/* * intelfb * * Linux framebuffer driver for Intel(R) 865G integrated graphics chips. * * Copyright © 2002, 2003 David Dawes * 2004 Sylvain Meyer * * This driver consists of two parts. The first part (intelfbdrv.c) provides * the basic fbdev interfaces, is derived in part from the radeonfb and * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c) * provides the code to program the hardware. Most of it is derived from * the i810/i830 XFree86 driver. The HW-specific code is covered here * under a dual license (GPL and MIT/XFree86 license). * * Author: David Dawes * */ /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "intelfb.h" #include "intelfbhw.h" struct pll_min_max { int min_m, max_m, min_m1, max_m1; int min_m2, max_m2, min_n, max_n; int min_p, max_p, min_p1, max_p1; int min_vco, max_vco, p_transition_clk, ref_clk; int p_inc_lo, p_inc_hi; }; #define PLLS_I8xx 0 #define PLLS_I9xx 1 #define PLLS_MAX 2 static struct pll_min_max plls[PLLS_MAX] = { { 108, 140, 18, 26, 6, 16, 3, 16, 4, 128, 0, 31, 930000, 1400000, 165000, 48000, 4, 2 }, //I8xx { 75, 120, 10, 20, 5, 9, 4, 7, 5, 80, 1, 8, 1400000, 2800000, 200000, 96000, 10, 5 } //I9xx }; int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo) { u32 tmp; if (!pdev || !dinfo) return 1; switch (pdev->device) { case PCI_DEVICE_ID_INTEL_830M: dinfo->name = "Intel(R) 830M"; dinfo->chipset = INTEL_830M; dinfo->mobile = 1; dinfo->pll_index = PLLS_I8xx; return 0; case PCI_DEVICE_ID_INTEL_845G: dinfo->name = "Intel(R) 845G"; dinfo->chipset = INTEL_845G; dinfo->mobile = 0; dinfo->pll_index = PLLS_I8xx; return 0; case PCI_DEVICE_ID_INTEL_85XGM: tmp = 0; dinfo->mobile = 1; dinfo->pll_index = PLLS_I8xx; pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp); switch ((tmp >> INTEL_85X_VARIANT_SHIFT) & INTEL_85X_VARIANT_MASK) { case INTEL_VAR_855GME: dinfo->name = "Intel(R) 855GME"; dinfo->chipset = INTEL_855GME; return 0; case INTEL_VAR_855GM: dinfo->name = "Intel(R) 855GM"; dinfo->chipset = INTEL_855GM; return 0; case INTEL_VAR_852GME: dinfo->name = "Intel(R) 852GME"; dinfo->chipset = INTEL_852GME; return 0; case INTEL_VAR_852GM: dinfo->name = "Intel(R) 852GM"; dinfo->chipset = INTEL_852GM; return 0; default: dinfo->name = "Intel(R) 852GM/855GM"; dinfo->chipset = INTEL_85XGM; return 0; } break; case PCI_DEVICE_ID_INTEL_865G: dinfo->name = "Intel(R) 865G"; dinfo->chipset = INTEL_865G; dinfo->mobile = 0; dinfo->pll_index = PLLS_I8xx; return 0; case PCI_DEVICE_ID_INTEL_915G: dinfo->name = "Intel(R) 915G"; dinfo->chipset = INTEL_915G; dinfo->mobile = 0; dinfo->pll_index = PLLS_I9xx; return 0; case PCI_DEVICE_ID_INTEL_915GM: dinfo->name = "Intel(R) 915GM"; dinfo->chipset = INTEL_915GM; dinfo->mobile = 1; dinfo->pll_index = PLLS_I9xx; return 0; case PCI_DEVICE_ID_INTEL_945G: dinfo->name = "Intel(R) 945G"; dinfo->chipset = INTEL_945G; dinfo->mobile = 0; dinfo->pll_index = PLLS_I9xx; return 0; case PCI_DEVICE_ID_INTEL_945GM: dinfo->name = "Intel(R) 945GM"; dinfo->chipset = INTEL_945GM; dinfo->mobile = 1; dinfo->pll_index = PLLS_I9xx; return 0; default: return 