// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2017-2021, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_QCOM_MINIDUMP_PANIC_DUMP #include #include #include #include #include "../../../kernel/sched/sched.h" #include #include #include #include #include #include #include #include #endif #ifdef CONFIG_QCOM_DYN_MINIDUMP_STACK #include #ifdef CONFIG_VMAP_STACK #define STACK_NUM_PAGES (THREAD_SIZE / PAGE_SIZE) #else #define STACK_NUM_PAGES 1 #endif /* !CONFIG_VMAP_STACK */ struct md_stack_cpu_data { int stack_mdidx[STACK_NUM_PAGES]; struct md_region stack_mdr[STACK_NUM_PAGES]; } ____cacheline_aligned_in_smp; static int md_current_stack_init __read_mostly; static DEFINE_PER_CPU_SHARED_ALIGNED(struct md_stack_cpu_data, md_stack_data); struct md_suspend_context_data { int task_mdno; int stack_mdidx[STACK_NUM_PAGES]; struct md_region stack_mdr[STACK_NUM_PAGES]; struct md_region task_mdr; bool init; }; static struct md_suspend_context_data md_suspend_context; #endif static bool is_vmap_stack __read_mostly; #ifdef CONFIG_QCOM_MINIDUMP_FTRACE #define MD_FTRACE_BUF_SIZE SZ_2M static char *md_ftrace_buf_addr; static size_t md_ftrace_buf_current; #endif #ifdef CONFIG_QCOM_MINIDUMP_PANIC_DUMP /* Rnqueue information */ #define MD_RUNQUEUE_PAGES 8 static bool md_in_oops_handler; static struct seq_buf *md_runq_seq_buf; static int md_align_offset; /* CPU context information */ #ifdef CONFIG_QCOM_MINIDUMP_PANIC_CPU_CONTEXT #define MD_CPU_CNTXT_PAGES 32 static int die_cpu = -1; static struct seq_buf *md_cntxt_seq_buf; #endif /* Meminfo */ #define MD_MEMINFO_PAGES 1 struct seq_buf *md_meminfo_seq_buf; /* Slabinfo */ #define MD_SLABINFO_PAGES 8 struct seq_buf *md_slabinfo_seq_buf; #ifdef CONFIG_PAGE_OWNER size_t md_pageowner_dump_size = SZ_2M; char *md_pageowner_dump_addr; #endif #ifdef CONFIG_SLUB_DEBUG size_t md_slabowner_dump_size = SZ_2M; char *md_slabowner_dump_addr; #endif /* Modules information */ #ifdef CONFIG_MODULES #define NUM_MD_MODULES 200 static struct list_head md_mod_list_head; struct md_module_data { struct list_head entry; char name[MODULE_NAME_LEN]; void *base; unsigned int size; }; static struct seq_buf *md_mod_info_seq_buf; static int mod_curr_count; static DEFINE_SPINLOCK(md_modules_lock); #endif /* CONFIG_MODULES */ #endif static void __init register_log_buf(void) { char *log_bufp; uint32_t log_buf_len; struct md_region md_entry; log_bufp = log_buf_addr_get(); log_buf_len = log_buf_len_get(); if (!log_bufp || !log_buf_len) { pr_err("Unable to locate log_buf!\n"); return; } /*Register logbuf to minidump, first idx would be from bss section */ strlcpy(md_entry.name, "KLOGBUF", sizeof(md_entry.name)); md_entry.virt_addr = (uintptr_t) log_bufp; md_entry.phys_addr = virt_to_phys(log_bufp); md_entry.size = log_buf_len; if (msm_minidump_add_region(&md_entry) < 0) pr_err("Failed to add logbuf in Minidump\n"); } static int register_stack_entry(struct md_region *ksp_entry, u64 sp, u64 size) { struct page *sp_page; int entry; ksp_entry->virt_addr = sp; ksp_entry->size = size; if (is_vmap_stack) { sp_page = vmalloc_to_page((const void *) sp); ksp_entry->phys_addr = page_to_phys(sp_page); } else { ksp_entry->phys_addr = virt_to_phys((uintptr_t *)sp); } entry = msm_minidump_add_region(ksp_entry); if (entry < 0) pr_err("Failed to add stack of entry %s in Minidump\n", ksp_entry->name); return entry; } static void __init register_kernel_sections(void) { struct md_region ksec_entry; char *data_name = "KDATABSS"; char *rodata_name = "KROAIDATA"; #ifdef CONFIG_SMP const size_t static_size = __per_cpu_end - __per_cpu_start; void __percpu *base = (void __percpu *)__per_cpu_start; unsigned int cpu; #endif strlcpy(ksec_entry.name, data_name, sizeof(ksec_entry.name)); ksec_entry.virt_addr = (uintptr_t)_sdata; ksec_entry.phys_addr = virt_to_phys(_sdata); ksec_entry.size = roundup((__bss_stop - _sdata), 4); if (msm_minidump_add_region(&ksec_entry) < 0) pr_err("Failed to add data section in Minidump\n"); strlcpy(ksec_entry.name, rodata_name, sizeof(ksec_entry.name)); ksec_entry.virt_addr = (uintptr_t)__start_ro_after_init; ksec_entry.phys_addr = virt_to_phys(__start_ro_after_init); ksec_entry.size = roundup((__end_ro_after_init - __start_ro_after_init), 4); if (msm_minidump_add_region(&ksec_entry) < 0) pr_err("Failed to add rodata section in Minidump\n"); #ifdef CONFIG_SMP /* Add percpu static sections */ for_each_possible_cpu(cpu) { void *start = per_cpu_ptr(base, cpu); memset(&ksec_entry, 0, sizeof(ksec_entry)); scnprintf(ksec_entry.name, sizeof(ksec_entry.name), "KSPERCPU%d", cpu); ksec_entry.virt_addr = (uintptr_t)start; ksec_entry.phys_addr = per_cpu_ptr_to_phys(start); ksec_entry.size = static_size; if (msm_minidump_add_region(&ksec_entry) < 0) pr_err("Failed to add percpu sections in Minidump\n"); } #endif } static inline bool in_stack_range( u64 sp, u64 base_addr, unsigned int stack_size) { u64 min_addr = base_addr; u64 max_addr = base_addr + stack_size; return (min_addr <= sp && sp < max_addr); } static unsigned int calculate_copy_pages(u64 sp, struct vm_struct *stack_area) { u64 tsk_stack_base = (u64) stack_area->addr; u64 offset; unsigned int stack_pages, copy_pages; if (in_stack_range(sp, tsk_stack_base, get_vm_area_size(stack_area))) { offset = sp - tsk_stack_base; stack_pages = get_vm_area_size(stack_area) / PAGE_SIZE; copy_pages = stack_pages - (offset / PAGE_SIZE); } else { copy_pages = 0; } return copy_pages; } void dump_stack_minidump(u64 sp) { struct md_region ksp_entry, ktsk_entry; u32 cpu = smp_processor_id(); struct vm_struct *stack_vm_area; unsigned int i, copy_pages; if (IS_ENABLED(CONFIG_QCOM_DYN_MINIDUMP_STACK)) return; if (is_idle_task(current)) return; is_vmap_stack = IS_ENABLED(CONFIG_VMAP_STACK); if (sp < MODULES_END || sp > -256UL) sp = current_stack_pointer; /* * Since stacks are now allocated with vmalloc, the translation to * physical address is not a simple linear transformation like it is * for kernel logical addresses, since vmalloc creates a virtual * mapping. Thus, virt_to_phys() should not be used in this context; * instead the page table must be walked to acquire the physical * address of one page of the stack. */ stack_vm_area = task_stack_vm_area(current); if (is_vmap_stack) { sp &= ~(PAGE_SIZE - 1); copy_pages = calculate_copy_pages(sp, stack_vm_area); for (i = 0; i < copy_pages; i++) { scnprintf(ksp_entry.name, sizeof(ksp_entry.name), "KSTACK%d_%d", cpu, i); (void)register_stack_entry(&ksp_entry, sp, PAGE_SIZE); sp += PAGE_SIZE; } } else { sp &= ~(THREAD_SIZE - 1); scnprintf(ksp_entry.name, sizeof(ksp_entry.name), "KSTACK%d", cpu); (void)register_stack_entry(&ksp_entry, sp, THREAD_SIZE); } scnprintf(ktsk_entry.name, sizeof(ktsk_entry.name), "KTASK%d", cpu); ktsk_entry.virt_addr = (u64)current; ktsk_entry.phys_addr = virt_to_phys((uintptr_t *)current); ktsk_entry.size = sizeof(struct task_struct); if (msm_minidump_add_region(&ktsk_entry) < 0) pr_err("Failed to add current task %d in Minidump\n", cpu); } #ifdef CONFIG_QCOM_DYN_MINIDUMP_STACK static void update_stack_entry(struct md_region *ksp_entry, u64 sp, int mdno) { struct page *sp_page; ksp_entry->virt_addr = sp; if (likely(is_vmap_stack)) { sp_page = vmalloc_to_page((const void *) sp); ksp_entry->phys_addr = page_to_phys(sp_page); } else { ksp_entry->phys_addr = virt_to_phys((uintptr_t *)sp); } if (msm_minidump_update_region(mdno, ksp_entry) < 0) { pr_err_ratelimited( "Failed to update stack entry %s in minidump\n", ksp_entry->name); } } static void register_vmapped_stack(struct md_region *mdr, int *mdno, u64 sp, char *name_str, bool update) { int i; sp &= ~(PAGE_SIZE - 1); for (i = 0; i < STACK_NUM_PAGES; i++) { if (unlikely(!update)) { scnprintf(mdr->name, sizeof(mdr->name), "%s_%d", name_str, i); *mdno = register_stack_entry(mdr, sp, PAGE_SIZE); } else { update_stack_entry(mdr, sp, *mdno); } sp += PAGE_SIZE; mdr++; mdno++; } } static void register_normal_stack(struct md_region *mdr, int *mdno, u64 sp, char *name_str, bool update) { sp &= ~(THREAD_SIZE - 1); if (unlikely(!update)) { scnprintf(mdr->name, sizeof(mdr->name), name_str); *mdno = register_stack_entry(mdr, sp, THREAD_SIZE); } else { update_stack_entry(mdr, sp, *mdno); } } static void update_md_stack(struct md_region *stack_mdr, int *stack_mdno, u64 sp) { unsigned int i; int *mdno; if (likely(is_vmap_stack)) { for (i = 0; i < STACK_NUM_PAGES; i++) { mdno = stack_mdno + i; if (unlikely(*mdno < 0)) return; } register_vmapped_stack(stack_mdr, stack_mdno, sp, NULL, true); } else { if (unlikely(*stack_mdno < 0)) return; register_normal_stack(stack_mdr, stack_mdno, sp, NULL, true); } } static void update_md_cpu_stack(u32 cpu, u64 sp) { struct md_stack_cpu_data *md_stack_cpu_d = &per_cpu(md_stack_data, cpu); if (!md_current_stack_init) return; update_md_stack(md_stack_cpu_d->stack_mdr, md_stack_cpu_d->stack_mdidx, sp); } void md_current_stack_notifer(void *ignore, bool preempt, struct task_struct *prev, struct task_struct *next) { u32 cpu = task_cpu(next); u64 sp = (u64)next->stack; if (is_idle_task(next)) return; update_md_cpu_stack(cpu, sp); } void md_current_stack_ipi_handler(void *data) { u32 cpu = smp_processor_id(); struct vm_struct *stack_vm_area; u64 sp = current_stack_pointer; if (is_idle_task(current)) return; if (likely(is_vmap_stack)) { stack_vm_area = task_stack_vm_area(current); sp = (u64)stack_vm_area->addr; } update_md_cpu_stack(cpu, sp); } static void update_md_current_task(struct md_region *mdr, int mdno) { mdr->virt_addr = (u64)current; mdr->phys_addr = virt_to_phys((uintptr_t *)current); if (msm_minidump_update_region(mdno, mdr) < 0) pr_err("Failed to update %s current task in minidump\n", mdr->name); } static void update_md_suspend_current_stack(void) { u64 sp = current_stack_pointer; struct vm_struct *stack_vm_area; if (likely(is_vmap_stack)) { stack_vm_area = task_stack_vm_area(current); sp = (u64)stack_vm_area->addr; } update_md_stack(md_suspend_context.stack_mdr, md_suspend_context.stack_mdidx, sp); } static void update_md_suspend_current_task(void) { if (unlikely(md_suspend_context.task_mdno < 0)) return; update_md_current_task(&md_suspend_context.task_mdr, md_suspend_context.task_mdno); } static void update_md_suspend_currents(void) { if (!md_suspend_context.init) return; update_md_suspend_current_stack(); update_md_suspend_current_task(); } static void register_current_stack(void) { int cpu; u64 sp = current_stack_pointer; struct md_stack_cpu_data *md_stack_cpu_d; struct vm_struct *stack_vm_area; char name_str[MAX_NAME_LENGTH]; /* * Since stacks are now allocated with vmalloc, the translation to * physical address is not a simple linear transformation like it is * for kernel logical addresses, since vmalloc creates a virtual * mapping. Thus, virt_to_phys() should not be used in this context; * instead the page table must be walked to acquire the physical * address of all pages of the stack. */ if (likely(is_vmap_stack)) { stack_vm_area = task_stack_vm_area(current); sp = (u64)stack_vm_area->addr; } for_each_possible_cpu(cpu) { /* * Let's register dummies for now, * once system up and running, let the cpu update its currents. */ md_stack_cpu_d = &per_cpu(md_stack_data, cpu); scnprintf(name_str, sizeof(name_str), "KSTACK%d", cpu); if (is_vmap_stack) register_vmapped_stack(md_stack_cpu_d->stack_mdr, md_stack_cpu_d->stack_mdidx, sp, name_str, false); else register_normal_stack(md_stack_cpu_d->stack_mdr, md_stack_cpu_d->stack_mdidx, sp, name_str, false); } register_trace_sched_switch(md_current_stack_notifer, NULL); md_current_stack_init = 1; smp_call_function(md_current_stack_ipi_handler, NULL, 1); } static void register_suspend_stack(void) { char name_str[MAX_NAME_LENGTH]; u64 sp = current_stack_pointer; struct vm_struct *stack_vm_area = task_stack_vm_area(current); scnprintf(name_str, sizeof(name_str), "KSUSPSTK"); if (is_vmap_stack) { sp = (u64)stack_vm_area->addr; register_vmapped_stack(md_suspend_context.stack_mdr, md_suspend_context.stack_mdidx, sp, name_str, false); } else { register_normal_stack(md_suspend_context.stack_mdr, md_suspend_context.stack_mdidx, sp, name_str, false); } } static void register_current_task(struct md_region *mdr, int *mdno, char *name_str) { scnprintf(mdr->name, sizeof(mdr->name), name_str); mdr->virt_addr = (u64)current; mdr->phys_addr = virt_to_phys((uintptr_t *)current); mdr->size = sizeof(struct task_struct); *mdno = msm_minidump_add_region(mdr); if (*mdno < 0) pr_err("Failed to add current task %s in Minidump\n", mdr->name); } static void register_suspend_current_task(void) { char name_str[MAX_NAME_LENGTH]; scnprintf(name_str, sizeof(name_str), "KSUSPTASK"); register_current_task(&md_suspend_context.task_mdr, &md_suspend_context.task_mdno, name_str); } static int minidump_pm_notifier(struct notifier_block *nb, unsigned long event, void *unused) { switch (event) { case PM_SUSPEND_PREPARE: update_md_suspend_currents(); break; } return NOTIFY_DONE; } static struct notifier_block minidump_pm_nb = { .notifier_call = minidump_pm_notifier, }; static void register_suspend_context(void) { register_suspend_stack(); register_suspend_current_task(); register_pm_notifier(&minidump_pm_nb); md_suspend_context.init = true; } #endif #ifdef CONFIG_ARM64 static void register_irq_stack(void) { int cpu; unsigned int i; int irq_stack_pages_count; u64 irq_stack_base; struct md_region irq_sp_entry; u64 sp; for_each_possible_cpu(cpu) { irq_stack_base = (u64)per_cpu(irq_stack_ptr, cpu); if (is_vmap_stack) { irq_stack_pages_count = IRQ_STACK_SIZE / PAGE_SIZE; sp = irq_stack_base & ~(PAGE_SIZE - 1); for (i = 0; i < irq_stack_pages_count; i++) { scnprintf(irq_sp_entry.name, sizeof(irq_sp_entry.name), "KISTACK%d_%d", cpu, i); register_stack_entry(&irq_sp_entry, sp, PAGE_SIZE); sp += PAGE_SIZE; } } else { sp = irq_stack_base; scnprintf(irq_sp_entry.name, sizeof(irq_sp_entry.name), "KISTACK%d", cpu); register_stack_entry(&irq_sp_entry, sp, IRQ_STACK_SIZE); } } } #else static inline void register_irq_stack(void) {} #endif #ifdef CONFIG_QCOM_MINIDUMP_FTRACE void minidump_add_trace_event(char *buf, size_t size) { char *addr; if (!READ_ONCE(md_ftrace_buf_addr) || (size > (size_t)MD_FTRACE_BUF_SIZE)) return; if ((md_ftrace_buf_current + size) > (size_t)MD_FTRACE_BUF_SIZE) md_ftrace_buf_current = 0; addr = md_ftrace_buf_addr + md_ftrace_buf_current; memcpy(addr, buf, size); md_ftrace_buf_current += size; } static void md_register_trace_buf(void) { struct md_region md_entry; void *buffer_start; buffer_start = kzalloc(MD_FTRACE_BUF_SIZE, GFP_KERNEL); if (!buffer_start) return; strlcpy(md_entry.name, "KFTRACE", sizeof(md_entry.name)); md_entry.virt_addr = (uintptr_t)buffer_start; md_entry.phys_addr = virt_to_phys(buffer_start); md_entry.size = MD_FTRACE_BUF_SIZE; if (msm_minidump_add_region(&md_entry) < 0) pr_err("Failed to add ftrace buffer entry in Minidump\n"); /* Complete registration before adding enteries */ smp_mb(); WRITE_ONCE(md_ftrace_buf_addr, buffer_start); } #endif #ifdef CONFIG_QCOM_MINIDUMP_PANIC_DUMP static void md_dump_align(void) { int tab_offset = md_align_offset; while (tab_offset--) seq_buf_printf(md_runq_seq_buf, " | "); seq_buf_printf(md_runq_seq_buf, " |--"); } static void md_dump_task_info(struct task_struct *task, char *status, struct task_struct *curr) { struct sched_entity *se; md_dump_align(); if (!task) { seq_buf_printf(md_runq_seq_buf, "%s : None(0)\n", status); return; } se = &task->se; if (task == curr) { #ifdef CONFIG_ARM64 seq_buf_printf(md_runq_seq_buf, "[status: curr] pid: %d comm: %s preempt: %#x\n", task_pid_nr(task), task->comm, task->thread_info.preempt_count); #else seq_buf_printf(md_runq_seq_buf, "[status: curr] pid: %d comm: %s\n", task_pid_nr(task), task->comm); #endif return; } seq_buf_printf(md_runq_seq_buf, "[status: %s] pid: %d tsk: %#lx comm: %s stack: %#lx", status, task_pid_nr(task), (unsigned long)task, task->comm, (unsigned long)task->stack); seq_buf_printf(md_runq_seq_buf, " prio: %d aff: %*pb", task->prio, cpumask_pr_args(&task->cpus_mask)); #ifdef CONFIG_SCHED_WALT seq_buf_printf(md_runq_seq_buf, " enq: %lu wake: %lu sleep: %lu", task->wts.last_enqueued_ts, task->wts.last_wake_ts, task->wts.last_sleep_ts); #endif seq_buf_printf(md_runq_seq_buf, " vrun: %lu arr: %lu sum_ex: %lu\n", (unsigned long)se->vruntime, (unsigned