// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012-2021, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "peripheral-loader.h" #include "pil-q6v5.h" #include "pil-msa.h" /* Q6 Register Offsets */ #define QDSP6SS_RST_EVB 0x010 #define QDSP6SS_DBG_CFG 0x018 #define QDSP6SS_NMI_CFG 0x40 /* AXI Halting Registers */ #define MSS_Q6_HALT_BASE 0x180 #define MSS_MODEM_HALT_BASE 0x200 #define MSS_NC_HALT_BASE 0x280 /* RMB Status Register Values */ #define STATUS_PBL_SUCCESS 0x1 #define STATUS_XPU_UNLOCKED 0x1 #define STATUS_XPU_UNLOCKED_SCRIBBLED 0x2 /* PBL/MBA interface registers */ #define RMB_MBA_IMAGE 0x00 #define RMB_PBL_STATUS 0x04 #define RMB_MBA_COMMAND 0x08 #define RMB_MBA_STATUS 0x0C #define RMB_PMI_META_DATA 0x10 #define RMB_PMI_CODE_START 0x14 #define RMB_PMI_CODE_LENGTH 0x18 #define RMB_PROTOCOL_VERSION 0x1C #define RMB_MBA_DEBUG_INFORMATION 0x20 #define POLL_INTERVAL_US 50 #define CMD_META_DATA_READY 0x1 #define CMD_LOAD_READY 0x2 #define CMD_PILFAIL_NFY_MBA 0xffffdead #define STATUS_META_DATA_AUTH_SUCCESS 0x3 #define STATUS_AUTH_COMPLETE 0x4 #define STATUS_MBA_UNLOCKED 0x6 /* External BHS */ #define EXTERNAL_BHS_ON BIT(0) #define EXTERNAL_BHS_STATUS BIT(4) #define BHS_TIMEOUT_US 50 #define MSS_RESTART_PARAM_ID 0x2 #define MSS_RESTART_ID 0xA #define MSS_MAGIC 0XAABADEAD /* Timeout value for MBA boot when minidump is enabled */ #define MBA_ENCRYPTION_TIMEOUT 3000 enum scm_cmd { PAS_MEM_SETUP_CMD = 2, }; static int pbl_mba_boot_timeout_ms = 1000; module_param(pbl_mba_boot_timeout_ms, int, 0644); static int modem_auth_timeout_ms = 10000; module_param(modem_auth_timeout_ms, int, 0644); /* If set to 0xAABADEAD, MBA failures trigger a kernel panic */ static uint modem_trigger_panic; module_param(modem_trigger_panic, uint, 0644); /* To set the modem debug cookie in DBG_CFG register for debugging */ static uint modem_dbg_cfg; module_param(modem_dbg_cfg, uint, 0644); static void modem_log_rmb_regs(void __iomem *base) { pr_err("RMB_MBA_IMAGE: %08x\n", readl_relaxed(base + RMB_MBA_IMAGE)); pr_err("RMB_PBL_STATUS: %08x\n", readl_relaxed(base + RMB_PBL_STATUS)); pr_err("RMB_MBA_COMMAND: %08x\n", readl_relaxed(base + RMB_MBA_COMMAND)); pr_err("RMB_MBA_STATUS: %08x\n", readl_relaxed(base + RMB_MBA_STATUS)); pr_err("RMB_PMI_META_DATA: %08x\n", readl_relaxed(base + RMB_PMI_META_DATA)); pr_err("RMB_PMI_CODE_START: %08x\n", readl_relaxed(base + RMB_PMI_CODE_START)); pr_err("RMB_PMI_CODE_LENGTH: %08x\n", readl_relaxed(base + RMB_PMI_CODE_LENGTH)); pr_err("RMB_PROTOCOL_VERSION: %08x\n", readl_relaxed(base + RMB_PROTOCOL_VERSION)); pr_err("RMB_MBA_DEBUG_INFORMATION: %08x\n", readl_relaxed(base + RMB_MBA_DEBUG_INFORMATION)); if (modem_trigger_panic == MSS_MAGIC) panic("%s: System ramdump is needed!!!