// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* QSEE_LOG_BUF_SIZE = 32K */ #define QSEE_LOG_BUF_SIZE 0x8000 /* enlarged qsee log buf size is 128K by default */ #define QSEE_LOG_BUF_SIZE_V2 0x20000 /* TZ Diagnostic Area legacy version number */ #define TZBSP_DIAG_MAJOR_VERSION_LEGACY 2 /* TZ Diagnostic Area version number */ #define TZBSP_FVER_MAJOR_MINOR_MASK 0x3FF /* 10 bits */ #define TZBSP_FVER_MAJOR_SHIFT 22 #define TZBSP_FVER_MINOR_SHIFT 12 #define TZBSP_DIAG_MAJOR_VERSION_V9 9 #define TZBSP_DIAG_MINOR_VERSION_V2 2 #define TZBSP_DIAG_MINOR_VERSION_V21 3 #define TZBSP_DIAG_MINOR_VERSION_V22 4 /* TZ Diag Feature Version Id */ #define QCOM_SCM_FEAT_DIAG_ID 0x06 /* * Preprocessor Definitions and Constants */ #define TZBSP_MAX_CPU_COUNT 0x08 /* * Number of VMID Tables */ #define TZBSP_DIAG_NUM_OF_VMID 16 /* * VMID Description length */ #define TZBSP_DIAG_VMID_DESC_LEN 7 /* * Number of Interrupts */ #define TZBSP_DIAG_INT_NUM 32 /* * Length of descriptive name associated with Interrupt */ #define TZBSP_MAX_INT_DESC 16 /* * TZ 3.X version info */ #define QSEE_VERSION_TZ_3_X 0x800000 /* * TZ 4.X version info */ #define QSEE_VERSION_TZ_4_X 0x1000000 #define TZBSP_AES_256_ENCRYPTED_KEY_SIZE 256 #define TZBSP_NONCE_LEN 12 #define TZBSP_TAG_LEN 16 #define ENCRYPTED_TZ_LOG_ID 0 #define ENCRYPTED_QSEE_LOG_ID 1 /* * VMID Table */ struct tzdbg_vmid_t { uint8_t vmid; /* Virtual Machine Identifier */ uint8_t desc[TZBSP_DIAG_VMID_DESC_LEN]; /* ASCII Text */ }; /* * Boot Info Table */ struct tzdbg_boot_info_t { uint32_t wb_entry_cnt; /* Warmboot entry CPU Counter */ uint32_t wb_exit_cnt; /* Warmboot exit CPU Counter */ uint32_t pc_entry_cnt; /* Power Collapse entry CPU Counter */ uint32_t pc_exit_cnt; /* Power Collapse exit CPU counter */ uint32_t warm_jmp_addr; /* Last Warmboot Jump Address */ uint32_t spare; /* Reserved for future use. */ }; /* * Boot Info Table for 64-bit */ struct tzdbg_boot_info64_t { uint32_t wb_entry_cnt; /* Warmboot entry CPU Counter */ uint32_t wb_exit_cnt; /* Warmboot exit CPU Counter */ uint32_t pc_entry_cnt; /* Power Collapse entry CPU Counter */ uint32_t pc_exit_cnt; /* Power Collapse exit CPU counter */ uint32_t psci_entry_cnt;/* PSCI syscall entry CPU Counter */ uint32_t psci_exit_cnt; /* PSCI syscall exit CPU Counter */ uint64_t warm_jmp_addr; /* Last Warmboot Jump Address */ uint32_t warm_jmp_instr; /* Last Warmboot Jump Address Instruction */ }; /* * Reset Info Table */ struct tzdbg_reset_info_t { uint32_t reset_type; /* Reset Reason */ uint32_t reset_cnt; /* Number of resets occurred/CPU */ }; /* * Interrupt Info Table */ struct tzdbg_int_t { /* * Type of Interrupt/exception */ uint16_t int_info; /* * Availability of the slot */ uint8_t avail; /* * Reserved for future use */ uint8_t spare; /* * Interrupt # for IRQ and FIQ */ uint32_t int_num; /* * ASCII text describing type of interrupt e.g: * Secure Timer, EBI XPU. This string is always null terminated, * supporting at most TZBSP_MAX_INT_DESC characters. * Any additional characters are truncated. */ uint8_t int_desc[TZBSP_MAX_INT_DESC]; uint64_t int_count[TZBSP_MAX_CPU_COUNT]; /* # of times seen per CPU */ }; /* * Interrupt Info Table used in tz version >=4.X */ struct tzdbg_int_t_tz40 { uint16_t int_info; uint8_t avail; uint8_t spare; uint32_t int_num; uint8_t int_desc[TZBSP_MAX_INT_DESC]; uint32_t int_count[TZBSP_MAX_CPU_COUNT]; /* uint32_t in TZ ver >= 4.x*/ }; /* warm boot reason for cores */ struct tzbsp_diag_wakeup_info_t { /* Wake source info : APCS_GICC_HPPIR */ uint32_t HPPIR; /* Wake source info : APCS_GICC_AHPPIR */ uint32_t AHPPIR; }; /* * Log ring buffer position */ struct tzdbg_log_pos_t { uint16_t wrap; uint16_t offset; }; struct tzdbg_log_pos_v2_t { uint32_t wrap; uint32_t offset; }; /* * Log ring buffer */ struct tzdbg_log_t { struct tzdbg_log_pos_t log_pos; /* open ended array to the end of the 4K IMEM buffer */ uint8_t log_buf[]; }; struct tzdbg_log_v2_t { struct tzdbg_log_pos_v2_t log_pos; /* open ended array to the end of the 4K IMEM buffer */ uint8_t log_buf[]; }; struct tzbsp_encr_info_for_log_chunk_t { uint32_t size_to_encr; uint8_t nonce[TZBSP_NONCE_LEN]; uint8_t tag[TZBSP_TAG_LEN]; }; /* * Only `ENTIRE_LOG` will be used unless the * "OEM_tz_num_of_diag_log_chunks_to_encr" devcfg field >= 2. * If this is true, the diag log will be encrypted in two * separate chunks: a smaller chunk containing only error * fatal logs and a bigger "rest of the log" chunk. In this * case, `ERR_FATAL_LOG_CHUNK` and `BIG_LOG_CHUNK` will be * used instead of `ENTIRE_LOG`. */ enum tzbsp_encr_info_for_log_chunks_idx_t { BIG_LOG_CHUNK = 0, ENTIRE_LOG = 1, ERR_FATAL_LOG_CHUNK = 1, MAX_NUM_OF_CHUNKS, }; struct tzbsp_encr_info_t { uint32_t num_of_chunks; struct tzbsp_encr_info_for_log_chunk_t chunks[MAX_NUM_OF_CHUNKS]; uint8_t key[TZBSP_AES_256_ENCRYPTED_KEY_SIZE]; }; /* * Diagnostic Table * Note: This is the reference data structure for tz diagnostic