long)se->exec_start, (unsigned long)se->sum_exec_runtime); } static void md_dump_cfs_rq(struct cfs_rq *cfs, struct task_struct *curr); static void md_dump_cgroup_state(char *status, struct sched_entity *se_p, struct task_struct *curr) { struct task_struct *task; struct cfs_rq *my_q = NULL; unsigned int nr_running; if (!se_p) { md_dump_task_info(NULL, status, NULL); return; } #ifdef CONFIG_FAIR_GROUP_SCHED my_q = se_p->my_q; #endif if (!my_q) { task = container_of(se_p, struct task_struct, se); md_dump_task_info(task, status, curr); return; } nr_running = my_q->nr_running; md_dump_align(); seq_buf_printf(md_runq_seq_buf, "%s: %d process is grouping\n", status, nr_running); md_align_offset++; md_dump_cfs_rq(my_q, curr); md_align_offset--; } static void md_dump_cfs_node_func(struct rb_node *node, struct task_struct *curr) { struct sched_entity *se_p = container_of(node, struct sched_entity, run_node); md_dump_cgroup_state("pend", se_p, curr); } static void md_rb_walk_cfs(struct rb_root_cached *rb_root_cached_p, struct task_struct *curr) { int max_walk = 200; /* Bail out, in case of loop */ struct rb_node *leftmost = rb_root_cached_p->rb_leftmost; struct rb_root *root = &rb_root_cached_p->rb_root; struct rb_node *rb_node = rb_first(root); if (!leftmost) return; while (rb_node && max_walk--) { md_dump_cfs_node_func(rb_node, curr); rb_node = rb_next(rb_node); } } static void md_dump_cfs_rq(struct cfs_rq *cfs, struct task_struct *curr) { struct rb_root_cached *rb_root_cached_p = &cfs->tasks_timeline; md_dump_cgroup_state("curr", cfs->curr, curr); md_dump_cgroup_state("next", cfs->next, curr); md_dump_cgroup_state("last", cfs->last, curr); md_dump_cgroup_state("skip", cfs->skip, curr); md_rb_walk_cfs(rb_root_cached_p, curr); } static void md_dump_rt_rq(struct rt_rq *rt_rq, struct task_struct *curr) { struct rt_prio_array *array = &rt_rq->active; struct sched_rt_entity *rt_se; int idx; /* Lifted most of the below code from dump_throttled_rt_tasks() */ if (bitmap_empty(array->bitmap, MAX_RT_PRIO)) return; idx = sched_find_first_bit(array->bitmap); while (idx < MAX_RT_PRIO) { list_for_each_entry(rt_se, array->queue + idx, run_list) { struct task_struct *p; #ifdef CONFIG_RT_GROUP_SCHED if (rt_se->my_q) continue; #endif p = container_of(rt_se, struct task_struct, rt); md_dump_task_info(p, "pend", curr); } idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx + 1); } } static void md_dump_runqueues(void) { int cpu; struct rq *rq; struct rt_rq *rt; struct cfs_rq *cfs; if (!md_runq_seq_buf) return; for_each_possible_cpu(cpu) { rq = cpu_rq(cpu); rt = &rq->rt; cfs = &rq->cfs; seq_buf_printf(md_runq_seq_buf, "CPU%d %d process is running\n", cpu, rq->nr_running); md_dump_task_info(cpu_curr(cpu), "curr", NULL); seq_buf_printf(md_runq_seq_buf, "CFS %d process is pending\n", cfs->nr_running); md_dump_cfs_rq(cfs, cpu_curr(cpu)); seq_buf_printf(md_runq_seq_buf, "RT %d process is pending\n", rt->rt_nr_running); md_dump_rt_rq(rt, cpu_curr(cpu)); seq_buf_printf(md_runq_seq_buf, "\n"); } } #ifdef CONFIG_QCOM_MINIDUMP_PANIC_CPU_CONTEXT /* * dump a block of kernel memory from around the given address. * Bulk of the code is lifted from arch/arm64/kernel/proccess.c. */ static void md_dump_data(unsigned long addr, int nbytes, const char *name) { int i, j; int nlines; u32 *p; /* * don't attempt to dump non-kernel addresses or * values that are probably just small negative numbers */ if (addr < PAGE_OFFSET || addr > -256UL) return; seq_buf_printf(md_cntxt_seq_buf, "\n%s: %#lx:\n", name, addr); /* * round address down to a 32 bit boundary * and always dump a multiple of 32 bytes */ p = (u32 *)(addr & ~(sizeof(u32) - 1)); nbytes += (addr & (sizeof(u32) - 1)); nlines = (nbytes + 31) / 32; for (i = 0; i < nlines; i++) { /* * just display low 16 bits of address to keep * each line of the dump < 80 characters */ seq_buf_printf(md_cntxt_seq_buf, "%04lx ", (unsigned long)p & 0xffff); for (j = 0; j < 8; j++) { u32 data; if (__is_lm_address(p) && kern_addr_valid((unsigned