\n", __func__); } static int pil_mss_power_up(struct q6v5_data *drv) { int ret = 0; u32 regval; if (drv->cxrail_bhs) { regval = readl_relaxed(drv->cxrail_bhs); regval |= EXTERNAL_BHS_ON; writel_relaxed(regval, drv->cxrail_bhs); ret = readl_poll_timeout(drv->cxrail_bhs, regval, regval & EXTERNAL_BHS_STATUS, 1, BHS_TIMEOUT_US); } return ret; } static int pil_mss_power_down(struct q6v5_data *drv) { u32 regval; if (drv->cxrail_bhs) { regval = readl_relaxed(drv->cxrail_bhs); regval &= ~EXTERNAL_BHS_ON; writel_relaxed(regval, drv->cxrail_bhs); } return 0; } static int pil_mss_enable_clks(struct q6v5_data *drv) { int ret; ret = clk_prepare_enable(drv->ahb_clk); if (ret) goto err_ahb_clk; ret = clk_prepare_enable(drv->axi_clk); if (ret) goto err_axi_clk; ret = clk_prepare_enable(drv->rom_clk); if (ret) goto err_rom_clk; ret = clk_prepare_enable(drv->gpll0_mss_clk); if (ret) goto err_gpll0_mss_clk; ret = clk_prepare_enable(drv->snoc_axi_clk); if (ret) goto err_snoc_axi_clk; ret = clk_prepare_enable(drv->mnoc_axi_clk); if (ret) goto err_mnoc_axi_clk; return 0; err_mnoc_axi_clk: clk_disable_unprepare(drv->mnoc_axi_clk); err_snoc_axi_clk: clk_disable_unprepare(drv->snoc_axi_clk); err_gpll0_mss_clk: clk_disable_unprepare(drv->gpll0_mss_clk); err_rom_clk: clk_disable_unprepare(drv->rom_clk); err_axi_clk: clk_disable_unprepare(drv->axi_clk); err_ahb_clk: clk_disable_unprepare(drv->ahb_clk); return ret; } static void pil_mss_disable_clks(struct q6v5_data *drv) { clk_disable_unprepare(drv->mnoc_axi_clk); clk_disable_unprepare(drv->snoc_axi_clk); clk_disable_unprepare(drv->gpll0_mss_clk); clk_disable_unprepare(drv->rom_clk); clk_disable_unprepare(drv->axi_clk); if (!drv->ahb_clk_vote) clk_disable_unprepare(drv->ahb_clk); } static void pil_mss_pdc_sync(struct q6v5_data *drv, bool pdc_sync) { u32 val = 0; u32 mss_pdc_mask = BIT(drv->mss_pdc_offset); if (drv->pdc_sync) { val = readl_relaxed(drv->pdc_sync); if (pdc_sync) val |= mss_pdc_mask; else val &= ~mss_pdc_mask; writel_relaxed(val, drv->pdc_sync); /* Ensure PDC is written before next write */ wmb(); udelay(2); } } static void pil_mss_alt_reset(struct q6v5_data *drv, u32 val) { if (drv->alt_reset) { writel_relaxed(val, drv->alt_reset); /* Ensure alt reset is written before restart reg */ wmb(); udelay(2); } } static int pil_mss_restart_reg(struct q6v5_data *drv, u32 mss_restart) { int ret = 0; if (drv->restart_reg && !drv->restart_reg_sec) { writel_relaxed(mss_restart, drv->restart_reg); /* Ensure physical address access is done before returning.*/ mb(); udelay(2); } else if (drv->restart_reg_sec) { ret = qcom_scm_pas_mss_reset(mss_restart); if (ret) pr_err("Secure MSS restart failed\n"); } return ret; } int pil_mss_assert_resets(struct q6v5_data *drv) { int ret = 0; pil_mss_pdc_sync(drv, 1); pil_mss_alt_reset(drv, 1); if (drv->reset_clk) { pil_mss_disable_clks(drv); if (drv->ahb_clk_vote) clk_disable_unprepare(drv->ahb_clk); } ret = pil_mss_restart_reg(drv, true); return ret; } int pil_mss_deassert_resets(struct q6v5_data *drv) { int ret = 0; ret = pil_mss_restart_reg(drv, 0); if (ret) return ret; /* Wait 6 32kHz sleep cycles for reset */ udelay(200); if (drv->reset_clk) pil_mss_enable_clks(drv); pil_mss_alt_reset(drv, 0); pil_mss_pdc_sync(drv, false); return ret; } static int pil_msa_wait_for_mba_ready(struct q6v5_data *drv) { struct device *dev = drv->desc.dev; int ret; u32 status; u64 val; if (of_property_read_bool(dev->of_node, "qcom,minidump-id")) pbl_mba_boot_timeout_ms = MBA_ENCRYPTION_TIMEOUT; val = pil_is_timeout_disabled() ? 