1; } } int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size, int *stolen_size) { struct pci_dev *bridge_dev; u16 tmp; int stolen_overhead; if (!pdev || !aperture_size || !stolen_size) return 1; /* Find the bridge device. It is always 0:0.0 */ if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) { ERR_MSG("cannot find bridge device\n"); return 1; } /* Get the fb aperture size and "stolen" memory amount. */ tmp = 0; pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp); pci_dev_put(bridge_dev); switch (pdev->device) { case PCI_DEVICE_ID_INTEL_915G: case PCI_DEVICE_ID_INTEL_915GM: case PCI_DEVICE_ID_INTEL_945G: case PCI_DEVICE_ID_INTEL_945GM: /* 915 and 945 chipsets support a 256MB aperture. Aperture size is determined by inspected the base address of the aperture. */ if (pci_resource_start(pdev, 2) & 0x08000000) *aperture_size = MB(128); else *aperture_size = MB(256); break; default: if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M) *aperture_size = MB(64); else *aperture_size = MB(128); break; } /* Stolen memory size is reduced by the GTT and the popup. GTT is 1K per MB of aperture size, and popup is 4K. */ stolen_overhead = (*aperture_size / MB(1)) + 4; switch(pdev->device) { case PCI_DEVICE_ID_INTEL_830M: case PCI_DEVICE_ID_INTEL_845G: switch (tmp & INTEL_830_GMCH_GMS_MASK) { case INTEL_830_GMCH_GMS_STOLEN_512: *stolen_size = KB(512) - KB(stolen_overhead); return 0; case INTEL_830_GMCH_GMS_STOLEN_1024: *stolen_size = MB(1) - KB(stolen_overhead); return 0; case INTEL_830_GMCH_GMS_STOLEN_8192: *stolen_size = MB(8) - KB(stolen_overhead); return 0; case INTEL_830_GMCH_GMS_LOCAL: ERR_MSG("only local memory found\n"); return 1; case INTEL_830_GMCH_GMS_DISABLED: ERR_MSG("video memory is disabled\n"); return 1; default: ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n", tmp & INTEL_830_GMCH_GMS_MASK); return 1; } break; default: switch (tmp & INTEL_855_GMCH_GMS_MASK) { case INTEL_855_GMCH_GMS_STOLEN_1M: *stolen_size = MB(1) - KB(stolen_overhead); return 0; case INTEL_855_GMCH_GMS_STOLEN_4M: *stolen_size = MB(4) - KB(stolen_overhead); return 0; case INTEL_855_GMCH_GMS_STOLEN_8M: *stolen_size = MB(8) - KB(stolen_overhead); return 0; case INTEL_855_GMCH_GMS_STOLEN_16M: *stolen_size = MB(16) - KB(stolen_overhead); return 0; case INTEL_855_GMCH_GMS_STOLEN_32M: *stolen_size = MB(32) - KB(stolen_overhead); return 0; case INTEL_915G_GMCH_GMS_STOLEN_48M: *stolen_size = MB(48) - KB(stolen_overhead); return 0; case INTEL_915G_GMCH_GMS_STOLEN_64M: *stolen_size = MB(64) - KB(stolen_overhead); return 0; case INTEL_855_GMCH_GMS_DISABLED: ERR_MSG("video memory is disabled\n"); return 0; default: ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n", tmp & INTEL_855_GMCH_GMS_MASK); return 1; } } } int intelfbhw_check_non_crt(struct intelfb_info *dinfo) { int dvo = 0; if (INREG(LVDS) & PORT_ENABLE) dvo |= LVDS_PORT; if (INREG(DVOA) & PORT_ENABLE) dvo |= DVOA_PORT; if (INREG(DVOB) & PORT_ENABLE) dvo |= DVOB_PORT; if (INREG(DVOC) & PORT_ENABLE) dvo |= DVOC_PORT; return dvo; } const char * intelfbhw_dvo_to_string(int dvo) { if (dvo & DVOA_PORT) return "DVO port