table * supporting TZBSP_MAX_CPU_COUNT, the real diagnostic data is directly * copied into buffer from i/o memory. */ struct tzdbg_t { uint32_t magic_num; uint32_t version; /* * Number of CPU's */ uint32_t cpu_count; /* * Offset of VMID Table */ uint32_t vmid_info_off; /* * Offset of Boot Table */ uint32_t boot_info_off; /* * Offset of Reset info Table */ uint32_t reset_info_off; /* * Offset of Interrupt info Table */ uint32_t int_info_off; /* * Ring Buffer Offset */ uint32_t ring_off; /* * Ring Buffer Length */ uint32_t ring_len; /* Offset for Wakeup info */ uint32_t wakeup_info_off; union { /* The elements in below structure have to be used for TZ where * diag version = TZBSP_DIAG_MINOR_VERSION_V2 */ struct { /* * VMID to EE Mapping */ struct tzdbg_vmid_t vmid_info[TZBSP_DIAG_NUM_OF_VMID]; /* * Boot Info */ struct tzdbg_boot_info_t boot_info[TZBSP_MAX_CPU_COUNT]; /* * Reset Info */ struct tzdbg_reset_info_t reset_info[TZBSP_MAX_CPU_COUNT]; uint32_t num_interrupts; struct tzdbg_int_t int_info[TZBSP_DIAG_INT_NUM]; /* Wake up info */ struct tzbsp_diag_wakeup_info_t wakeup_info[TZBSP_MAX_CPU_COUNT]; uint8_t key[TZBSP_AES_256_ENCRYPTED_KEY_SIZE]; uint8_t nonce[TZBSP_NONCE_LEN]; uint8_t tag[TZBSP_TAG_LEN]; }; /* The elements in below structure have to be used for TZ where * diag version = TZBSP_DIAG_MINOR_VERSION_V21 */ struct { uint32_t encr_info_for_log_off; /* * VMID to EE Mapping */ struct tzdbg_vmid_t vmid_info_v2[TZBSP_DIAG_NUM_OF_VMID]; /* * Boot Info */ struct tzdbg_boot_info_t boot_info_v2[TZBSP_MAX_CPU_COUNT]; /* * Reset Info */ struct tzdbg_reset_info_t reset_info_v2[TZBSP_MAX_CPU_COUNT]; uint32_t num_interrupts_v2; struct tzdbg_int_t int_info_v2[TZBSP_DIAG_INT_NUM]; /* Wake up info */ struct tzbsp_diag_wakeup_info_t wakeup_info_v2[TZBSP_MAX_CPU_COUNT]; struct tzbsp_encr_info_t encr_info_for_log; }; }; /* * We need at least 2K for the ring buffer */ struct tzdbg_log_t ring_buffer; /* TZ Ring Buffer */ }; struct hypdbg_log_pos_t { uint16_t wrap; uint16_t offset; }; struct hypdbg_boot_info_t { uint32_t warm_entry_cnt; uint32_t warm_exit_cnt; }; struct hypdbg_t { /* Magic Number */ uint32_t magic_num; /* Number of CPU's */ uint32_t cpu_count; /* Ring Buffer Offset */ uint32_t ring_off; /* Ring buffer position mgmt */ struct hypdbg_log_pos_t log_pos; uint32_t log_len; /* S2 fault numbers */ uint32_t s2_fault_counter; /* Boot Info */ struct hypdbg_boot_info_t boot_info[TZBSP_MAX_CPU_COUNT]; /* Ring buffer pointer */ uint8_t log_buf_p[]; }; /* * Enumeration order for VMID's */ enum tzdbg_stats_type { TZDBG_BOOT = 0, TZDBG_RESET, TZDBG_INTERRUPT, TZDBG_VMID, TZDBG_GENERAL, TZDBG_LOG, TZDBG_QSEE_LOG, TZDBG_HYP_GENERAL, TZDBG_HYP_LOG, TZDBG_STATS_MAX }; struct tzdbg_stat { size_t display_len; size_t display_offset; char *name; char *data; }; struct tzdbg { void __iomem *virt_iobase; void __iomem *hyp_virt_iobase; struct tzdbg_t *diag_buf; struct hypdbg_t *hyp_diag_buf; char *disp_buf; int debug_tz[TZDBG_STATS_MAX]; struct tzdbg_stat stat[TZDBG_STATS_MAX]; uint32_t hyp_debug_rw_buf_size; bool is_hyplog_enabled; uint32_t tz_version; bool is_encrypted_log_enabled; bool is_enlarged_buf; }; struct tzbsp_encr_log_t { /* Magic Number */ uint32_t magic_num; /* version NUMBER */ uint32_t version; /* encrypted log size */ uint32_t encr_log_buff_size; /* Wrap value*/ uint16_t wrap_count; /* AES encryption key wrapped up with oem public key*/ uint8_t key[TZBSP_AES_256_ENCRYPTED_KEY_SIZE]; /* Nonce used for encryption*/ uint8_t nonce[TZBSP_NONCE_LEN]; /* Tag to be used for Validation */ uint8_t tag[TZBSP_TAG_LEN]; /* Encrypted log buffer */ uint8_t log_buf[1]; }; struct encrypted_log_info { phys_addr_t paddr; void *vaddr; size_t size; uint64_t shmb_handle; }; static struct tzdbg tzdbg = { .stat[TZDBG_BOOT].name = "boot", .stat[TZDBG_RESET].name = "reset", .stat[TZDBG_INTERRUPT].name = "interrupt", .stat[TZDBG_VMID].name = "vmid", .stat[TZDBG_GENERAL].name = "general", .stat[TZDBG_LOG].name = "log", .stat[TZDBG_QSEE_LOG].name = "qsee_log", .stat[TZDBG_HYP_GENERAL].name = "hyp_general", .stat[TZDBG_HYP_LOG].name = "hyp_log", }; static struct tzdbg_log_t *g_qsee_log; static struct tzdbg_log_v2_t *g_qsee_log_v2; static dma_addr_t coh_pmem; static uint32_t debug_rw_buf_size; static uint32_t display_buf_size; static uint32_t qseelog_buf_size; static phys_addr_t disp_buf_paddr; static uint64_t qseelog_shmbridge_handle; static struct encrypted_log_info enc_qseelog_info; static struct encrypted_log_info enc_tzlog_info; /* * Debugfs data structure and functions */ static int _disp_tz_general_stats(void) { int len = 0; len += scnprintf(tzdbg.disp_buf + len, debug_rw_buf_size - 1, " Version : 0x%x\n" " Magic Number : 0x%x\n" " Number of CPU : %d\n", tzdbg.diag_buf->version, tzdbg.diag_buf->magic_num, tzdbg.diag_buf->cpu_count); tzdbg.stat[TZDBG_GENERAL].data = tzdbg.disp_buf; return len; } static int _disp_tz_vmid_stats(void) { int i, num_vmid; int len = 0; struct tzdbg_vmid_t *ptr; ptr = (struct tzdbg_vmid_t *)((unsigned char *)tzdbg.diag_buf + tzdbg.diag_buf->vmid_info_off); num_vmid = ((tzdbg.diag_buf->boot_info_off - tzdbg.diag_buf->vmid_info_off)/ (sizeof(struct tzdbg_vmid_t))); for (i = 0; i < num_vmid; i++) { if (ptr->vmid < 0xFF) { len += scnprintf(tzdbg.disp_buf + len, (debug_rw_buf_size - 1) - len, " 0x%x %s\n", (uint32_t)ptr->vmid, (uint8_t *)ptr->desc); } if (len > (debug_rw_buf_size - 1)) { pr_warn("%s: Cannot fit all info into the buffer\n", __func__); break; } ptr++; } tzdbg.stat[TZDBG_VMID].data = tzdbg.disp_buf; return len; } static int _disp_tz_boot_stats(void) { int i; int len = 0; struct tzdbg_boot_info_t *ptr = NULL; struct tzdbg_boot_info64_t *ptr_64 = NULL; pr_info("qsee_version = 0x%x\n", tzdbg.tz_version); if (tzdbg.tz_version >= QSEE_VERSION_TZ_3_X) { ptr_64 = (struct tzdbg_boot_info64_t *)((unsigned char *) tzdbg.diag_buf + tzdbg.diag_buf->boot_info_off); } else { ptr = (struct tzdbg_boot_info_t *)((unsigned char *) tzdbg.diag_buf + tzdbg.diag_buf->boot_info_off); } for (i = 0; i < tzdbg.diag_buf->cpu_count; i++) { if (tzdbg.tz_version >= QSEE_VERSION_TZ_3_X) { len += scnprintf(tzdbg.disp_buf + len, (debug_rw_buf_size - 1) - len, " CPU #: %d\n" " Warmboot jump address : 0x%llx\n" " Warmboot entry CPU counter : 0x%x\n" " Warmboot exit CPU counter : 0x%x\n" " Power Collapse entry CPU counter : 0x%x\n" " Power Collapse exit CPU counter : 0x%x\n" " Psci entry CPU counter : 0x%x\n" " Psci exit CPU counter : 0x%x\n" " Warmboot Jump Address Instruction : 0x%x\n", i, (uint64_t)ptr_64->warm_jmp_addr, ptr_64->wb_entry_cnt, ptr_64->wb_exit_cnt, ptr_64->pc_entry_cnt, ptr_64->pc_exit_cnt, ptr_64->psci_entry_cnt, ptr_64->psci_exit_cnt, ptr_64->warm_jmp_instr); if (len > (debug_rw_buf_size - 1)) { pr_warn("%s: Cannot fit all info into the buffer\n", __func__); break; } ptr_64++; } else { len += scnprintf(tzdbg.disp_buf + len, (debug_rw_buf_size - 1) - len, " CPU #: %d\n" " Warmboot jump address : 0x%x\n" " Warmboot entry CPU counter: 0x%x\n" " Warmboot exit CPU counter : 0x%x\n" " Power Collapse entry CPU counter: 0x%x\n" " Power Collapse exit CPU counter : 0x%x\n", i, ptr->warm_jmp_addr, ptr->wb_entry_cnt, ptr->wb_exit_cnt, ptr->pc_entry_cnt, ptr->pc_exit_cnt); if (len > (debug_rw_buf_size - 1)) { pr_warn("%s: Cannot fit all info into the buffer\n", __func__); break; } ptr++; } } tzdbg.stat[TZDBG_BOOT].data = tzdbg.disp_buf; return len; } static int _disp_tz_reset_stats(void) { int i; int len = 0; struct tzdbg_reset_info_t *ptr; ptr = (struct tzdbg_reset_info_t *)((unsigned char *)tzdbg.diag_buf + tzdbg.diag_buf->reset_info_off); for (i = 0; i < tzdbg.diag_buf->cpu_count; i++) { len += scnprintf(tzdbg.disp_buf + len, (debug_rw_buf_size - 1) - len, " CPU #: %d\n" " Reset Type (reason) : 0x%x\n" " Reset counter : 0x%x\n", i, ptr->reset_type, ptr->reset_cnt); if (len > (debug_rw_buf_size - 1)) { pr_warn("%s: Cannot fit all info into the buffer\n", __func__); break; } ptr++; } tzdbg.stat[TZDBG_RESET].data = tzdbg.disp_buf; return len; } static int _disp_tz_interrupt_stats(void) { int i, j; int len = 0; int *num_int; void *ptr; struct tzdbg_int_t *tzdbg_ptr; struct tzdbg_int_t_tz40 *tzdbg_ptr_tz40; num_int = (uint32_t *)((unsigned char *)tzdbg.diag_buf + (tzdbg.diag_buf->int_info_off - sizeof(uint32_t))); ptr = ((unsigned char *)tzdbg.diag_buf + tzdbg.diag_buf->int_info_off); pr_info("qsee_version = 0x%x\n", tzdbg.tz_version); if (tzdbg.tz_version < QSEE_VERSION_TZ_4_X) { tzdbg_ptr = ptr; for (i = 0; i < (*num_int); i++) { len += scnprintf(tzdbg.disp_buf + len, (debug_rw_buf_size - 1) - len, " Interrupt Number : 0x%x\n" " Type of Interrupt : 0x%x\n" " Description of interrupt : %s\n", tzdbg_ptr->int_num, (uint32_t)tzdbg_ptr->int_info, (uint8_t *)tzdbg_ptr->int_desc); for (j = 0; j < tzdbg.diag_buf->cpu_count; j++) { len += scnprintf(tzdbg.disp_buf + len, (debug_rw_buf_size - 1) - len, " int_count on CPU # %d : %u\n", (uint32_t)j, (uint32_t)tzdbg_ptr->int_count[j]); } len += scnprintf(tzdbg.disp_buf + len, debug_rw_buf_size - 1, "\n"); if (len > (debug_rw_buf_size - 1)) { pr_warn("%s: Cannot fit all info into buf\n", __func__); break; } tzdbg_ptr++; } } else { tzdbg_ptr_tz40 = ptr; for (i = 0; i < (*num_int); i++) { len += scnprintf(tzdbg.disp_buf + len, (debug_rw_buf_size - 1) - len, " Interrupt Number : 0x%x\n" " Type of Interrupt : 0x%x\n" " Description of interrupt : %s\n", tzdbg_ptr_tz40->int_num, (uint32_t)tzdbg_ptr_tz40->int_info, (uint8_t *)tzdbg_ptr_tz40->int_desc); for (j = 0; j < tzdbg.diag_buf->cpu_count; j++) { len += scnprintf(tzdbg.disp_buf + len, (debug_rw_buf_size - 1) - len, " int_count on CPU # %d : %u\n", (uint32_t)j, (uint32_t)tzdbg_ptr_tz40->int_count[j]); } len += scnprintf(tzdbg.disp_buf + len, debug_rw_buf_size - 1, "\n"); if (len > (debug_rw_buf_size - 1)) { pr_warn("%s: Cannot fit all info into buf\n", __func__); break; } tzdbg_ptr_tz40++; } } tzdbg.stat[TZDBG_INTERRUPT].data = tzdbg.disp_buf; return len; } static int _disp_tz_log_stats_legacy(void) { int len = 0; unsigned char *ptr; ptr = (unsigned char *)tzdbg.diag_buf + tzdbg.diag_buf->ring_off; len += scnprintf(tzdbg.disp_buf, (debug_rw_buf_size - 1) - len, "%s\n", ptr); tzdbg.stat[TZDBG_LOG].data = tzdbg.disp_buf; return len; } static int _disp_log_stats(struct tzdbg_log_t *log, struct tzdbg_log_pos_t *log_start, uint32_t log_len, size_t count, uint32_t buf_idx) { uint32_t wrap_start; uint32_t wrap_end; uint32_t wrap_cnt; int max_len; int len = 0; int i = 0; wrap_start = log_start->wrap; wrap_end = log->log_pos.wrap; /* Calculate difference in # of buffer wrap-arounds */ if (wrap_end >= wrap_start) wrap_cnt = wrap_end - wrap_start; else { /* wrap counter has wrapped around, invalidate start position */ wrap_cnt = 2; } if (wrap_cnt > 1) { /* end position has wrapped around more than once, */ /* current start no longer valid */ log_start->wrap = log->log_pos.wrap - 1; log_start->offset = (log->log_pos.offset + 1) % log_len; } else if ((wrap_cnt == 1) && (log->log_pos.offset > log_start->offset)) { /* end position has overwritten start */ log_start->offset = (log->log_pos.offset + 1) % log_len; } pr_debug("diag_buf wrap = %u, offset = %u\n", log->log_pos.wrap, log->log_pos.offset); while (log_start->offset == log->log_pos.offset) { /* * No data in ring buffer, * so we'll hang around until something happens */ unsigned long t = msleep_interruptible(50); if (t != 0) { /* Some event woke us up, so let's quit */ return 0; } if (buf_idx == TZDBG_LOG) memcpy_fromio((void *)tzdbg.diag_buf, tzdbg.virt_iobase, debug_rw_buf_size); } max_len = (count > debug_rw_buf_size) ? debug_rw_buf_size : count; pr_debug("diag_buf wrap = %u, offset = %u\n", log->log_pos.wrap, log->log_pos.offset); /* * Read from ring buff while there is data and space in return buff */ while ((log_start->offset != log->log_pos.offset) && (len < max_len)) { tzdbg.disp_buf[i++] = log->log_buf[log_start->offset]; log_start->offset = (log_start->offset + 1) % log_len; if (log_start->offset == 0) ++log_start->wrap; ++len; } /* * return buffer to caller */ tzdbg.stat[buf_idx].data = tzdbg.disp_buf; return len; } static int _disp_log_stats_v2(struct tzdbg_log_v2_t *log, struct tzdbg_log_pos_v2_t *log_start, uint32_t log_len, size_t count, uint32_t buf_idx) { uint32_t wrap_start; uint32_t wrap_end; uint32_t wrap_cnt; int max_len; int len = 0; int i = 0; wrap_start = log_start->wrap; wrap_end = log->log_pos.wrap; /* Calculate difference in # of buffer wrap-arounds */ if (wrap_end >= wrap_start) wrap_cnt = wrap_end - wrap_start; else { /* wrap counter has wrapped around, invalidate start position */ wrap_cnt = 2; } if (wrap_cnt > 1) { /* end position has wrapped around more than once, */ /* current start no longer valid */ log_start->wrap = log->log_pos.wrap - 1; log_start->offset = (log->log_pos.offset + 1) % log_len; } else if ((wrap_cnt == 1) && (log->log_pos.offset > log_start->offset)) { /* end position has overwritten start */ log_start->offset = (log->log_pos.offset + 1) % log_len; } pr_debug("diag_buf wrap = %u, offset = %u\n", log->log_pos.wrap, log->log_pos.offset); while (log_start->offset == log->log_pos.offset) { /* * No data in ring buffer, * so we'll hang around until something happens */ unsigned long t = msleep_interruptible(50); if (t != 0) { /* Some event woke us up, so let's quit */ return 0; } if (buf_idx == TZDBG_LOG) memcpy_fromio((void *)tzdbg.diag_buf, tzdbg.virt_iobase, debug_rw_buf_size); } max_len = (count > debug_rw_buf_size) ? debug_rw_buf_size : count; pr_debug("diag_buf wrap = %u, offset = %u\n", log->log_pos.wrap, log->log_pos.offset); /* * Read from ring buff while there is data and space in return buff */ while ((log_start->offset != log->log_pos.offset) && (len < max_len)) { tzdbg.disp_buf[i++] = log->log_buf[log_start->offset]; log_start->offset = (log_start->offset + 1) % log_len; if (log_start->offset == 0) ++log_start->wrap; ++len; } /* * return buffer to caller */ tzdbg.stat[buf_idx].data = tzdbg.disp_buf; return len; } static int __disp_hyp_log_stats(uint8_t *log, struct hypdbg_log_pos_t *log_start, uint32_t log_len, size_t count, uint32_t buf_idx) { struct hypdbg_t *hyp = tzdbg.hyp_diag_buf; unsigned long t = 0; uint32_t wrap_start; uint32_t wrap_end; uint32_t wrap_cnt; int max_len; int len = 0; int i = 0; wrap_start = log_start->wrap; wrap_end = hyp->log_pos.wrap; /* Calculate difference in # of buffer wrap-arounds */ if (wrap_end >= wrap_start) wrap_cnt = wrap_end - wrap_start; else { /* wrap counter has wrapped around, invalidate start position */ wrap_cnt = 2; } if (wrap_cnt > 1) { /* end position has wrapped around more than once, */ /* current start no longer valid */ log_start->wrap = hyp->log_pos.wrap - 1; log_start->offset = (hyp->log_pos.offset + 1) % log_len; } else if ((wrap_cnt == 1) && (hyp->log_pos.offset > log_start->offset)) { /* end position has overwritten start */ log_start->offset = (hyp->log_pos.offset + 1) % log_len; } while (log_start->offset == hyp->log_pos.offset) { /* * No data in ring buffer, * so we'll hang around until something happens */ t = msleep_interruptible(50); if (t != 0) { /* Some event woke us up, so let's quit */ return 0; } /* TZDBG_HYP_LOG */ memcpy_fromio((void *)tzdbg.hyp_diag_buf, tzdbg.hyp_virt_iobase, tzdbg.hyp_debug_rw_buf_size); } max_len = (count > tzdbg.hyp_debug_rw_buf_size) ? tzdbg.hyp_debug_rw_buf_size : count; /* * Read from ring buff while there is data and space in return buff */ while ((log_start->offset != hyp->log_pos.offset) && (len < max_len)) { tzdbg.disp_buf[i++] = log[log_start->offset]; log_start->offset = (log_start->offset + 1) % log_len; if (log_start->offset == 0) ++log_start->wrap; ++len; } /* * return buffer to caller */ tzdbg.stat[buf_idx].data = tzdbg.disp_buf; return len; } static int print_text(char *intro_message, unsigned char *text_addr, unsigned int size, char *buf, uint32_t buf_len) { unsigned int i; int len = 0; pr_debug("begin address %p, size %d\n", text_addr, size); len += scnprintf(buf + len, buf_len - len, "%s\n", intro_message); for (i = 0; i < size; i++) { if (buf_len <= len + 6) { pr_err("buffer not enough, buf_len %d, len %d\n", buf_len, len); return buf_len; } len += scnprintf(buf + len, buf_len - len, "%02hhx ", text_addr[i]); if ((i & 0x1f) == 0x1f) len += scnprintf(buf + len, buf_len - len, "%c", '\n'); } len += scnprintf(buf + len, buf_len - len, "%c", '\n'); return len; } static int _disp_encrpted_log_stats(struct encrypted_log_info *enc_log_info, enum tzdbg_stats_type type, uint32_t log_id) { int ret = 0, len = 0; struct tzbsp_encr_log_t *encr_log_head; uint32_t size = 0; ret = qcom_scm_request_encrypted_log(enc_log_info->paddr, enc_log_info->size, log_id); if (ret) return 0; encr_log_head = (struct tzbsp_encr_log_t *)(enc_log_info->vaddr); pr_debug("display_buf_size = %d, encr_log_buff_size = %d\n", display_buf_size, encr_log_head->encr_log_buff_size); size = encr_log_head->encr_log_buff_size; len += scnprintf(tzdbg.disp_buf + len, (display_buf_size - 1) - len, "\n-------- New Encrypted %s --------\n", ((log_id == ENCRYPTED_QSEE_LOG_ID) ? "QSEE Log" : "TZ Dialog")); len += scnprintf(tzdbg.disp_buf + len, (display_buf_size - 1) - len, "\nMagic_Num :\n0x%x\n" "\nVerion :\n%d\n" "\nEncr_Log_Buff_Size :\n%d\n" "\nWrap_Count :\n%d\n", encr_log_head->magic_num, encr_log_head->version, encr_log_head->encr_log_buff_size, encr_log_head->wrap_count); len += print_text("\nKey : ", encr_log_head->key, TZBSP_AES_256_ENCRYPTED_KEY_SIZE, tzdbg.disp_buf + len, display_buf_size); len += print_text("\nNonce : ", encr_log_head->nonce, TZBSP_NONCE_LEN, tzdbg.disp_buf + len, display_buf_size - len); len += print_text("\nTag : ", encr_log_head->tag, TZBSP_TAG_LEN, tzdbg.disp_buf + len, display_buf_size - len); if (len > display_buf_size - size) pr_warn("Cannot fit all info into the buffer\n"); pr_debug("encrypted log size %d, disply buffer size %d, used len %d\n", size, display_buf_size, len); len += print_text("\nLog : ", encr_log_head->log_buf, size, tzdbg.disp_buf + len, display_buf_size - len); memset(enc_log_info->vaddr, 0, enc_log_info->size); tzdbg.stat[type].data = tzdbg.disp_buf; return len; } static int _disp_tz_log_stats(size_t count) { static struct tzdbg_log_pos_v2_t log_start_v2 = {0}; static struct tzdbg_log_pos_t log_start = {0}; struct tzdbg_log_v2_t *log_v2_ptr; struct tzdbg_log_t *log_ptr; log_ptr = (struct tzdbg_log_t *)((unsigned char *)tzdbg.diag_buf + tzdbg.diag_buf->ring_off - offsetof(struct tzdbg_log_t, log_buf)); log_v2_ptr = (struct tzdbg_log_v2_t *)((unsigned char *)tzdbg.diag_buf + tzdbg.diag_buf->ring_off - offsetof(struct tzdbg_log_v2_t, log_buf)); if (!tzdbg.is_enlarged_buf) return _disp_log_stats(log_ptr, &log_start, tzdbg.diag_buf->ring_len, count, TZDBG_LOG); return _disp_log_stats_v2(log_v2_ptr, &log_start_v2, tzdbg.diag_buf->ring_len, count, TZDBG_LOG); } static int _disp_hyp_log_stats(size_t count) { static struct hypdbg_log_pos_t log_start = {0}; uint8_t *log_ptr; uint32_t log_len; log_ptr = (uint8_t *)((unsigned char *)tzdbg.hyp_diag_buf + tzdbg.hyp_diag_buf->ring_off); log_len = tzdbg.hyp_debug_rw_buf_size - tzdbg.hyp_diag_buf->ring_off; return __disp_hyp_log_stats(log_ptr, &log_start, log_len, count, TZDBG_HYP_LOG); } static int _disp_qsee_log_stats(size_t count) { static struct tzdbg_log_pos_t log_start = {0}; static struct tzdbg_log_pos_v2_t log_start_v2 = {0}; if (!tzdbg.is_enlarged_buf) return _disp_log_stats(g_qsee_log, &log_start, QSEE_LOG_BUF_SIZE - sizeof(struct tzdbg_log_pos_t), count, TZDBG_QSEE_LOG); return _disp_log_stats_v2(g_qsee_log_v2, &log_start_v2, QSEE_LOG_BUF_SIZE_V2 - sizeof(struct tzdbg_log_pos_v2_t), count, TZDBG_QSEE_LOG); } static int _disp_hyp_general_stats(size_t count) { int len = 0; int i; struct