0 : pbl_mba_boot_timeout_ms * 1000; /* Wait for PBL completion. */ ret = readl_poll_timeout(drv->rmb_base + RMB_PBL_STATUS, status, status != 0, POLL_INTERVAL_US, val); if (ret) { dev_err(dev, "PBL boot timed out (rc:%d)\n", ret); return ret; } if (status != STATUS_PBL_SUCCESS) { dev_err(dev, "PBL returned unexpected status %d\n", status); return -EINVAL; } /* Wait for MBA completion. */ ret = readl_poll_timeout(drv->rmb_base + RMB_MBA_STATUS, status, status != 0, POLL_INTERVAL_US, val); if (ret) { dev_err(dev, "MBA boot timed out (rc:%d)\n", ret); return ret; } if (status != STATUS_XPU_UNLOCKED && status != STATUS_XPU_UNLOCKED_SCRIBBLED) { dev_err(dev, "MBA returned unexpected status %d\n", status); return -EINVAL; } return 0; } int pil_mss_shutdown(struct pil_desc *pil) { struct q6v5_data *drv = container_of(pil, struct q6v5_data, desc); int ret = 0; if (drv->axi_halt_base) { pil_q6v5_halt_axi_port(pil, drv->axi_halt_base + MSS_Q6_HALT_BASE); pil_q6v5_halt_axi_port(pil, drv->axi_halt_base + MSS_MODEM_HALT_BASE); pil_q6v5_halt_axi_port(pil, drv->axi_halt_base + MSS_NC_HALT_BASE); } if (drv->axi_halt_q6) pil_q6v5_halt_axi_port(pil, drv->axi_halt_q6); if (drv->axi_halt_mss) pil_q6v5_halt_axi_port(pil, drv->axi_halt_mss); if (drv->axi_halt_nc) pil_q6v5_halt_axi_port(pil, drv->axi_halt_nc); /* * Software workaround to avoid high MX current during LPASS/MSS * restart. */ if (drv->mx_spike_wa && drv->ahb_clk_vote) { ret = clk_prepare_enable(drv->ahb_clk); if (!ret) assert_clamps(pil); else dev_err(pil->dev, "error turning ON AHB clock(rc:%d)\n", ret); } pil_mss_pdc_sync(drv, true); /* Wait 6 32kHz sleep cycles for PDC SYNC true */ udelay(200); pil_mss_restart_reg(drv, 1); /* Wait 6 32kHz sleep cycles for reset */ udelay(200); ret = pil_mss_restart_reg(drv, 0); /* Wait 6 32kHz sleep cycles for reset false */ udelay(200); pil_mss_pdc_sync(drv, false); if (drv->is_booted) { pil_mss_disable_clks(drv); pil_mss_power_down(drv); drv->is_booted = false; } return ret; } int __pil_mss_deinit_image(struct pil_desc *pil, bool err_path) { struct modem_data *drv = dev_get_drvdata(pil->dev); struct q6v5_data *q6_drv = container_of(pil, struct q6v5_data, desc); int ret = 0; struct device *dma_dev = drv->mba_mem_dev_fixed ?: &drv->mba_mem_dev; s32 status; u64 val = pil_is_timeout_disabled() ? 0 : pbl_mba_boot_timeout_ms * 1000; if (err_path) { writel_relaxed(CMD_PILFAIL_NFY_MBA, drv->rmb_base + RMB_MBA_COMMAND); ret = readl_poll_timeout(drv->rmb_base + RMB_MBA_STATUS, status, status == STATUS_MBA_UNLOCKED || status < 0, POLL_INTERVAL_US, val); if (ret) dev_err(pil->dev, "MBA region unlock timed out(rc:%d)\n", ret); else if (status < 0) dev_err(pil->dev, "MBA unlock returned err status: %d\n", status); } ret = pil_mss_shutdown(pil); if (q6_drv->ahb_clk_vote) clk_disable_unprepare(q6_drv->ahb_clk); /* In case of any failure where reclaiming MBA and DP memory * could not happen, free the memory here */ if (drv->q6->mba_dp_virt && !drv->mba_mem_dev_fixed) { if (pil->subsys_vmid > 0) pil_assign_mem_to_linux(pil, drv->q6->mba_dp_phys, drv->q6->mba_dp_size); dma_free_attrs(dma_dev, drv->q6->mba_dp_size, drv->q6->mba_dp_virt, drv->q6->mba_dp_phys, drv->attrs_dma); drv->q6->mba_dp_virt = NULL; } return ret; } int pil_mss_deinit_image(struct pil_desc *pil) { return __pil_mss_deinit_image(pil, true); } int pil_mss_make_proxy_votes(struct pil_desc *pil) { int ret; struct q6v5_data *drv = container_of(pil, struct q6v5_data, desc); int uv = 0; ret = of_property_read_u32(pil->dev->of_node, "vdd_mx-uV", &uv); if (ret) { dev_err(pil->dev, "missing vdd_mx-uV property(rc:%d)\n", ret); return ret; } ret = regulator_set_voltage(drv->vreg_mx, uv, INT_MAX); if (ret) { dev_err(pil->dev, "Failed to request vreg_mx voltage(rc:%d)\n", ret); return ret; } ret = regulator_enable(drv->vreg_mx); if (ret) { dev_err(pil->dev, "Failed to enable vreg_mx(rc:%d)\n", ret); regulator_set_voltage(drv->vreg_mx, 0, INT_MAX); return ret; } if (drv->vreg) { ret = of_property_read_u32(pil->dev->of_node, "vdd_mss-uV", &uv); if (ret) { dev_err(pil->dev, "missing vdd_mss-uV property(rc:%d)\n", ret); goto out; } ret = regulator_set_voltage(drv->vreg, uv, INT_MAX); if (ret) { dev_err(pil->dev, "Failed to set vreg voltage(rc:%d)\n", ret); goto out; } ret = regulator_set_load(drv->vreg, 100000); if (ret < 0) { dev_err(pil->dev, "Failed to set vreg mode(rc:%d)\n", ret); goto out; } ret = regulator_enable(drv->vreg); if (ret) { dev_err(pil->dev, "Failed to enable vreg(rc:%d)\n", ret); regulator_set_voltage(drv->vreg, 0, INT_MAX); goto out; } } ret = pil_q6v5_make_proxy_votes(pil); if (ret && drv->vreg) { regulator_disable(drv->vreg); regulator_set_voltage(drv->vreg, 0, INT_MAX); } out: if (ret) { regulator_disable(drv->vreg_mx); regulator_set_voltage(drv->vreg_mx, 0, INT_MAX); } return ret; } void pil_mss_remove_proxy_votes(struct pil_desc *pil) { struct q6v5_data *drv = container_of(pil, struct q6v5_data, desc); pil_q6v5_remove_proxy_votes(pil); regulator_disable(drv->vreg_mx); regulator_set_voltage(drv->vreg_mx, 0, INT_MAX); if (drv->vreg) { regulator_disable(drv->vreg); regulator_set_voltage(drv->vreg, 0, INT_MAX); } } static int pil_mss_mem_setup(struct pil_desc *pil, phys_addr_t addr, size_t size) { struct modem_data *md = dev_get_drvdata(pil->dev); if (!md->subsys_desc.pil_mss_memsetup) return 0; return qcom_scm_pas_mem_setup(md->pas_id, addr, size); } static int pil_mss_reset(struct pil_desc *pil) { struct q6v5_data *drv = container_of(pil, struct q6v5_data, desc); phys_addr_t start_addr = pil_get_entry_addr(pil); u32 debug_val = 0; int ret; trace_pil_func(__func__); if (drv->mba_dp_phys) start_addr = drv->mba_dp_phys; /* * Bring subsystem out of reset and enable required * regulators and clocks. */ ret = pil_mss_power_up(drv); if (ret) goto err_power; ret = pil_mss_enable_clks(drv); if (ret) goto err_clks; if (!pil->minidump_ss || !pil->modem_ssr) { /* Save state of modem debug register before full reset */ debug_val = readl_relaxed(drv->reg_base + QDSP6SS_DBG_CFG); } /* Assert reset to subsystem */ pil_mss_assert_resets(drv); /* Wait 6 32kHz sleep cycles for reset */ udelay(200); ret = pil_mss_deassert_resets(drv); if (ret) goto err_restart; if (!pil->minidump_ss || !pil->modem_ssr) { writel_relaxed(debug_val, drv->reg_base + QDSP6SS_DBG_CFG); if (modem_dbg_cfg) writel_relaxed(modem_dbg_cfg, drv->reg_base + QDSP6SS_DBG_CFG); } /* Program Image Address */ if (drv->self_auth) { writel_relaxed(start_addr, drv->rmb_base + RMB_MBA_IMAGE); /* * Ensure write to RMB base occurs before reset * is released. */ mb(); } else { writel_relaxed((start_addr >> 4) & 0x0FFFFFF0, drv->reg_base + QDSP6SS_RST_EVB); } /* Program DP Address */ if (drv->dp_size) { writel_relaxed(start_addr + SZ_1M, drv->rmb_base + RMB_PMI_CODE_START); writel_relaxed(drv->dp_size, drv->rmb_base + RMB_PMI_CODE_LENGTH); } else { writel_relaxed(0, drv->rmb_base + RMB_PMI_CODE_START); writel_relaxed(0, drv->rmb_base + RMB_PMI_CODE_LENGTH); } /* Make sure RMB regs are written before bringing modem out of reset */ mb(); ret = pil_q6v5_reset(pil); if (ret) goto err_q6v5_reset; /* Wait for MBA to start. Check for PBL and MBA errors while waiting. */ if (drv->self_auth) { ret = pil_msa_wait_for_mba_ready(drv); if (ret) goto err_q6v5_reset; } dev_info(pil->dev, "MBA boot done\n"); drv->is_booted = true; return 0; err_q6v5_reset: modem_log_rmb_regs(drv->rmb_base); err_restart: pil_mss_disable_clks(drv); if (drv->ahb_clk_vote) clk_disable_unprepare(drv->ahb_clk); err_clks: pil_mss_power_down(drv); err_power: return ret; } int pil_mss_reset_load_mba(struct pil_desc *pil) { struct q6v5_data *drv = container_of(pil, struct q6v5_data, desc); struct modem_data *md = dev_get_drvdata(pil->dev); const struct firmware *fw = NULL, *dp_fw = NULL; char fw_name_legacy[10] = "mba.b00"; char fw_name[10] = "mba.mbn"; char *dp_name = "msadp"; char *fw_name_p; void *mba_dp_virt; dma_addr_t mba_dp_phys, mba_dp_phys_end; int ret; const u8 *data; struct device *dma_dev = md->mba_mem_dev_fixed ?: &md->mba_mem_dev; trace_pil_func(__func__); if (drv->mba_dp_virt && md->mba_mem_dev_fixed) goto mss_reset; fw_name_p = drv->non_elf_image ? fw_name_legacy : fw_name; ret = request_firmware(&fw, fw_name_p, pil->dev); if (ret) { dev_err(pil->dev, "Failed to locate %s (rc:%d)\n", fw_name_p, ret); return ret; } data = fw ? fw->data : NULL; if (!data) { dev_err(pil->dev, "MBA data is NULL\n"); ret = -ENOMEM; goto err_invalid_fw; } drv->mba_dp_size = SZ_1M; arch_setup_dma_ops(dma_dev, 0, 0, NULL, 0); dma_dev->coherent_dma_mask = DMA_BIT_MASK(sizeof(dma_addr_t) * 8); md->attrs_dma = 0; md->attrs_dma |= DMA_ATTR_SKIP_ZEROING; ret = request_firmware(&dp_fw, dp_name, pil->dev); if (ret) { dev_warn(pil->dev, "Debug policy not present - %s. Continue.