/* * ov534-ov772x gspca driver * * Copyright (C) 2008 Antonio Ospite * Copyright (C) 2008 Jim Paris * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr * * Based on a prototype written by Mark Ferrell * USB protocol reverse engineered by Jim Paris * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/ * * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr * PS3 Eye camera - brightness, contrast, awb, agc, aec controls * added by Max Thrun * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #define MODULE_NAME "ov534" #include "gspca.h" #define OV534_REG_ADDRESS 0xf1 /* sensor address */ #define OV534_REG_SUBADDR 0xf2 #define OV534_REG_WRITE 0xf3 #define OV534_REG_READ 0xf4 #define OV534_REG_OPERATION 0xf5 #define OV534_REG_STATUS 0xf6 #define OV534_OP_WRITE_3 0x37 #define OV534_OP_WRITE_2 0x33 #define OV534_OP_READ_2 0xf9 #define CTRL_TIMEOUT 500 MODULE_AUTHOR("Antonio Ospite "); MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver"); MODULE_LICENSE("GPL"); /* specific webcam descriptor */ struct sd { struct gspca_dev gspca_dev; /* !! must be the first item */ __u32 last_pts; u16 last_fid; u8 frame_rate; u8 brightness; u8 contrast; u8 gain; u8 exposure; u8 agc; u8 awb; u8 aec; s8 sharpness; u8 hflip; u8 vflip; u8 freqfltr; }; /* V4L2 controls supported by the driver */ static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val); static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val); static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val); static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val); static int sd_setagc(struct gspca_dev *gspca_dev, __s32 val); static int sd_getagc(struct gspca_dev *gspca_dev, __s32 *val); static int sd_setsharpness(struct gspca_dev *gspca_dev, __s32 val); static int sd_getsharpness(struct gspca_dev *gspca_dev, __s32 *val); static int sd_sethflip(struct gspca_dev *gspca_dev, __s32 val); static int sd_gethflip(struct gspca_dev *gspca_dev, __s32 *val); static int sd_setvflip(struct gspca_dev *gspca_dev, __s32 val); static int sd_getvflip(struct gspca_dev *gspca_dev, __s32 *val); static int sd_setawb(struct gspca_dev *gspca_dev, __s32 val); static int sd_getawb(struct gspca_dev *gspca_dev, __s32 *val); static int sd_setaec(struct gspca_dev *gspca_dev, __s32 val); static int sd_getaec(struct gspca_dev *gspca_dev, __s32 *val); static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val); static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val); static int sd_setcontrast(struct gspca_dev *gspca_dev, __s32 val); static int sd_getcontrast(struct gspca_dev *gspca_dev, __s32 *val); static int sd_setfreqfltr(struct gspca_dev *gspca_dev, __s32 val); static int sd_getfreqfltr(struct gspca_dev *gspca_dev, __s32 *val); static int sd_querymenu(struct gspca_dev *gspca_dev, struct v4l2_querymenu *menu); static const struct ctrl sd_ctrls[] = { { /* 0 */ { .id = V4L2_CID_BRIGHTNESS, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Brightness", .minimum = 0, .maximum = 255, .step = 1, #define BRIGHTNESS_DEF 0 .default_value = BRIGHTNESS_DEF, }, .set = sd_setbrightness, .get = sd_getbrightness, }, { /* 1 */ { .id = V4L2_CID_CONTRAST, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Contrast", .minimum = 0, .maximum = 255, .step = 1, #define CONTRAST_DEF 32 .default_value = CONTRAST_DEF, }, .set = sd_setcontrast, .get = sd_getcontrast, }, { /* 2 */ { .id = V4L2_CID_GAIN, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Main Gain", .minimum = 0, .maximum = 63, .step = 1, #define GAIN_DEF 20 .default_value = GAIN_DEF, }, .set = sd_setgain, .get = sd_getgain, }, { /* 3 */ { .id = V4L2_CID_EXPOSURE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Exposure", .minimum = 0, .maximum = 255, .step = 1, #define EXPO_DEF 120 .default_value = EXPO_DEF, }, .set = sd_setexposure, .get = sd_getexposure, }, { /* 4 */ { .id = V4L2_CID_AUTOGAIN, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "Auto Gain", .minimum = 0, .maximum = 1, .step = 1, #define AGC_DEF 1 .default_value = AGC_DEF, }, .set = sd_setagc, .get = sd_getagc, }, #define AWB_IDX 5 { /* 5 */ { .id = V4L2_CID_AUTO_WHITE_BALANCE, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "Auto White Balance", .minimum = 0, .maximum = 1, .step = 1, #define AWB_DEF 1 .default_value = AWB_DEF, }, .set = sd_setawb, .get = sd_getawb, }, { /* 6 */ { .id = V4L2_CID_EXPOSURE_AUTO, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "Auto Exposure", .minimum = 0, .maximum = 1, .step = 1, #define AEC_DEF 1 .default_value = AEC_DEF, }, .set = sd_setaec, .get = sd_getaec, }, { /* 7 */ { .id = V4L2_CID_SHARPNESS, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Sharpness", .minimum = 0, .maximum = 63, .step = 1, #define SHARPNESS_DEF 0 .default_value = SHARPNESS_DEF, }, .set = sd_setsharpness, .get = sd_getsharpness, }, { /* 8 */ { .id = V4L2_CID_HFLIP, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "HFlip", .minimum = 0, .maximum = 1, .step = 1, #define HFLIP_DEF 0 .default_value = HFLIP_DEF, }, .set = sd_sethflip, .get = sd_gethflip, }, { /* 9 */ { .id = V4L2_CID_VFLIP, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "VFlip", .minimum = 0, .maximum = 1, .step = 1, #define VFLIP_DEF 0 .default_value = VFLIP_DEF, }, .set = sd_setvflip, .get = sd_getvflip, }, { /* 10 */ { .id = V4L2_CID_POWER_LINE_FREQUENCY, .type = V4L2_CTRL_TYPE_MENU, .name = "Light Frequency Filter", .minimum = 0, .maximum = 1, .step = 1, #define FREQFLTR_DEF 0 .default_value = FREQFLTR_DEF, }, .set = sd_setfreqfltr, .get = sd_getfreqfltr, }, }; static const struct v4l2_pix_format ov772x_mode[] = { {320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE, .bytesperline = 320 * 2, .sizeimage = 320 * 240 * 2, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 1}, {640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE, .bytesperline = 640 * 2, .sizeimage = 640 * 480 * 2, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 0}, }; static const u8 qvga_rates[] = {125, 100, 75, 60, 50, 40, 30}; static const u8 vga_rates[] = {60, 50, 40, 30, 15}; static const struct framerates ov772x_framerates[] = { { /* 320x240 */ .rates = qvga_rates, .nrates = ARRAY_SIZE(qvga_rates), }, { /* 640x480 */ .rates = vga_rates, .nrates = ARRAY_SIZE(vga_rates), }, }; static const u8 bridge_init[][2] = { { 0xc2, 0x0c }, { 0x88, 0xf8 }, { 0xc3, 0x69 }, { 0x89, 0xff }, { 0x76, 0x03 }, { 0x92, 0x01 }, { 0x93, 0x18 }, { 0x94, 0x10 }, { 0x95, 0x10 }, { 0xe2, 0x00 }, { 0xe7, 0x3e }, { 0x96, 0x00 }, { 0x97, 0x20 }, { 0x97, 0x20 }, { 0x97, 0x20 }, { 0x97, 0x0a }, { 0x97, 0x3f }, { 0x97, 0x4a }, { 0x97, 0x20 }, { 0x97, 0x15 }, { 0x97, 0x0b }, { 0x8e, 0x40 }, { 0x1f, 0x81 }, { 0x34, 0x05 }, { 0xe3, 0x04 }, { 0x88, 0x00 }, { 0x89, 0x00 }, { 0x76, 0x00 }, { 0xe7, 0x2e }, { 0x31, 0xf9 }, { 0x25, 0x42 }, { 0x21, 0xf0 }, { 0x1c, 0x00 }, { 0x1d, 0x40 }, { 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */ { 0x1d, 0x00 }, /* payload size */ { 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */ { 0x1d, 0x58 }, /* frame size */ { 0x1d, 0x00 }, /* frame size */ { 0x1c, 0x0a }, { 0x1d, 0x08 }, /* turn on UVC header */ { 0x1d, 0x0e }, /* .. */ { 0x8d, 0x1c }, { 0x8e, 0x80 }, { 0xe5, 0x04 }, { 0xc0, 0x50 }, { 0xc1, 0x3c }, { 0xc2, 0x0c }, }; static const u8 sensor_init[][2] = { { 0x12, 0x80 }, { 0x11, 0x01 }, /*fixme: better have a delay?*/ { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x3d, 0x03 }, { 0x17, 0x26 }, { 0x18, 0xa0 }, { 0x19, 0x07 }, { 0x1a, 0xf0 }, { 0x32, 0x00 }, { 0x29, 0xa0 }, { 0x2c, 0xf0 }, { 0x65, 0x20 }, { 0x11, 0x01 }, { 0x42, 0x7f }, { 0x63, 0xaa }, /* AWB - was e0 */ { 0x64, 0xff }, { 0x66, 0x00 }, { 0x13, 0xf0 }, /* com8 */ { 0x0d, 0x41 }, { 0x0f, 0xc5 }, { 0x14, 0x11 }, { 0x22, 0x7f }, { 0x23, 0x03 }, { 0x24, 0x40 }, { 0x25, 0x30 }, { 0x26, 0xa1 }, { 0x2a, 0x00 }, { 0x2b, 0x00 }, { 0x6b, 0xaa }, { 0x13, 0xff }, /* AWB */ { 0x90, 0x05 }, { 0x91, 0x01 }, { 0x92, 0x03 }, { 0x93, 0x00 }, { 0x94, 0x60 }, { 0x95, 0x3c }, { 0x96, 0x24 }, { 0x97, 0x1e }, { 0x98, 0x62 }, { 0x99, 0x80 }, { 0x9a, 0x1e }, { 0x9b, 0x08 }, { 0x9c, 0x20 }, { 0x9e, 0x81 }, { 0xa6, 0x04 }, { 0x7e, 0x0c }, { 0x7f, 0x16 }, { 0x80, 0x2a }, { 0x81, 0x4e }, { 0x82, 0x61 }, { 0x83, 0x6f }, { 0x84, 0x7b }, { 0x85, 0x86 }, { 0x86, 0x8e }, { 0x87, 0x97 }, { 0x88, 0xa4 }, { 0x89, 0xaf }, { 0x8a, 0xc5 }, { 0x8b, 0xd7 }, { 0x8c, 0xe8 }, { 0x8d, 0x20 }, { 0x0c, 0x90 }, { 0x2b, 0x00 }, { 0x22, 0x7f }, { 0x23, 0x03 }, { 0x11, 0x01 }, { 0x0c, 0xd0 }, { 0x64, 0xff }, { 0x0d, 0x41 }, { 0x14, 0x41 }, { 0x0e, 0xcd }, { 0xac, 0xbf }, { 0x8e, 0x00 }, /* De-noise threshold */ { 0x0c, 0xd0 } }; static const u8 bridge_start_vga[][2] = { {0x1c, 0x00}, {0x1d, 0x40}, {0x1d, 0x02}, {0x1d, 0x00}, {0x1d, 0x02}, {0x1d, 0x58}, {0x1d, 0x00}, {0xc0, 0x50}, {0xc1, 0x3c}, }; static const u8 sensor_start_vga[][2] = { {0x12, 0x00}, {0x17, 0x26}, {0x18, 0xa0}, {0x19, 0x07}, {0x1a, 0xf0}, {0x29, 0xa0}, {0x2c, 0xf0}, {0x65, 0x20}, }; static const u8 bridge_start_qvga[][2] = { {0x1c, 0x00}, {0x1d, 0x40}, {0x1d, 0x02}, {0x1d, 0x00}, {0x1d, 0x01}, {0x1d, 0x4b}, {0x1d, 0x00}, {0xc0, 0x28}, {0xc1, 0x1e}, }; static const u8 sensor_start_qvga[][2] = { {0x12, 0x40}, {0x17, 0x3f}, {0x18, 0x50}, {0x19, 0x03}, {0x1a, 0x78}, {0x29, 0x50}, {0x2c, 0x78}, {0x65, 0x2f}, }; static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val) { struct usb_device *udev = gspca_dev->dev; int ret; PDEBUG(D_USBO, "reg=0x%04x, val=0%02x", reg, val); gspca_dev->usb_buf[0] = val; ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x01, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT); if (ret < 0) err("write failed %d", ret); } static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg) { struct usb_device *udev = gspca_dev->dev; int ret; ret = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), 0x01, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT); PDEBUG(D_USBI, "reg=0x%04x, data=0x%02x", reg, gspca_dev->usb_buf[0]); if (ret < 0) err("read failed %d", ret); return gspca_dev->usb_buf[0]; } /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7. * (direction and output)? */ static void ov534_set_led(struct gspca_dev *gspca_dev, int status) { u8 data; PDEBUG(D_CONF, "led status: %d", status); data = ov534_reg_read(gspca_dev, 0x21); data |= 0x80; ov534_reg_write(gspca_dev, 0x21, data); data = ov534_reg_read(gspca_dev, 0x23); if (status) data |= 0x80; else data &= ~0x80; ov534_reg_write(gspca_dev, 0x23, data); if (!status) { data = ov534_reg_read(gspca_dev, 0x21); data &= ~0x80; ov534_reg_write(gspca_dev, 0x21, data); } } static int sccb_check_status(struct gspca_dev *gspca_dev) { u8 data; int i; for (i = 0; i < 5; i++) { data = ov534_reg_read(gspca_dev, OV534_REG_STATUS); switch (data) { case 0x00: return 1; case 0x04: return 0; case 0x03: break; default: PDEBUG(D_ERR, "sccb status 0x%02x, attempt %d/5", data, i + 1); } } return 0; } static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val) { PDEBUG(D_USBO, "reg: 0x%02x, val: 0x%02x", reg, val); ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg); ov534_reg_write(gspca_dev, OV534_REG_WRITE, val); ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3); if (!sccb_check_status(gspca_dev)) err("sccb_reg_write failed"); } static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg) { ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg); ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2); if (!sccb_check_status(gspca_dev)) err("sccb_reg_read failed 1"); ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2); if (!sccb_check_status(gspca_dev)) err("sccb_reg_read failed 2"); return ov534_reg_read(gspca_dev, OV534_REG_READ); } /* output a bridge sequence (reg - val) */ static void reg_w_array(struct gspca_dev *gspca_dev, const u8 (*data)[2], int len) { while (--len >= 0) { ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]); data++; } } /* output a sensor sequence (reg - val) */ static void sccb_w_array(struct gspca_dev *gspca_dev, const u8 (*data)[2], int len) { while (--len >= 0) { if ((*data)[0] != 0xff) { sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]); } else { sccb_reg_read(gspca_dev, (*data)[1]); sccb_reg_write(gspca_dev, 0xff, 0x00); } data++; } } /* ov772x specific controls */ static void set_frame_rate(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; int i; struct rate_s { u8 fps; u8 r11; u8 r0d; u8 re5; }; const struct rate_s *r; static const struct rate_s rate_0[] = { /* 640x480 */ {60, 0x01, 0xc1, 0x04}, {50, 0x01, 0x41, 0x02}, {40, 0x02, 0xc1, 0x04}, {30, 0x04, 0x81, 0x02}, {15, 0x03, 0x41, 0x04}, }; static const struct rate_s rate_1[] = { /* 320x240 */ {125, 0x02, 0x81, 0x02}, {100, 0x02, 0xc1, 0x04}, {75, 0x03, 0xc1, 0x04}, {60, 0x04, 0xc1, 0x04}, {50, 0x02, 0x41, 0x04}, {40, 0x03, 0x41, 0x04}, {30, 0x04, 0x41, 0x04}, }; if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) { r = rate_0; i = ARRAY_SIZE(rate_0); } else { r = rate_1; i = ARRAY_SIZE(rate_1); } while (--i > 0) { if (sd->frame_rate >= r->fps) break; r++; } sccb_reg_write(gspca_dev, 0x11, r->r11); sccb_reg_write(gspca_dev, 0x0d, r->r0d); ov534_reg_write(gspca_dev, 0xe5, r->re5); PDEBUG(D_PROBE, "frame_rate: %d", r->fps); } static void