A"; else if (dvo & DVOB_PORT) return "DVO port B"; else if (dvo & DVOC_PORT) return "DVO port C"; else if (dvo & LVDS_PORT) return "LVDS port"; else return NULL; } int intelfbhw_validate_mode(struct intelfb_info *dinfo, struct fb_var_screeninfo *var) { int bytes_per_pixel; int tmp; #if VERBOSE > 0 DBG_MSG("intelfbhw_validate_mode\n"); #endif bytes_per_pixel = var->bits_per_pixel / 8; if (bytes_per_pixel == 3) bytes_per_pixel = 4; /* Check if enough video memory. */ tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel; if (tmp > dinfo->fb.size) { WRN_MSG("Not enough video ram for mode " "(%d KByte vs %d KByte).\n", BtoKB(tmp), BtoKB(dinfo->fb.size)); return 1; } /* Check if x/y limits are OK. */ if (var->xres - 1 > HACTIVE_MASK) { WRN_MSG("X resolution too large (%d vs %d).\n", var->xres, HACTIVE_MASK + 1); return 1; } if (var->yres - 1 > VACTIVE_MASK) { WRN_MSG("Y resolution too large (%d vs %d).\n", var->yres, VACTIVE_MASK + 1); return 1; } /* Check for doublescan modes. */ if (var->vmode & FB_VMODE_DOUBLE) { WRN_MSG("Mode is double-scan.\n"); return 1; } /* Check if clock is OK. */ tmp = 1000000000 / var->pixclock; if (tmp < MIN_CLOCK) { WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n", (tmp + 500) / 1000, MIN_CLOCK / 1000); return 1; } if (tmp > MAX_CLOCK) { WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n", (tmp + 500) / 1000, MAX_CLOCK / 1000); return 1; } return 0; } int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) { struct intelfb_info *dinfo = GET_DINFO(info); u32 offset, xoffset, yoffset; #if VERBOSE > 0 DBG_MSG("intelfbhw_pan_display\n"); #endif xoffset = ROUND_DOWN_TO(var->xoffset, 8); yoffset = var->yoffset; if ((xoffset + var->xres > var->xres_virtual) || (yoffset + var->yres > var->yres_virtual)) return -EINVAL; offset = (yoffset * dinfo->pitch) + (xoffset * var->bits_per_pixel) / 8; offset += dinfo->fb.offset << 12; dinfo->vsync.pan_offset = offset; if ((var->activate & FB_ACTIVATE_VBL) && !intelfbhw_enable_irq(dinfo, 0)) { dinfo->vsync.pan_display = 1; } else { dinfo->vsync.pan_display = 0; OUTREG(DSPABASE, offset); } return 0; } /* Blank the screen. */ void intelfbhw_do_blank(int blank, struct fb_info *info) { struct intelfb_info *dinfo = GET_DINFO(info); u32 tmp; #if VERBOSE > 0 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank); #endif /* Turn plane A on or off */ tmp = INREG(DSPACNTR); if (blank) tmp &= ~DISPPLANE_PLANE_ENABLE; else tmp |= DISPPLANE_PLANE_ENABLE; OUTREG(DSPACNTR, tmp); /* Flush */ tmp = INREG(DSPABASE); OUTREG(DSPABASE, tmp); /* Turn off/on the HW cursor */ #if VERBOSE > 0 DBG_MSG("cursor_on is %d\n", dinfo->cursor_on); #endif if (dinfo->cursor_on) { if (blank) { intelfbhw_cursor_hide(dinfo); } else { intelfbhw_cursor_show(dinfo); } dinfo->cursor_on = 1; } dinfo->cursor_blanked = blank; /* Set DPMS level */ tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK; switch (blank) { case FB_BLANK_UNBLANK: case FB_BLANK_NORMAL: tmp |= ADPA_DPMS_D0; break; case FB_BLANK_VSYNC_SUSPEND: tmp |= ADPA_DPMS_D1; break; case FB_BLANK_HSYNC_SUSPEND: tmp |= ADPA_DPMS_D2; break; case