long)p) && page_accessible(page_to_pfn(virt_to_page(p))) && !probe_kernel_address(p, data)) seq_buf_printf(md_cntxt_seq_buf, " %08x", data); else seq_buf_printf(md_cntxt_seq_buf, " ********"); ++p; } seq_buf_printf(md_cntxt_seq_buf, "\n"); } } static void md_reg_context_data(struct pt_regs *regs) { mm_segment_t fs; unsigned int i; int nbytes = 128; if (user_mode(regs) || !regs->pc) return; fs = get_fs(); set_fs(KERNEL_DS); md_dump_data(regs->pc - nbytes, nbytes * 2, "PC"); md_dump_data(regs->regs[30] - nbytes, nbytes * 2, "LR"); md_dump_data(regs->sp - nbytes, nbytes * 2, "SP"); for (i = 0; i < 30; i++) { char name[4]; snprintf(name, sizeof(name), "X%u", i); md_dump_data(regs->regs[i] - nbytes, nbytes * 2, name); } set_fs(fs); } static inline void md_dump_panic_regs(void) { struct pt_regs regs; u64 tmp1, tmp2; /* Lifted from crash_setup_regs() */ __asm__ __volatile__ ( "stp x0, x1, [%2, #16 * 0]\n" "stp x2, x3, [%2, #16 * 1]\n" "stp x4, x5, [%2, #16 * 2]\n" "stp x6, x7, [%2, #16 * 3]\n" "stp x8, x9, [%2, #16 * 4]\n" "stp x10, x11, [%2, #16 * 5]\n" "stp x12, x13, [%2, #16 * 6]\n" "stp x14, x15, [%2, #16 * 7]\n" "stp x16, x17, [%2, #16 * 8]\n" "stp x18, x19, [%2, #16 * 9]\n" "stp x20, x21, [%2, #16 * 10]\n" "stp x22, x23, [%2, #16 * 11]\n" "stp x24, x25, [%2, #16 * 12]\n" "stp x26, x27, [%2, #16 * 13]\n" "stp x28, x29, [%2, #16 * 14]\n" "mov %0, sp\n" "stp x30, %0, [%2, #16 * 15]\n" "/* faked current PSTATE */\n" "mrs %0, CurrentEL\n" "mrs %1, SPSEL\n" "orr %0, %0, %1\n" "mrs %1, DAIF\n" "orr %0, %0, %1\n" "mrs %1, NZCV\n" "orr %0, %0, %1\n" /* pc */ "adr %1, 1f\n" "1:\n" "stp %1, %0, [%2, #16 * 16]\n" : "=&r" (tmp1), "=&r" (tmp2) : "r" (®s) : "memory" ); seq_buf_printf(md_cntxt_seq_buf, "PANIC CPU : %d\n", raw_smp_processor_id()); md_reg_context_data(®s); } static void md_dump_other_cpus_context(void) { unsigned long ipi_stop_addr = kallsyms_lookup_name("regs_before_stop"); int cpu; struct pt_regs *regs; for_each_possible_cpu(cpu) { regs = (struct pt_regs *)(ipi_stop_addr + per_cpu_offset(cpu)); seq_buf_printf(md_cntxt_seq_buf, "\nSTOPPED CPU : %d\n", cpu); md_reg_context_data(regs); } } static int md_die_context_notify(struct notifier_block *self, unsigned long val, void *data) { struct die_args *args = (struct die_args *)data; if (md_in_oops_handler) return NOTIFY_DONE; md_in_oops_handler = true; if (!md_cntxt_seq_buf) { md_in_oops_handler = false; return NOTIFY_DONE; } die_cpu = raw_smp_processor_id(); seq_buf_printf(md_cntxt_seq_buf, "\nDIE CPU : %d\n", die_cpu); md_reg_context_data(args->regs); md_in_oops_handler = false; return NOTIFY_DONE; } static struct notifier_block md_die_context_nb = { .notifier_call = md_die_context_notify, .priority = INT_MAX - 2, /* < msm watchdog die notifier */ }; #endif #ifdef CONFIG_MODULES static void md_dump_module_data(void) { struct md_module_data *md_mod_data_p; if (!md_mod_info_seq_buf) return; seq_buf_printf(md_mod_info_seq_buf, "=== MODULE INFO ===\n"); list_for_each_entry(md_mod_data_p, &md_mod_list_head, entry) { seq_buf_printf(md_mod_info_seq_buf, "name: %s, base: %p size: %#x\n", md_mod_data_p->name, md_mod_data_p->base, md_mod_data_p->size); } } #endif static int md_panic_handler(struct notifier_block *this, unsigned long event, void *ptr) { if (md_in_oops_handler) return NOTIFY_DONE; md_in_oops_handler = true; #ifdef CONFIG_QCOM_MINIDUMP_PANIC_CPU_CONTEXT if (!md_cntxt_seq_buf) goto dump_rq; if (raw_smp_processor_id() != die_cpu) md_dump_panic_regs(); md_dump_other_cpus_context(); dump_rq: #endif md_dump_runqueues(); #ifdef CONFIG_MODULES md_dump_module_data(); #endif if (md_meminfo_seq_buf) md_dump_meminfo(); #ifdef CONFIG_SLUB_DEBUG if (md_slabinfo_seq_buf) md_dump_slabinfo(); if (md_slabowner_dump_addr) md_dump_slabowner(); #endif #ifdef CONFIG_PAGE_OWNER if (md_pageowner_dump_addr) md_dump_pageowner(); #endif md_in_oops_handler = false; return NOTIFY_DONE; } static struct notifier_block md_panic_blk = { .notifier_call = md_panic_handler, .priority = INT_MAX - 2, /* < msm watchdog panic notifier */ }; static int md_register_minidump_entry(char *name, u64 virt_addr, u64 phys_addr, u64 size) { struct