ttyS0"), so this patch would not cause big compatibility issue.
Signed-off-by: Atsushi Nemoto <anemo@mba.ocn.ne.jp>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patches modifies the pnpbios kernel thread to start with ktrhead_run
not kernel_thread and deamonize. Doing this makes the code a little
simpler and easier to maintain.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Adam Belay <ambx1@neo.rr.com>
Cc: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make cciss unconditionally include scsi/scsi.h, because of the use of
SCSI_IOCTL_GET_IDLUN and SCSI_IOCTL_GET_BUS_NUMBER.
Signed-off-by: Stephen M. Cameron <steve.cameron@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Simple driver that blinks the keyboard LEDs when loaded. Useful for
checking that the kernel is still alive or for crashdumping
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>