#ifndef _LINUX_PTRACE_H #define _LINUX_PTRACE_H /* ptrace.h */ /* structs and defines to help the user use the ptrace system call. */ /* has the defines to get at the registers. */ #define PTRACE_TRACEME 0 #define PTRACE_PEEKTEXT 1 #define PTRACE_PEEKDATA 2 #define PTRACE_PEEKUSR 3 #define PTRACE_POKETEXT 4 #define PTRACE_POKEDATA 5 #define PTRACE_POKEUSR 6 #define PTRACE_CONT 7 #define PTRACE_KILL 8 #define PTRACE_SINGLESTEP 9 #define PTRACE_ATTACH 16 #define PTRACE_DETACH 17 #define PTRACE_SYSCALL 24 /* 0x4200-0x4300 are reserved for architecture-independent additions. */ #define PTRACE_SETOPTIONS 0x4200 #define PTRACE_GETEVENTMSG 0x4201 #define PTRACE_GETSIGINFO 0x4202 #define PTRACE_SETSIGINFO 0x4203 /* options set using PTRACE_SETOPTIONS */ #define PTRACE_O_TRACESYSGOOD 0x00000001 #define PTRACE_O_TRACEFORK 0x00000002 #define PTRACE_O_TRACEVFORK 0x00000004 #define PTRACE_O_TRACECLONE 0x00000008 #define PTRACE_O_TRACEEXEC 0x00000010 #define PTRACE_O_TRACEVFORKDONE 0x00000020 #define PTRACE_O_TRACEEXIT 0x00000040 #define PTRACE_O_MASK 0x0000007f /* Wait extended result codes for the above trace options. */ #define PTRACE_EVENT_FORK 1 #define PTRACE_EVENT_VFORK 2 #define PTRACE_EVENT_CLONE 3 #define PTRACE_EVENT_EXEC 4 #define PTRACE_EVENT_VFORK_DONE 5 #define PTRACE_EVENT_EXIT 6 #include #ifdef __KERNEL__ /* * Ptrace flags * * The owner ship rules for task->ptrace which holds the ptrace * flags is simple. When a task is running it owns it's task->ptrace * flags. When the a task is stopped the ptracer owns task->ptrace. */ #define PT_PTRACED 0x00000001 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */ #define PT_TRACESYSGOOD 0x00000004 #define PT_PTRACE_CAP 0x00000008 /* ptracer can follow suid-exec */ #define PT_TRACE_FORK 0x00000010 #define PT_TRACE_VFORK 0x00000020 #define PT_TRACE_CLONE 0x00000040 #define PT_TRACE_EXEC 0x00000080 #define PT_TRACE_VFORK_DONE 0x00000100 #define PT_TRACE_EXIT 0x00000200 #define PT_TRACE_MASK 0x000003f4 /* single stepping state bits (used on ARM and PA-RISC) */ #define PT_SINGLESTEP_BIT 31 #define PT_SINGLESTEP (1< /* For unlikely. */ #include /* For struct task_struct. */ extern long arch_ptrace(struct task_struct *child, long request, long addr, long data); extern struct task_struct *ptrace_get_task_struct(pid_t pid); extern int ptrace_traceme(void); extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len); extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len); extern int ptrace_attach(struct task_struct *tsk); extern int ptrace_detach(struct task_struct *, unsigned int); extern void ptrace_disable(struct task_struct *); extern int ptrace_check_attach(struct task_struct *task, int kill); extern int ptrace_request(struct task_struct *child, long request, long addr, long data); extern void ptrace_notify(int exit_code); extern void __ptrace_link(struct task_struct *child, struct task_struct *new_parent); extern void __ptrace_unlink(struct task_struct *child); extern void ptrace_untrace(struct task_struct *child); #define PTRACE_MODE_READ 1 #define PTRACE_MODE_ATTACH 2 /* Returns 0 on success, -errno on denial. */ extern int __ptrace_may_access(struct task_struct *task, unsigned int mode); /* Returns true on success, false on denial. */ extern bool ptrace_may_access(struct task_struct *task, unsigned int mode); static inline int ptrace_reparented(struct task_struct *child) { return child->real_parent != child->parent; } static inline void ptrace_link(struct task_struct *child, struct task_struct *new_parent) { if (unlikely(child->ptrace)) __ptrace_link(child, new_parent); } static inline void ptrace_unlink(struct task_struct *child) { if (unlikely(child->ptrace)) __ptrace_unlink(child); } int generic_ptrace_peekdata(struct task_struct *tsk, long addr, long data); int generic_ptrace_pokedata(struct task_struct *tsk, long addr, long data); /** * task_ptrace - return %PT_* flags that apply to a task * @task: pointer to &task_struct in question * * Returns the %PT_* flags that apply to @task. */ static inline int task_ptrace(struct task_struct *task) { return task->ptrace; } /** * ptrace_event - possibly stop for a ptrace event notification * @mask: %PT_* bit to check in @current->ptrace * @event: %PTRACE_EVENT_* value to report if @mask is set * @message: value for %PTRACE_GETEVENTMSG to return * * This checks the @mask bit to see if ptrace wants stops for this event. * If so we stop, reporting @event and @message to the ptrace parent. * * Returns nonzero if we did a ptrace notification, zero if not. * * Called without locks. */ static inline int ptrace_event(int mask, int event, unsigned long message) { if (mask && likely(!