FB_BLANK_POWERDOWN: tmp |= ADPA_DPMS_D3; break; } OUTREG(ADPA, tmp); return; } void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno, unsigned red, unsigned green, unsigned blue, unsigned transp) { #if VERBOSE > 0 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n", regno, red, green, blue); #endif u32 palette_reg = (dinfo->pipe == PIPE_A) ? PALETTE_A : PALETTE_B; OUTREG(palette_reg + (regno << 2), (red << PALETTE_8_RED_SHIFT) | (green << PALETTE_8_GREEN_SHIFT) | (blue << PALETTE_8_BLUE_SHIFT)); } int intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw, int flag) { int i; #if VERBOSE > 0 DBG_MSG("intelfbhw_read_hw_state\n"); #endif if (!hw || !dinfo) return -1; /* Read in as much of the HW state as possible. */ hw->vga0_divisor = INREG(VGA0_DIVISOR); hw->vga1_divisor = INREG(VGA1_DIVISOR); hw->vga_pd = INREG(VGAPD); hw->dpll_a = INREG(DPLL_A); hw->dpll_b = INREG(DPLL_B); hw->fpa0 = INREG(FPA0); hw->fpa1 = INREG(FPA1); hw->fpb0 = INREG(FPB0); hw->fpb1 = INREG(FPB1); if (flag == 1) return flag; #if 0 /* This seems to be a problem with the 852GM/855GM */ for (i = 0; i < PALETTE_8_ENTRIES; i++) { hw->palette_a[i] = INREG(PALETTE_A + (i << 2)); hw->palette_b[i] = INREG(PALETTE_B + (i << 2)); } #endif if (flag == 2) return flag; hw->htotal_a = INREG(HTOTAL_A); hw->hblank_a = INREG(HBLANK_A); hw->hsync_a = INREG(HSYNC_A); hw->vtotal_a = INREG(VTOTAL_A); hw->vblank_a = INREG(VBLANK_A); hw->vsync_a = INREG(VSYNC_A); hw->src_size_a = INREG(SRC_SIZE_A); hw->bclrpat_a = INREG(BCLRPAT_A); hw->htotal_b = INREG(HTOTAL_B); hw->hblank_b = INREG(HBLANK_B); hw->hsync_b = INREG(HSYNC_B); hw->vtotal_b = INREG(VTOTAL_B); hw->vblank_b = INREG(VBLANK_B); hw->vsync_b = INREG(VSYNC_B); hw->src_size_b = INREG(SRC_SIZE_B); hw->bclrpat_b = INREG(BCLRPAT_B); if (flag == 3) return flag; hw->adpa = INREG(ADPA); hw->dvoa = INREG(DVOA); hw->dvob = INREG(DVOB); hw->dvoc = INREG(DVOC); hw->dvoa_srcdim = INREG(DVOA_SRCDIM); hw->dvob_srcdim = INREG(DVOB_SRCDIM); hw->dvoc_srcdim = INREG(DVOC_SRCDIM); hw->lvds = INREG(LVDS); if (flag == 4) return flag; hw->pipe_a_conf = INREG(PIPEACONF); hw->pipe_b_conf = INREG(PIPEBCONF); hw->disp_arb = INREG(DISPARB); if (flag == 5) return flag; hw->cursor_a_control = INREG(CURSOR_A_CONTROL); hw->cursor_b_control = INREG(CURSOR_B_CONTROL); hw->cursor_a_base = INREG(CURSOR_A_BASEADDR); hw->cursor_b_base = INREG(CURSOR_B_BASEADDR); if (flag == 6) return flag; for (i = 0; i < 4; i++) { hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2)); hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2)); } if (flag == 7) return flag; hw->cursor_size = INREG(CURSOR_SIZE); if (flag == 8) return flag; hw->disp_a_ctrl = INREG(DSPACNTR); hw->disp_b_ctrl = INREG(DSPBCNTR); hw->disp_a_base = INREG(DSPABASE); hw->disp_b_base = INREG(DSPBBASE); hw->disp_a_stride = INREG(DSPASTRIDE); hw->disp_b_stride = INREG(DSPBSTRIDE); if (flag == 9) return flag; hw->vgacntrl = INREG(VGACNTRL); if (flag == 10) return flag; hw->add_id = INREG(ADD_ID); if (flag == 11) return flag; for (i = 0; i < 7; i++) { hw->swf0x[i] = INREG(SWF00 + (i << 