\n", dp_name); } else { if (!dp_fw || !dp_fw->data) { dev_err(pil->dev, "Invalid DP firmware\n"); ret = -ENOMEM; goto err_invalid_fw; } drv->dp_size = dp_fw->size; drv->mba_dp_size += drv->dp_size; drv->mba_dp_size = ALIGN(drv->mba_dp_size, SZ_4K); } mba_dp_virt = dma_alloc_attrs(dma_dev, drv->mba_dp_size, &mba_dp_phys, GFP_KERNEL, md->attrs_dma); if (!mba_dp_virt) { dev_err(pil->dev, "%s MBA/DP buffer allocation %zx bytes failed\n", __func__, drv->mba_dp_size); ret = -ENOMEM; goto err_invalid_fw; } /* Make sure there are no mappings in PKMAP and fixmap */ kmap_flush_unused(); drv->mba_dp_phys = mba_dp_phys; drv->mba_dp_virt = mba_dp_virt; mba_dp_phys_end = mba_dp_phys + drv->mba_dp_size; dev_info(pil->dev, "Loading MBA and DP (if present) from %pa to %pa\n", &mba_dp_phys, &mba_dp_phys_end); /* Load the MBA image into memory */ if (fw->size <= SZ_1M) { /* Ensures memcpy is done for max 1MB fw size */ memcpy(mba_dp_virt, data, fw->size); } else { dev_err(pil->dev, "%s fw image loading into memory is failed due to fw size overflow\n", __func__); ret = -EINVAL; goto err_mba_data; } /* Ensure memcpy of the MBA memory is done before loading the DP */ wmb(); /* Load the DP image into memory */ if (drv->mba_dp_size > SZ_1M) { memcpy(mba_dp_virt + SZ_1M, dp_fw->data, dp_fw->size); /* Ensure memcpy is done before powering up modem */ wmb(); } if (pil->subsys_vmid > 0) { ret = pil_assign_mem_to_subsys(pil, drv->mba_dp_phys, drv->mba_dp_size); if (ret) { pr_err("scm_call to unprotect MBA and DP mem failed(rc:%d)\n", ret); goto err_mba_data; } } if (dp_fw) release_firmware(dp_fw); release_firmware(fw); dp_fw = NULL; fw = NULL; mss_reset: ret = pil_mss_reset(pil); if (ret) { dev_err(pil->dev, "MBA boot failed(rc:%d)\n", ret); goto err_mss_reset; } return 0; err_mss_reset: if (pil->subsys_vmid > 0) pil_assign_mem_to_linux(pil, drv->mba_dp_phys, drv->mba_dp_size); err_mba_data: dma_free_attrs(dma_dev, drv->mba_dp_size, drv->mba_dp_virt, drv->mba_dp_phys, md->attrs_dma); err_invalid_fw: if (dp_fw) release_firmware(dp_fw); if (fw) release_firmware(fw); drv->mba_dp_virt = NULL; return ret; } int pil_mss_debug_reset(struct pil_desc *pil) { struct q6v5_data *drv = container_of(pil, struct q6v5_data, desc); u32 encryption_status; int ret; if (!pil->minidump_ss) return 0; encryption_status = pil->minidump_ss->encryption_status; if ((pil->minidump_ss->md_ss_enable_status != MD_SS_ENABLED) || encryption_status == MD_SS_ENCR_NOTREQ) return 0; /* * Bring subsystem out of reset and enable required * regulators and clocks. */ ret = pil_mss_enable_clks(drv); if (ret) return ret; if (pil->minidump_ss) { writel_relaxed(0x1, drv->reg_base + QDSP6SS_NMI_CFG); /* Let write complete before proceeding */ mb(); udelay(2); } /* Assert reset to subsystem */ pil_mss_restart_reg(drv, true); /* Wait 6 32kHz sleep cycles for reset */ udelay(200); ret = pil_mss_restart_reg(drv, false); if (ret) goto err_restart; /* Let write complete before proceeding */ mb(); udelay(200); ret = pil_q6v5_reset(pil); /* * Need to Wait for timeout for