setbrightness(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; sccb_reg_write(gspca_dev, 0x9b, sd->brightness); } static void setcontrast(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; sccb_reg_write(gspca_dev, 0x9c, sd->contrast); } static void setgain(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; u8 val; if (sd->agc) return; val = sd->gain; switch (val & 0x30) { case 0x00: val &= 0x0f; break; case 0x10: val &= 0x0f; val |= 0x30; break; case 0x20: val &= 0x0f; val |= 0x70; break; default: /* case 0x30: */ val &= 0x0f; val |= 0xf0; break; } sccb_reg_write(gspca_dev, 0x00, val); } static void setexposure(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; u8 val; if (sd->aec) return; /* 'val' is one byte and represents half of the exposure value we are * going to set into registers, a two bytes value: * * MSB: ((u16) val << 1) >> 8 == val >> 7 * LSB: ((u16) val << 1) & 0xff == val << 1 */ val = sd->exposure; sccb_reg_write(gspca_dev, 0x08, val >> 7); sccb_reg_write(gspca_dev, 0x10, val << 1); } static void setagc(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; if (sd->agc) { sccb_reg_write(gspca_dev, 0x13, sccb_reg_read(gspca_dev, 0x13) | 0x04); sccb_reg_write(gspca_dev, 0x64, sccb_reg_read(gspca_dev, 0x64) | 0x03); } else { sccb_reg_write(gspca_dev, 0x13, sccb_reg_read(gspca_dev, 0x13) & ~0x04); sccb_reg_write(gspca_dev, 0x64, sccb_reg_read(gspca_dev, 0x64) & ~0x03); setgain(gspca_dev); } } static void setawb(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; if (sd->awb) { sccb_reg_write(gspca_dev, 0x13, sccb_reg_read(gspca_dev, 0x13) | 0x02); sccb_reg_write(gspca_dev, 0x63, sccb_reg_read(gspca_dev, 0x63) | 0xc0); } else { sccb_reg_write(gspca_dev, 0x13, sccb_reg_read(gspca_dev, 0x13) & ~0x02); sccb_reg_write(gspca_dev, 0x63, sccb_reg_read(gspca_dev, 0x63) & ~0xc0); } } static void setaec(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; if (sd->aec) sccb_reg_write(gspca_dev, 0x13, sccb_reg_read(gspca_dev, 0x13) | 0x01); else { sccb_reg_write(gspca_dev, 0x13, sccb_reg_read(gspca_dev, 0x13) & ~0x01); setexposure(gspca_dev); } } static void setsharpness(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; u8 val; val = sd->sharpness; sccb_reg_write(gspca_dev, 0x91, val); /* Auto de-noise threshold */ sccb_reg_write(gspca_dev, 0x8e, val); /* De-noise threshold */ } static void sethflip(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; if (sd->hflip == 0) sccb_reg_write(gspca_dev, 0x0c, sccb_reg_read(gspca_dev, 0x0c) | 0x40); else sccb_reg_write(gspca_dev, 0x0c, sccb_reg_read(gspca_dev, 0x0c) & ~0x40); } static void setvflip(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; if (sd->vflip == 0) sccb_reg_write(gspca_dev, 0x0c, sccb_reg_read(gspca_dev, 0x0c) | 0x80); else sccb_reg_write(gspca_dev, 0x0c, sccb_reg_read(gspca_dev, 0x0c) & ~0x80); } static void setfreqfltr(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; if (sd->freqfltr == 0) sccb_reg_write(gspca_dev, 0x2b, 0x00); else sccb_reg_write(gspca_dev, 0x2b, 0x9e); } /* this function is called at probe time */ static int sd_config(struct gspca_dev *gspca_dev, const struct usb_device_id *id) { struct sd *sd = (struct sd *) gspca_dev; struct cam *cam; cam = &gspca_dev->cam; cam->cam_mode = ov772x_mode; cam->nmodes = ARRAY_SIZE(ov772x_mode); cam->mode_framerates = ov772x_framerates; cam->bulk = 1; cam->bulk_size = 16384; cam->bulk_nurbs = 2; sd->frame_rate = 30; sd->brightness = BRIGHTNESS_DEF; sd->contrast = CONTRAST_DEF; sd->gain = GAIN_DEF; sd->exposure = EXPO_DEF; #if AGC_DEF != 0 sd->agc = AGC_DEF; #else gspca_dev->ctrl_inac |= (1 << AWB_IDX); #endif sd->awb = AWB_DEF; sd->aec = AEC_DEF; sd->sharpness = SHARPNESS_DEF; sd->hflip = HFLIP_DEF; sd->vflip = VFLIP_DEF; sd->freqfltr = FREQFLTR_DEF; return 0; } /* this function is called at probe and resume time */ static int sd_init(struct gspca_dev *gspca_dev) { u16 sensor_id; /* reset bridge */ ov534_reg_write(gspca_dev, 0xe7, 0x3a); ov534_reg_write(gspca_dev, 0xe0, 0x08); msleep(100); /* initialize the sensor address */ ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42); /* reset sensor */ sccb_reg_write(gspca_dev, 0x12, 0x80); msleep(10); /* probe the sensor */ sccb_reg_read(gspca_dev, 0x0a); sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8; sccb_reg_read(gspca_dev, 0x0b); sensor_id |= sccb_reg_read(gspca_dev, 0x0b); PDEBUG(D_PROBE, "Sensor ID: %04x", sensor_id); /* initialize */ reg_w_array(gspca_dev, bridge_init, ARRAY_SIZE(bridge_init)); ov534_set_led(gspca_dev, 1); sccb_w_array(gspca_dev, sensor_init, ARRAY_SIZE(sensor_init)); ov534_reg_write(gspca_dev, 0xe0, 0x09); ov534_set_led(gspca_dev, 0); set_frame_rate(gspca_dev); return 0; } static int sd_start(struct gspca_dev *gspca_dev) { int mode; mode = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv; if (mode != 0) { /* 320x240 */ reg_w_array(gspca_dev, bridge_start_qvga, ARRAY_SIZE(bridge_start_qvga)); sccb_w_array(gspca_dev, sensor_start_qvga, ARRAY_SIZE(sensor_start_qvga)); } else { /* 640x480 */ reg_w_array(gspca_dev, bridge_start_vga, ARRAY_SIZE(bridge_start_vga)); sccb_w_array(gspca_dev, sensor_start_vga, ARRAY_SIZE(sensor_start_vga)); } set_frame_rate(gspca_dev); setagc(gspca_dev); setawb(gspca_dev); setaec(gspca_dev); setgain(gspca_dev); setexposure(gspca_dev); setbrightness(gspca_dev); setcontrast(gspca_dev); setsharpness(gspca_dev); setvflip(gspca_dev); sethflip(gspca_dev); setfreqfltr(gspca_dev); ov534_set_led(gspca_dev, 1); ov534_reg_write(gspca_dev, 0xe0, 0x00); return 0; } static void sd_stopN(struct gspca_dev *gspca_dev) { ov534_reg_write(gspca_dev, 0xe0, 0x09); ov534_set_led(gspca_dev, 0); } /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */ #define UVC_STREAM_EOH (1 << 7) #define UVC_STREAM_ERR (1 << 6) #define UVC_STREAM_STI (1 << 5) #define UVC_STREAM_RES (1 << 4) #define UVC_STREAM_SCR (1 << 3) #define UVC_STREAM_PTS (1 << 2) #define UVC_STREAM_EOF (1 << 1) #define UVC_STREAM_FID (1 << 0) static void sd_pkt_scan(struct gspca_dev *gspca_dev, u8 *data, int len) { struct sd *sd = (struct sd *) gspca_dev; __u32 this_pts; u16 this_fid; int remaining_len = len; do { len = min(remaining_len, 2048); /* Payloads are prefixed with a UVC-style header. We consider a frame to start when the FID toggles, or the PTS changes. A frame ends when EOF is set, and we've received the correct number of bytes. */ /* Verify UVC header. Header length is always 12 */ if (data[0] != 12 || len < 12) { PDEBUG(D_PACK, "bad header"); goto discard; } /* Check errors */ if (data[1] & UVC_STREAM_ERR) { PDEBUG(D_PACK, "payload error"); goto discard; } /* Extract PTS and FID */ if (!