hypdbg_boot_info_t *ptr = NULL; len += scnprintf((unsigned char *)tzdbg.disp_buf + len, tzdbg.hyp_debug_rw_buf_size - 1, " Magic Number : 0x%x\n" " CPU Count : 0x%x\n" " S2 Fault Counter: 0x%x\n", tzdbg.hyp_diag_buf->magic_num, tzdbg.hyp_diag_buf->cpu_count, tzdbg.hyp_diag_buf->s2_fault_counter); ptr = tzdbg.hyp_diag_buf->boot_info; for (i = 0; i < tzdbg.hyp_diag_buf->cpu_count; i++) { len += scnprintf((unsigned char *)tzdbg.disp_buf + len, (tzdbg.hyp_debug_rw_buf_size - 1) - len, " CPU #: %d\n" " Warmboot entry CPU counter: 0x%x\n" " Warmboot exit CPU counter : 0x%x\n", i, ptr->warm_entry_cnt, ptr->warm_exit_cnt); if (len > (tzdbg.hyp_debug_rw_buf_size - 1)) { pr_warn("%s: Cannot fit all info into the buffer\n", __func__); break; } ptr++; } tzdbg.stat[TZDBG_HYP_GENERAL].data = (char *)tzdbg.disp_buf; return len; } static ssize_t tzdbgfs_read_unencrypted(struct file *file, char __user *buf, size_t count, loff_t *offp) { int len = 0; int tz_id = *(int *)(file->private_data); if (tz_id == TZDBG_BOOT || tz_id == TZDBG_RESET || tz_id == TZDBG_INTERRUPT || tz_id == TZDBG_GENERAL || tz_id == TZDBG_VMID || tz_id == TZDBG_LOG) memcpy_fromio((void *)tzdbg.diag_buf, tzdbg.virt_iobase, debug_rw_buf_size); if (tz_id == TZDBG_HYP_GENERAL || tz_id == TZDBG_HYP_LOG) memcpy_fromio((void *)tzdbg.hyp_diag_buf, tzdbg.hyp_virt_iobase, tzdbg.hyp_debug_rw_buf_size); switch (tz_id) { case TZDBG_BOOT: len = _disp_tz_boot_stats(); break; case TZDBG_RESET: len = _disp_tz_reset_stats(); break; case TZDBG_INTERRUPT: len = _disp_tz_interrupt_stats(); break; case TZDBG_GENERAL: len = _disp_tz_general_stats(); break; case TZDBG_VMID: len = _disp_tz_vmid_stats(); break; case TZDBG_LOG: if (TZBSP_DIAG_MAJOR_VERSION_LEGACY < (tzdbg.diag_buf->version >> 16)) { len = _disp_tz_log_stats(count); *offp = 0; } else { len = _disp_tz_log_stats_legacy(); } break; case TZDBG_QSEE_LOG: len = _disp_qsee_log_stats(count); *offp = 0; break; case TZDBG_HYP_GENERAL: len = _disp_hyp_general_stats(count); break; case TZDBG_HYP_LOG: len = _disp_hyp_log_stats(count); *offp = 0; break; default: break; } if (len > count) len = count; return simple_read_from_buffer(buf, len, offp, tzdbg.stat[tz_id].data, len); } static ssize_t tzdbgfs_read_encrypted(struct file *file, char __user *buf, size_t count, loff_t *offp) { int len = 0, ret = 0; int tz_id = *(int *)(file->private_data); struct tzdbg_stat *stat = &(tzdbg.stat[tz_id]); pr_debug("%s: tz_id = %d\n", __func__, tz_id); if (tz_id >= TZDBG_STATS_MAX) { pr_err("invalid encrypted log id %d\n", tz_id); return ret; } if (!stat->display_len) { if (tz_id == TZDBG_QSEE_LOG) stat->display_len = _disp_encrpted_log_stats( &enc_qseelog_info, tz_id, ENCRYPTED_QSEE_LOG_ID); else stat->display_len = _disp_encrpted_log_stats( &enc_tzlog_info, tz_id, ENCRYPTED_TZ_LOG_ID); stat->display_offset = 0; } len = stat->display_len; if (len > count) len = count; *offp = 0; ret = simple_read_from_buffer(buf, len, offp, tzdbg.stat[tz_id].data + stat->display_offset, count); stat->display_offset += ret; stat->display_len -= ret; pr_debug("ret = %d, offset = %d\n", ret, (int)(*offp)); pr_debug("display_len = %d, offset = %d\n", stat->display_len, stat->display_offset); return ret; } static ssize_t tzdbgfs_read(struct file *file, char __user *buf, size_t count, loff_t *offp) { int tz_id = *(int *)(file->private_data); if (!tzdbg.is_encrypted_log_enabled || (tz_id == TZDBG_HYP_GENERAL || tz_id == TZDBG_HYP_LOG)) return tzdbgfs_read_unencrypted(file, buf, count, offp); else return tzdbgfs_read_encrypted(file, buf, count, offp); } static const struct file_operations tzdbg_fops = { .owner = THIS_MODULE, .read = tzdbgfs_read, .open = simple_open, }; /* * Allocates log buffer from ION, registers the buffer at TZ */ static int tzdbg_register_qsee_log_buf(struct platform_device *pdev) { int ret = 0; void *buf = NULL; uint32_t ns_vmids[] = {VMID_HLOS}; uint32_t ns_vm_perms[] = {PERM_READ | PERM_WRITE}; uint32_t ns_vm_nums = 1; if (tzdbg.is_enlarged_buf) { if (of_property_read_u32((&pdev->dev)->of_node, "qseelog-buf-size-v2", &qseelog_buf_size)) { pr_debug("Enlarged qseelog buf size isn't defined\n"); qseelog_buf_size = QSEE_LOG_BUF_SIZE_V2; } } else { qseelog_buf_size = QSEE_LOG_BUF_SIZE; } pr_debug("qseelog buf size is 0x%x\n", qseelog_buf_size); buf = dma_alloc_coherent(&pdev->dev, qseelog_buf_size, &coh_pmem, GFP_KERNEL); if (buf == NULL) return -ENOMEM; if (!tzdbg.is_encrypted_log_enabled) { ret = qtee_shmbridge_register(coh_pmem, qseelog_buf_size, ns_vmids, ns_vm_perms, ns_vm_nums, PERM_READ | PERM_WRITE, &qseelog_shmbridge_handle); if (ret) { pr_err("failed to create bridge for qsee_log buf\n"); goto exit_free_mem; } } g_qsee_log = (struct tzdbg_log_t *)buf; g_qsee_log->log_pos.wrap = g_qsee_log->log_pos.offset = 0; g_qsee_log_v2 = (struct tzdbg_log_v2_t *)buf; g_qsee_log_v2->log_pos.wrap = g_qsee_log_v2->log_pos.offset = 0; ret = qcom_scm_register_qsee_log_buf(coh_pmem, qseelog_buf_size); if (ret != QSEOS_RESULT_SUCCESS) { pr_err( "%s: scm_call to register log buf failed, resp result =%lld\n", __func__, ret); goto exit_dereg_bridge; } return ret; exit_dereg_bridge: if (!tzdbg.is_encrypted_log_enabled) qtee_shmbridge_deregister(qseelog_shmbridge_handle); exit_free_mem: dma_free_coherent(&pdev->dev, qseelog_buf_size, (void *)g_qsee_log, coh_pmem); return ret; } static void tzdbg_free_qsee_log_buf(struct platform_device *pdev) { if (!tzdbg.is_encrypted_log_enabled) qtee_shmbridge_deregister(qseelog_shmbridge_handle); dma_free_coherent(&pdev->dev, qseelog_buf_size, (void *)g_qsee_log, coh_pmem); } static int tzdbg_allocate_encrypted_log_buf(struct platform_device *pdev) { int ret = 0; uint32_t ns_vmids[] = {VMID_HLOS}; uint32_t ns_vm_perms[] = {PERM_READ | PERM_WRITE}; uint32_t ns_vm_nums = 1; if (!tzdbg.is_encrypted_log_enabled) return 0; /* max encrypted qsee log buf zize (include header, and page align) */ enc_qseelog_info.size = qseelog_buf_size + PAGE_SIZE; enc_qseelog_info.vaddr = dma_alloc_coherent(&pdev->dev, enc_qseelog_info.size, &enc_qseelog_info.paddr, GFP_KERNEL); if (enc_qseelog_info.vaddr == NULL) return -ENOMEM; ret = qtee_shmbridge_register(enc_qseelog_info.paddr, enc_qseelog_info.size, ns_vmids, ns_vm_perms, ns_vm_nums, PERM_READ | PERM_WRITE, &enc_qseelog_info.shmb_handle); if (ret) { pr_err("failed to create encr_qsee_log bridge, ret %d\n", ret); goto exit_free_qseelog; } pr_debug("Alloc memory for encr_qsee_log, size = %zu\n", enc_qseelog_info.size); enc_tzlog_info.size = debug_rw_buf_size; enc_tzlog_info.vaddr = dma_alloc_coherent(&pdev->dev, enc_tzlog_info.size, &enc_tzlog_info.paddr, GFP_KERNEL); if (enc_tzlog_info.vaddr == NULL) goto exit_unreg_qseelog; ret = qtee_shmbridge_register(enc_tzlog_info.paddr, enc_tzlog_info.size, ns_vmids, ns_vm_perms, ns_vm_nums, PERM_READ | PERM_WRITE, &enc_tzlog_info.shmb_handle); if (ret) { pr_err("failed to create encr_tz_log bridge, ret = %d\n", ret); goto exit_free_tzlog; } pr_debug("Alloc memory for encr_tz_log, size %zu\n", enc_qseelog_info.size); return 0; exit_free_tzlog: dma_free_coherent(&pdev->dev, enc_tzlog_info.size, enc_tzlog_info.vaddr, enc_tzlog_info.paddr); exit_unreg_qseelog: qtee_shmbridge_deregister(enc_qseelog_info.shmb_handle); exit_free_qseelog: dma_free_coherent(&pdev->dev, enc_qseelog_info.size, enc_qseelog_info.vaddr, enc_qseelog_info.paddr); return -ENOMEM; } static void tzdbg_free_encrypted_log_buf(struct platform_device *pdev) { qtee_shmbridge_deregister(enc_tzlog_info.shmb_handle); dma_free_coherent(&pdev->dev, enc_tzlog_info.size, enc_tzlog_info.vaddr, enc_tzlog_info.paddr); qtee_shmbridge_deregister(enc_qseelog_info.shmb_handle); dma_free_coherent(&pdev->dev, enc_qseelog_info.size, enc_qseelog_info.vaddr, enc_qseelog_info.paddr); } static int tzdbgfs_init(struct platform_device *pdev) { int rc = 0; int i; struct dentry *dent_dir; struct dentry *dent; dent_dir = debugfs_create_dir("tzdbg", NULL); if (dent_dir == NULL) { dev_err(&pdev->dev, "tzdbg debugfs_create_dir failed\n"); return -ENOMEM; } for (i = 0; i < TZDBG_STATS_MAX; i++) { tzdbg.debug_tz[i] = i; dent = debugfs_create_file_unsafe(tzdbg.stat[i].name, 0444, dent_dir, &tzdbg.debug_tz[i], &tzdbg_fops); if (dent == NULL) { dev_err(&pdev->dev, "TZ debugfs_create_file failed\n"); rc = -ENOMEM; goto err; } } platform_set_drvdata(pdev, dent_dir); return 0; err: debugfs_remove_recursive(dent_dir); return rc; } static void tzdbgfs_exit(struct platform_device *pdev) { struct dentry *dent_dir; dent_dir = platform_get_drvdata(pdev); debugfs_remove_recursive(dent_dir); } static int __update_hypdbg_base(struct platform_device *pdev, void __iomem *virt_iobase) { phys_addr_t hypdiag_phy_iobase; uint32_t hyp_address_offset; uint32_t hyp_size_offset; struct hypdbg_t *hyp; uint32_t *ptr = NULL; if (of_property_read_u32((&pdev->dev)->of_node, "hyplog-address-offset", &hyp_address_offset)) { dev_err(&pdev->dev, "hyplog address offset is not defined\n"); return -EINVAL; } if (of_property_read_u32((&pdev->dev)->of_node, "hyplog-size-offset", &hyp_size_offset)) { dev_err(&pdev->dev, "hyplog size offset is not defined\n"); return -EINVAL; } hypdiag_phy_iobase = readl_relaxed(virt_iobase + hyp_address_offset); tzdbg.hyp_debug_rw_buf_size = readl_relaxed(virt_iobase + hyp_size_offset); tzdbg.hyp_virt_iobase = devm_ioremap_nocache(&pdev->dev, hypdiag_phy_iobase, tzdbg.hyp_debug_rw_buf_size); if (!tzdbg.hyp_virt_iobase) { dev_err(&pdev->dev, "ERROR could not ioremap: start=%pr, len=%u\n", &hypdiag_phy_iobase, tzdbg.hyp_debug_rw_buf_size); return -ENXIO; } ptr = kzalloc(tzdbg.hyp_debug_rw_buf_size, GFP_KERNEL); if (!ptr) return -ENOMEM; tzdbg.hyp_diag_buf = (struct hypdbg_t *)ptr; hyp = tzdbg.hyp_diag_buf; hyp->log_pos.wrap = hyp->log_pos.offset = 0; return 0; } static int tzdbg_get_tz_version(void) { u64 version; int ret = 0; ret = qcom_scm_get_tz_log_feat_id(&version); if (ret) { pr_err("%s: scm_call to get tz version failed\n", __func__); return ret; } tzdbg.tz_version = version; ret = qcom_scm_get_tz_feat_id_version(QCOM_SCM_FEAT_DIAG_ID, &version); if (ret) { pr_err("%s: scm_call to get tz diag version failed, ret = %d\n", __func__, ret); return ret; } pr_warn("tz diag version is %x\n", version); if ( (((version >> TZBSP_FVER_MAJOR_SHIFT) & TZBSP_FVER_MAJOR_MINOR_MASK) == TZBSP_DIAG_MAJOR_VERSION_V9) && ((((version >> TZBSP_FVER_MINOR_SHIFT) & TZBSP_FVER_MAJOR_MINOR_MASK) == TZBSP_DIAG_MINOR_VERSION_V2) || (((version >> TZBSP_FVER_MINOR_SHIFT) & TZBSP_FVER_MAJOR_MINOR_MASK) == TZBSP_DIAG_MINOR_VERSION_V21) || (((version >> TZBSP_FVER_MINOR_SHIFT) & TZBSP_FVER_MAJOR_MINOR_MASK) == TZBSP_DIAG_MINOR_VERSION_V22))) tzdbg.is_enlarged_buf = true; else tzdbg.is_enlarged_buf = false; return ret; } static void tzdbg_query_encrypted_log(void) { int ret = 0; uint64_t enabled; ret = qcom_scm_query_encrypted_log_feature(&enabled); if (ret) { pr_err("scm_call QUERY_ENCR_LOG_FEATURE failed ret %d\n", ret); tzdbg.is_encrypted_log_enabled = false; } else { pr_warn("encrypted qseelog enabled is %d\n", enabled); tzdbg.is_encrypted_log_enabled = enabled; } } /* * Driver functions */ static int tz_log_probe(struct platform_device *pdev) { struct resource *resource; void __iomem *virt_iobase; phys_addr_t tzdiag_phy_iobase; uint32_t *ptr = NULL; int ret = 0; ret = tzdbg_get_tz_version(); if (ret) return ret; /* * Get address that stores the physical location diagnostic data */ resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!resource) { dev_err(&pdev->dev, "%s: ERROR Missing MEM resource\n", __func__); return -ENXIO; } /* * Get the debug buffer size */ debug_rw_buf_size = resource_size(resource); /* * Map address that stores the physical location diagnostic data */ virt_iobase = devm_ioremap_nocache(&pdev->dev, resource->start, debug_rw_buf_size); if (!virt_iobase) { dev_err(&pdev->dev, "%s: ERROR could not ioremap: start=%pr, len=%u\n", __func__, &resource->start, (unsigned int)(debug_rw_buf_size)); return -ENXIO; } if (pdev->dev.of_node) { tzdbg.is_hyplog_enabled = of_property_read_bool( (&pdev->dev)->of_node, "qcom,hyplog-enabled"); if (tzdbg.is_hyplog_enabled) { ret = __update_hypdbg_base(pdev, virt_iobase); if (ret) { dev_err(&pdev->dev, "%s: fail to get hypdbg_base ret %d\n", __func__, ret); return -EINVAL; } } else { dev_info(&pdev->dev, "Hyp log service not support\n"); } } else { dev_dbg(&pdev->dev, "Device tree data is not found\n"); } /* * Retrieve the address of diagnostic data */ tzdiag_phy_iobase = readl_relaxed(virt_iobase); tzdbg_query_encrypted_log(); /* * Map the diagnostic information area if encryption is disabled */ if (!tzdbg.is_encrypted_log_enabled) { tzdbg.virt_iobase = devm_ioremap_nocache(&pdev->dev, tzdiag_phy_iobase, debug_rw_buf_size); if (!tzdbg.virt_iobase) { dev_err(&pdev->dev, "%s: could not ioremap: start=%pr, len=%u\n", __func__, &tzdiag_phy_iobase, debug_rw_buf_size); return -ENXIO; } /* allocate diag_buf */ ptr = kzalloc(debug_rw_buf_size, GFP_KERNEL); if (ptr == NULL) return -ENOMEM; tzdbg.diag_buf = (struct tzdbg_t *)ptr; } /* register unencrypted qsee log buffer */ ret = tzdbg_register_qsee_log_buf(pdev); if (ret) goto exit_free_diag_buf; /* allocate encrypted qsee and tz log buffer */ ret = tzdbg_allocate_encrypted_log_buf(pdev); if (ret) { dev_err(&pdev->dev, "Failed to allocate encrypted log buffer\n", __func__); goto exit_free_qsee_log_buf; } /* allocate display_buf */ if (UINT_MAX/4 < qseelog_buf_size) { pr_err("display_buf_size integer overflow\n"); goto exit_free_qsee_log_buf; } display_buf_size = qseelog_buf_size * 4; tzdbg.disp_buf = dma_alloc_coherent(&pdev->dev, display_buf_size, &disp_buf_paddr, GFP_KERNEL); if (tzdbg.disp_buf == NULL) { ret = -ENOMEM; goto exit_free_encr_log_buf; } if (tzdbgfs_init(pdev)) goto exit_free_disp_buf; return 0; exit_free_disp_buf: dma_free_coherent(&pdev->dev, display_buf_size, (void *)tzdbg.disp_buf, disp_buf_paddr); exit_free_encr_log_buf: tzdbg_free_encrypted_log_buf(pdev); exit_free_qsee_log_buf: tzdbg_free_qsee_log_buf(pdev); exit_free_diag_buf: if (!tzdbg.is_encrypted_log_enabled) kfree(tzdbg.diag_buf); return -ENXIO; } static int tz_log_remove(struct platform_device *pdev) { tzdbgfs_exit(pdev); dma_free_coherent(&pdev->dev, display_buf_size, (void *)tzdbg.disp_buf, disp_buf_paddr); tzdbg_free_encrypted_log_buf(pdev); tzdbg_free_qsee_log_buf(pdev); if (!tzdbg.is_encrypted_log_enabled) kfree(tzdbg.diag_buf); return 0; } static const struct of_device_id tzlog_match[] = { {.compatible = "qcom,tz-log"}, {} }; static struct platform_driver tz_log_driver = { .probe = tz_log_probe, .remove = tz_log_remove, .driver = { .name = "tz_log", .of_match_table = tzlog_match, .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, }; module_platform_driver(tz_log_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("TZ Log driver");