debug reset sequence to * complete before returning */ pr_info("Minidump: waiting encryption to complete\n"); msleep(13000); if (pil->minidump_ss) { writel_relaxed(0x2, drv->reg_base + QDSP6SS_NMI_CFG); /* Let write complete before proceeding */ mb(); udelay(200); } if (ret) goto err_restart; return 0; err_restart: pil_mss_disable_clks(drv); if (drv->ahb_clk_vote) clk_disable_unprepare(drv->ahb_clk); return ret; } static int pil_msa_auth_modem_mdt(struct pil_desc *pil, const u8 *metadata, size_t size) { struct modem_data *drv = dev_get_drvdata(pil->dev); void *mdata_virt; dma_addr_t mdata_phys; s32 status; int ret; u64 val = pil_is_timeout_disabled() ? 0 : modem_auth_timeout_ms * 1000; struct device *dma_dev = drv->mba_mem_dev_fixed ?: &drv->mba_mem_dev; unsigned long attrs = 0; trace_pil_func(__func__); dma_dev->coherent_dma_mask = DMA_BIT_MASK(sizeof(dma_addr_t) * 8); attrs |= DMA_ATTR_SKIP_ZEROING; /* Make metadata physically contiguous and 4K aligned. */ mdata_virt = dma_alloc_attrs(dma_dev, size, &mdata_phys, GFP_KERNEL, attrs); if (!mdata_virt) { dev_err(pil->dev, "MBA metadata buffer allocation failed\n"); ret = -ENOMEM; goto fail; } memcpy(mdata_virt, metadata, size); /* wmb() ensures copy completes prior to starting authentication. */ wmb(); if (pil->subsys_vmid > 0) { ret = pil_assign_mem_to_subsys(pil, mdata_phys, ALIGN(size, SZ_4K)); if (ret) { pr_err("scm_call to unprotect modem metadata mem failed(rc:%d)\n", ret); dma_free_attrs(dma_dev, size, mdata_virt, mdata_phys, attrs); goto fail; } } /* Initialize length counter to 0 */ writel_relaxed(0, drv->rmb_base + RMB_PMI_CODE_LENGTH); /* Pass address of meta-data to the MBA and perform authentication */ writel_relaxed(mdata_phys, drv->rmb_base + RMB_PMI_META_DATA); writel_relaxed(CMD_META_DATA_READY, drv->rmb_base + RMB_MBA_COMMAND); ret = readl_poll_timeout(drv->rmb_base + RMB_MBA_STATUS, status, status == STATUS_META_DATA_AUTH_SUCCESS || status < 0, POLL_INTERVAL_US, val); if (ret) { dev_err(pil->dev, "MBA authentication of headers timed out(rc:%d)\n", ret); } else if (status < 0) { dev_err(pil->dev, "MBA returned error %d for headers\n", status); ret = -EINVAL; } if (pil->subsys_vmid > 0) pil_assign_mem_to_linux(pil, mdata_phys, ALIGN(size, SZ_4K)); dma_free_attrs(dma_dev, size, mdata_virt, mdata_phys, attrs); if (!ret) return ret; fail: modem_log_rmb_regs(drv->rmb_base); if (drv->q6) { pil_mss_shutdown(pil); if (pil->subsys_vmid > 0) pil_assign_mem_to_linux(pil, drv->q6->mba_dp_phys, drv->q6->mba_dp_size); if (drv->q6->mba_dp_virt && !drv->mba_mem_dev_fixed) { dma_free_attrs(dma_dev, drv->q6->mba_dp_size, drv->q6->mba_dp_virt, drv->q6->mba_dp_phys, drv->attrs_dma); drv->q6->mba_dp_virt = NULL; } } return ret; } static int pil_msa_mss_reset_mba_load_auth_mdt(struct pil_desc *pil, const u8 *metadata, size_t size) { int ret; ret = pil_mss_reset_load_mba(pil); if (ret) return ret; return pil_msa_auth_modem_mdt(pil, metadata, size); } static int pil_msa_mba_verify_blob(struct pil_desc *pil, phys_addr_t