(data[1] & UVC_STREAM_PTS)) { PDEBUG(D_PACK, "PTS not present"); goto discard; } this_pts = (data[5] << 24) | (data[4] << 16) | (data[3] << 8) | data[2]; this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0; /* If PTS or FID has changed, start a new frame. */ if (this_pts != sd->last_pts || this_fid != sd->last_fid) { if (gspca_dev->last_packet_type == INTER_PACKET) gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0); sd->last_pts = this_pts; sd->last_fid = this_fid; gspca_frame_add(gspca_dev, FIRST_PACKET, data + 12, len - 12); /* If this packet is marked as EOF, end the frame */ } else if (data[1] & UVC_STREAM_EOF) { sd->last_pts = 0; if (gspca_dev->image_len + len - 12 != gspca_dev->width * gspca_dev->height * 2) { PDEBUG(D_PACK, "wrong sized frame"); goto discard; } gspca_frame_add(gspca_dev, LAST_PACKET, data + 12, len - 12); } else { /* Add the data from this payload */ gspca_frame_add(gspca_dev, INTER_PACKET, data + 12, len - 12); } /* Done this payload */ goto scan_next; discard: /* Discard data until a new frame starts. */ gspca_dev->last_packet_type = DISCARD_PACKET; scan_next: remaining_len -= len; data += len; } while (remaining_len > 0); } /* controls */ static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->gain = val; if (gspca_dev->streaming) setgain(gspca_dev); return 0; } static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->gain; return 0; } static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->exposure = val; if (gspca_dev->streaming) setexposure(gspca_dev); return 0; } static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->exposure; return 0; } static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->brightness = val; if (gspca_dev->streaming) setbrightness(gspca_dev); return 0; } static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->brightness; return 0; } static int sd_setcontrast(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->contrast = val; if (gspca_dev->streaming) setcontrast(gspca_dev); return 0; } static int sd_getcontrast(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->contrast; return 0; } static int sd_setagc(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->agc = val; if (gspca_dev->streaming) { /* the auto white balance control works only * when auto gain is set */ if (val) gspca_dev->ctrl_inac &= ~(1 << AWB_IDX); else gspca_dev->ctrl_inac |= (1 << AWB_IDX); setagc(gspca_dev); } return 0; } static int sd_getagc(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->agc; return 0; } static int sd_setawb(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->awb = val; if (gspca_dev->streaming) setawb(gspca_dev); return 0; } static int sd_getawb(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->awb; return 0; } static int sd_setaec(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->aec = val; if (gspca_dev->streaming) setaec(gspca_dev); return 0; } static int sd_getaec(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->aec; return 0; } static int sd_setsharpness(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->sharpness = val; if (gspca_dev->streaming) setsharpness(gspca_dev); return 0; } static int sd_getsharpness(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->sharpness; return 0; } static int