md_region md_entry; int ret; strlcpy(md_entry.name, name, sizeof(md_entry.name)); md_entry.virt_addr = virt_addr; md_entry.phys_addr = phys_addr; md_entry.size = size; ret = msm_minidump_add_region(&md_entry); if (ret < 0) pr_err("Failed to add %s entry in Minidump\n", name); return ret; } static int md_register_panic_entries(int num_pages, char *name, struct seq_buf **global_buf) { char *buf; struct seq_buf *seq_buf_p; int ret; buf = kzalloc(num_pages * PAGE_SIZE, GFP_KERNEL); if (!buf) return -EINVAL; seq_buf_p = kzalloc(sizeof(*seq_buf_p), GFP_KERNEL); if (!seq_buf_p) { ret = -EINVAL; goto err_seq_buf; } ret = md_register_minidump_entry(name, (uintptr_t)buf, virt_to_phys(buf), num_pages * PAGE_SIZE); if (ret < 0) goto err_entry_reg; seq_buf_init(seq_buf_p, buf, num_pages * PAGE_SIZE); /* Complete registration before populating data */ smp_mb(); WRITE_ONCE(*global_buf, seq_buf_p); return 0; err_entry_reg: kfree(seq_buf_p); err_seq_buf: kfree(buf); return ret; } static bool md_register_memory_dump(int size, char *name) { void *buffer_start; struct page *page; int ret; page = cma_alloc(dev_get_cma_area(NULL), size >> PAGE_SHIFT, 0, false); if (!page) { pr_err("Failed to allocate %s minidump, increase cma size\n", name); return false; } buffer_start = page_to_virt(page); ret = md_register_minidump_entry(name, (uintptr_t)buffer_start, virt_to_phys(buffer_start), size); if (ret < 0) { cma_release(dev_get_cma_area(NULL), page, size >> PAGE_SHIFT); return false; } /* Complete registration before adding enteries */ smp_mb(); #ifdef CONFIG_PAGE_OWNER if (!strcmp(name, "PAGEOWNER")) WRITE_ONCE(md_pageowner_dump_addr, buffer_start); #endif #ifdef CONFIG_SLUB_DEBUG if (!strcmp(name, "SLABOWNER")) WRITE_ONCE(md_slabowner_dump_addr, buffer_start); #endif return true; } static bool md_unregister_memory_dump(char *name) { struct page *page; struct md_region *mdr; struct md_region md_entry; mdr = md_get_region(name); if (!mdr) { pr_err("minidump entry for %s not found\n", name); return false; } strlcpy(md_entry.name, mdr->name, sizeof(md_entry.name)); md_entry.virt_addr = mdr->virt_addr; md_entry.phys_addr = mdr->phys_addr; md_entry.size = mdr->size; page = virt_to_page(mdr->virt_addr); if (msm_minidump_remove_region(&md_entry) < 0) return false; cma_release(dev_get_cma_area(NULL), page, (md_entry.size) >> PAGE_SHIFT); return true; } static void update_dump_size(char *name, size_t size, char **addr, size_t *dump_size) { if ((*dump_size) == 0) { if (md_register_memory_dump(size * SZ_1M, name)) { *dump_size = size * SZ_1M; pr_info_ratelimited("%s Minidump set to %zd MB size\n", name, size); } return; } if (md_unregister_memory_dump(name)) { *addr = NULL; if (size == 0) { *dump_size = 0; pr_info_ratelimited("%s Minidump : disabled\n", name); return; } if (md_register_memory_dump(size * SZ_1M, name)) { *dump_size = size * SZ_1M; pr_info_ratelimited("%s Minidump : set to %zd MB\n", name, size); } else if (md_register_memory_dump(*dump_size, name)) { pr_info_ratelimited("%s Minidump : Fallback to %zd MB\n", name, (*dump_size) / SZ_1M); } else { pr_err_ratelimited("%s Minidump : disabled, Can't fallback to %zd MB,\n", name, (*dump_size) / SZ_1M); *dump_size = 0; } } else { pr_err_ratelimited("Failed to unregister %s Minidump\n", name); } } #ifdef CONFIG_PAGE_OWNER static DEFINE_MUTEX(page_owner_dump_size_lock); static ssize_t page_owner_dump_size_write(struct file *file, const char __user *ubuf, size_t count, loff_t *offset) { unsigned long long size; if (kstrtoull_from_user(ubuf, count, 0, &size)) { pr_err_ratelimited("Invalid format for size\n"); return -EINVAL; } mutex_lock(&page_owner_dump_size_lock); update_dump_size("PAGEOWNER", size, &md_pageowner_dump_addr, &md_pageowner_dump_size); mutex_unlock(&page_owner_dump_size_lock); return count; } static ssize_t page_owner_dump_size_read(struct file *file, char __user *ubuf, size_t count, loff_t *offset) { char buf[100]; snprintf(buf, sizeof(buf), "%llu MB\n", md_pageowner_dump_size / SZ_1M); return simple_read_from_buffer(ubuf, count, offset, buf, strlen(buf)); } static