phy_addr, size_t size) { struct modem_data *drv = dev_get_drvdata(pil->dev); s32 status; u32 img_length = readl_relaxed(drv->rmb_base + RMB_PMI_CODE_LENGTH); /* Begin image authentication */ if (img_length == 0) { writel_relaxed(phy_addr, drv->rmb_base + RMB_PMI_CODE_START); writel_relaxed(CMD_LOAD_READY, drv->rmb_base + RMB_MBA_COMMAND); } /* Increment length counter */ img_length += size; writel_relaxed(img_length, drv->rmb_base + RMB_PMI_CODE_LENGTH); status = readl_relaxed(drv->rmb_base + RMB_MBA_STATUS); if (status < 0) { dev_err(pil->dev, "MBA returned error %d\n", status); modem_log_rmb_regs(drv->rmb_base); return -EINVAL; } return 0; } static int pil_msa_mba_auth(struct pil_desc *pil) { struct modem_data *drv = dev_get_drvdata(pil->dev); struct q6v5_data *q6_drv = container_of(pil, struct q6v5_data, desc); int ret; struct device *dma_dev = drv->mba_mem_dev_fixed ?: &drv->mba_mem_dev; s32 status; u64 val = pil_is_timeout_disabled() ? 0 : modem_auth_timeout_ms * 1000; /* Wait for all segments to be authenticated or an error to occur */ ret = readl_poll_timeout(drv->rmb_base + RMB_MBA_STATUS, status, status == STATUS_AUTH_COMPLETE || status < 0, 50, val); if (ret) { dev_err(pil->dev, "MBA authentication of image timed out(rc:%d)\n", ret); } else if (status < 0) { dev_err(pil->dev, "MBA returned error %d for image\n", status); ret = -EINVAL; } if (drv->q6) { if (drv->q6->mba_dp_virt && !drv->mba_mem_dev_fixed) { /* Reclaim MBA and DP (if allocated) memory. */ if (pil->subsys_vmid > 0) pil_assign_mem_to_linux(pil, drv->q6->mba_dp_phys, drv->q6->mba_dp_size); dma_free_attrs(dma_dev, drv->q6->mba_dp_size, drv->q6->mba_dp_virt, drv->q6->mba_dp_phys, drv->attrs_dma); drv->q6->mba_dp_virt = NULL; } } if (ret) modem_log_rmb_regs(drv->rmb_base); if (q6_drv->ahb_clk_vote) clk_disable_unprepare(q6_drv->ahb_clk); return ret; } /* * To be used only if self-auth is disabled, or if the * MBA image is loaded as segments and not in init_image. */ struct pil_reset_ops pil_msa_mss_ops = { .proxy_vote = pil_mss_make_proxy_votes, .proxy_unvote = pil_mss_remove_proxy_votes, .auth_and_reset = pil_mss_reset, .shutdown = pil_mss_shutdown, }; /* * To be used if self-auth is enabled and the MBA is to be loaded * in init_image and the modem headers are also to be authenticated * in init_image. Modem segments authenticated in auth_and_reset. */ struct pil_reset_ops pil_msa_mss_ops_selfauth = { .init_image = pil_msa_mss_reset_mba_load_auth_mdt, .proxy_vote = pil_mss_make_proxy_votes, .proxy_unvote = pil_mss_remove_proxy_votes, .mem_setup = pil_mss_mem_setup, .verify_blob = pil_msa_mba_verify_blob, .auth_and_reset = pil_msa_mba_auth, .deinit_image = pil_mss_deinit_image, .shutdown = pil_mss_shutdown, }; /* * To be used if the modem headers are to be authenticated * in init_image, and the modem segments in auth_and_reset. */ struct pil_reset_ops pil_msa_femto_mba_ops = { .init_image = pil_msa_auth_modem_mdt, .verify_blob = pil_msa_mba_verify_blob, .auth_and_reset = pil_msa_mba_auth, };