sd_sethflip(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->hflip = val; if (gspca_dev->streaming) sethflip(gspca_dev); return 0; } static int sd_gethflip(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->hflip; return 0; } static int sd_setvflip(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->vflip = val; if (gspca_dev->streaming) setvflip(gspca_dev); return 0; } static int sd_getvflip(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->vflip; return 0; } static int sd_setfreqfltr(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->freqfltr = val; if (gspca_dev->streaming) setfreqfltr(gspca_dev); return 0; } static int sd_getfreqfltr(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->freqfltr; return 0; } static int sd_querymenu(struct gspca_dev *gspca_dev, struct v4l2_querymenu *menu) { switch (menu->id) { case V4L2_CID_POWER_LINE_FREQUENCY: switch (menu->index) { case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */ strcpy((char *) menu->name, "Disabled"); return 0; case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */ strcpy((char *) menu->name, "50 Hz"); return 0; } break; } return -EINVAL; } /* get stream parameters (framerate) */ static int sd_get_streamparm(struct gspca_dev *gspca_dev, struct v4l2_streamparm *parm) { struct v4l2_captureparm *cp = &parm->parm.capture; struct v4l2_fract *tpf = &cp->timeperframe; struct sd *sd = (struct sd *) gspca_dev; if (parm->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; cp->capability |= V4L2_CAP_TIMEPERFRAME; tpf->numerator = 1; tpf->denominator = sd->frame_rate; return 0; } /* set stream parameters (framerate) */ static int sd_set_streamparm(struct gspca_dev *gspca_dev, struct v4l2_streamparm *parm) { struct v4l2_captureparm *cp = &parm->parm.capture; struct v4l2_fract *tpf = &cp->timeperframe; struct sd *sd = (struct sd *) gspca_dev; if (parm->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; /* Set requested framerate */ sd->frame_rate = tpf->denominator / tpf->numerator; if (gspca_dev->streaming) set_frame_rate(gspca_dev); /* Return the actual framerate */ tpf->numerator = 1; tpf->denominator = sd->frame_rate; return 0; } /* sub-driver description */ static const struct sd_desc sd_desc = { .name = MODULE_NAME, .ctrls = sd_ctrls, .nctrls = ARRAY_SIZE(sd_ctrls), .config = sd_config, .init = sd_init, .start = sd_start, .stopN = sd_stopN, .pkt_scan = sd_pkt_scan, .querymenu = sd_querymenu, .get_streamparm = sd_get_streamparm, .set_streamparm = sd_set_streamparm, }; /* -- module initialisation -- */ static const __devinitdata struct usb_device_id device_table[] = { {USB_DEVICE(0x1415, 0x2000)}, {} }; MODULE_DEVICE_TABLE(usb, device_table); /* -- device connect -- */ static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id) { return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd), THIS_MODULE); } static struct usb_driver sd_driver = { .name = MODULE_NAME, .id_table = device_table, .probe = sd_probe, .disconnect = gspca_disconnect, #ifdef CONFIG_PM .suspend = gspca_suspend, .resume = gspca_resume, #endif }; /* -- module insert / remove -- */ static int __init sd_mod_init(void) { return usb_register(&sd_driver); } static void __exit sd_mod_exit(void) { usb_deregister(&sd_driver); } module_init(sd_mod_init); module_exit(sd_mod_exit);