const struct file_operations proc_page_owner_dump_size_ops = { .open = simple_open, .write = page_owner_dump_size_write, .read = page_owner_dump_size_read, }; #endif #ifdef CONFIG_SLUB_DEBUG static ssize_t slab_owner_dump_size_write(struct file *file, const char __user *ubuf, size_t count, loff_t *offset) { unsigned long long size; if (kstrtoull_from_user(ubuf, count, 0, &size)) { pr_err_ratelimited("Invalid format for size\n"); return -EINVAL; } update_dump_size("SLABOWNER", size, &md_slabowner_dump_addr, &md_slabowner_dump_size); return count; } static ssize_t slab_owner_dump_size_read(struct file *file, char __user *ubuf, size_t count, loff_t *offset) { char buf[100]; snprintf(buf, sizeof(buf), "%llu MB\n", md_slabowner_dump_size/SZ_1M); return simple_read_from_buffer(ubuf, count, offset, buf, strlen(buf)); } static const struct file_operations proc_slab_owner_dump_size_ops = { .open = simple_open, .write = slab_owner_dump_size_write, .read = slab_owner_dump_size_read, }; #endif static void md_register_panic_data(void) { md_register_panic_entries(MD_RUNQUEUE_PAGES, "KRUNQUEUE", &md_runq_seq_buf); #ifdef CONFIG_QCOM_MINIDUMP_PANIC_CPU_CONTEXT md_register_panic_entries(MD_CPU_CNTXT_PAGES, "KCNTXT", &md_cntxt_seq_buf); #endif md_register_panic_entries(MD_MEMINFO_PAGES, "MEMINFO", &md_meminfo_seq_buf); md_register_panic_entries(MD_SLABINFO_PAGES, "SLABINFO", &md_slabinfo_seq_buf); #ifdef CONFIG_PAGE_OWNER if (is_page_owner_enabled()) { md_register_memory_dump(md_pageowner_dump_size, "PAGEOWNER"); debugfs_create_file("page_owner_dump_size_mb", 0400, NULL, NULL, &proc_page_owner_dump_size_ops); } #endif #ifdef CONFIG_SLUB_DEBUG if (is_slub_debug_enabled()) { md_register_memory_dump(md_slabowner_dump_size, "SLABOWNER"); debugfs_create_file("slab_owner_dump_size_mb", 0400, NULL, NULL, &proc_slab_owner_dump_size_ops); } #endif } #ifdef CONFIG_MODULES static int md_module_notify(struct notifier_block *self, unsigned long val, void *data) { struct module *mod = data; struct md_module_data *md_mod_data_p; struct md_module_data *md_mod_data_p_next; spin_lock(&md_modules_lock); switch (val) { case MODULE_STATE_COMING: if (mod_curr_count >= NUM_MD_MODULES) { spin_unlock(&md_modules_lock); return 0; } md_mod_data_p = kzalloc(sizeof(*md_mod_data_p), GFP_ATOMIC); if (!md_mod_data_p) { spin_unlock(&md_modules_lock); return 0; } strlcpy(md_mod_data_p->name, mod->name, sizeof(md_mod_data_p->name)); md_mod_data_p->base = mod->core_layout.base; md_mod_data_p->size = mod->core_layout.size; list_add(&md_mod_data_p->entry, &md_mod_list_head); mod_curr_count++; break; case MODULE_STATE_GOING: list_for_each_entry_safe(md_mod_data_p, md_mod_data_p_next, &md_mod_list_head, entry) { if (!strcmp(md_mod_data_p->name, mod->name)) { list_del(&md_mod_data_p->entry); kfree(md_mod_data_p); mod_curr_count--; break; } } break; } spin_unlock(&md_modules_lock); return 0; } static struct notifier_block md_module_nb = { .notifier_call = md_module_notify, }; static void md_register_module_data(void) { int ret; ret = register_module_notifier(&md_module_nb); if (ret) { pr_err("Failed to register minidump module notifier\n"); return; } ret = md_register_panic_entries(1, "KMODULES", &md_mod_info_seq_buf); if (ret) unregister_module_notifier(&md_module_nb); } #endif /* CONFIG_MODULES */ #endif /* CONFIG_QCOM_MINIDUMP_PANIC_DUMP */ static int __init msm_minidump_log_init(void) { register_kernel_sections(); is_vmap_stack = IS_ENABLED(CONFIG_VMAP_STACK); register_irq_stack(); #ifdef CONFIG_QCOM_DYN_MINIDUMP_STACK register_current_stack(); register_suspend_context(); #endif register_log_buf(); #ifdef CONFIG_QCOM_MINIDUMP_FTRACE md_register_trace_buf(); #endif #ifdef CONFIG_QCOM_MINIDUMP_PANIC_DUMP #ifdef CONFIG_MODULES INIT_LIST_HEAD(&md_mod_list_head); md_register_module_data(); #endif md_register_panic_data(); atomic_notifier_chain_register(&panic_notifier_list, &md_panic_blk); #ifdef CONFIG_QCOM_MINIDUMP_PANIC_CPU_CONTEXT register_die_notifier(&md_die_context_nb); #endif #endif return 0; } late_initcall(msm_minidump_log_init);