(current->ptrace & mask))) return 0; current->ptrace_message = message; ptrace_notify((event << 8) | SIGTRAP); return 1; } /** * ptrace_init_task - initialize ptrace state for a new child * @child: new child task * @ptrace: true if child should be ptrace'd by parent's tracer * * This is called immediately after adding @child to its parent's children * list. @ptrace is false in the normal case, and true to ptrace @child. * * Called with current's siglock and write_lock_irq(&tasklist_lock) held. */ static inline void ptrace_init_task(struct task_struct *child, bool ptrace) { INIT_LIST_HEAD(&child->ptrace_entry); INIT_LIST_HEAD(&child->ptraced); child->parent = child->real_parent; child->ptrace = 0; if (unlikely(ptrace)) { child->ptrace = current->ptrace; __ptrace_link(child, current->parent); } } #ifndef force_successful_syscall_return /* * System call handlers that, upon successful completion, need to return a * negative value should call force_successful_syscall_return() right before * returning. On architectures where the syscall convention provides for a * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly * others), this macro can be used to ensure that the error flag will not get * set. On architectures which do not support a separate error flag, the macro * is a no-op and the spurious error condition needs to be filtered out by some * other means (e.g., in user-level, by passing an extra argument to the * syscall handler, or something along those lines). */ #define force_successful_syscall_return() do { } while (0) #endif /* * should define the following things inside #ifdef __KERNEL__. * * These do-nothing inlines are used when the arch does not * implement single-step. The kerneldoc comments are here * to document the interface for all arch definitions. */ #ifndef arch_has_single_step /** * arch_has_single_step - does this CPU support user-mode single-step? * * If this is defined, then there must be function declarations or * inlines for user_enable_single_step() and user_disable_single_step(). * arch_has_single_step() should evaluate to nonzero iff the machine * supports instruction single-step for user mode. * It can be a constant or it can test a CPU feature bit. */ #define arch_has_single_step() (0) /** * user_enable_single_step - single-step in user-mode task * @task: either current or a task stopped in %TASK_TRACED * * This can only be called when arch_has_single_step() has returned nonzero. * Set @task so that when it returns to user mode, it will trap after the * next single instruction executes. If arch_has_block_step() is defined, * this must clear the effects of user_enable_block_step() too. */ static inline void user_enable_single_step(struct task_struct *task) { BUG(); /* This can never be called. */ } /** * user_disable_single_step - cancel user-mode single-step * @task: either current or a task stopped in %TASK_TRACED * * Clear @task of the effects of user_enable_single_step() and * user_enable_block_step(). This can be called whether or not either * of those was ever called on @task, and even if arch_has_single_step() * returned zero. */ static inline void user_disable_single_step(struct task_struct *task) { } #endif /* arch_has_single_step */ #ifndef arch_has_block_step /** * arch_has_block_step - does this CPU support user-mode block-step? * * If this is defined, then there must be a function declaration or inline * for user_enable_block_step(), and arch_has_single_step() must be defined * too. arch_has_block_step() should evaluate to nonzero iff the machine * supports step-until-branch for user mode. It can be a constant or it * can test a CPU feature bit. */ #define arch_has_block_step() (0) /** * user_enable_block_step - step until branch in user-mode task * @task: either current or a task stopped in %TASK_TRACED * * This can only be called when arch_has_block_step() has returned nonzero, * and will never be called when single-instruction stepping is being used. * Set @task so that when it returns to user mode, it will trap after the * next branch or trap taken. */ static inline void user_enable_block_step(struct task_struct *task) { BUG(); /* This can never be called. */ } #endif /* arch_has_block_step */ #ifndef arch_ptrace_stop_needed /** * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called * @code: current->exit_code value ptrace will stop with * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with * * This is called with the siglock held, to decide whether or not it's * necessary to release the siglock and call arch_ptrace_stop() with the * same @code and @info arguments. It can be defined to a constant if * arch_ptrace_stop() is never required, or always is. On machines where * this makes sense, it should be defined to a quick test to optimize out * calling arch_ptrace_stop() when it would be superfluous. For example, * if the thread has not been back to user mode since the last stop, the * thread state might indicate that nothing needs to be done. */ #define arch_ptrace_stop_needed(code, info) (0) #endif #ifndef arch_ptrace_stop /** * arch_ptrace_stop - Do machine-specific work before stopping for ptrace * @code: current->exit_code value ptrace will stop with * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with * * This is called with no locks held when arch_ptrace_stop_needed() has * just returned nonzero. It is allowed to block, e.g. for user memory * access. The arch can have machine-specific work to be done before * ptrace stops. On ia64, register backing store gets written back to user * memory here. Since this can be costly (requires dropping the siglock), * we only do it when the arch requires it for this particular stop, as * indicated by arch_ptrace_stop_needed(). */ #define arch_ptrace_stop(code, info) do { } while (0) #endif #endif #endif