2)); hw->swf1x[i] = INREG(SWF10 + (i << 2)); if (i < 3) hw->swf3x[i] = INREG(SWF30 + (i << 2)); } for (i = 0; i < 8; i++) hw->fence[i] = INREG(FENCE + (i << 2)); hw->instpm = INREG(INSTPM); hw->mem_mode = INREG(MEM_MODE); hw->fw_blc_0 = INREG(FW_BLC_0); hw->fw_blc_1 = INREG(FW_BLC_1); hw->hwstam = INREG16(HWSTAM); hw->ier = INREG16(IER); hw->iir = INREG16(IIR); hw->imr = INREG16(IMR); return 0; } static int calc_vclock3(int index, int m, int n, int p) { if (p == 0 || n == 0) return 0; return plls[index].ref_clk * m / n / p; } static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, int lvds) { struct pll_min_max *pll = &plls[index]; u32 m, vco, p; m = (5 * (m1 + 2)) + (m2 + 2); n += 2; vco = pll->ref_clk * m / n; if (index == PLLS_I8xx) { p = ((p1 + 2) * (1 << (p2 + 1))); } else { p = ((p1) * (p2 ? 5 : 10)); } return vco / p; } #if REGDUMP static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll, int *o_p1, int *o_p2) { int p1, p2; if (IS_I9XX(dinfo)) { if (dpll & DPLL_P1_FORCE_DIV2) p1 = 1; else p1 = (dpll >> DPLL_P1_SHIFT) & 0xff; p1 = ffs(p1); p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK; } else { if (dpll & DPLL_P1_FORCE_DIV2) p1 = 0; else p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK; p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK; } *o_p1 = p1; *o_p2 = p2; } #endif void intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw) { #if REGDUMP int i, m1, m2, n, p1, p2; int index = dinfo->pll_index; DBG_MSG("intelfbhw_print_hw_state\n"); if (!hw) return; /* Read in as much of the HW state as possible. */ printk("hw state dump start\n"); printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor); printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor); printk(" VGAPD: 0x%08x\n", hw->vga_pd); n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2); printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", m1, m2, n, p1, p2); printk(" VGA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0)); n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2); printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", m1, m2, n, p1, p2); printk(" VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0)); printk(" DPLL_A: 0x%08x\n", hw->dpll_a); printk(" DPLL_B: 0x%08x\n", hw->dpll_b); printk(" FPA0: 0x%08x\n", hw->fpa0); printk(" FPA1: 0x%08x\n", hw->fpa1); printk(" FPB0: 0x%08x\n", hw->fpb0); printk(" FPB1: 0x%08x\n", hw->fpb1); n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2); printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", m1, m2, n, p1, p2); printk(" PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0)); n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK; m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK; m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK; intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2); printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n", m1, m2, n, p1, p2); printk(" PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0)); #if 0 printk(" PALETTE_A:\n"); for (i = 0; i < PALETTE_8_ENTRIES) printk(" %3d: 0x%08x\n", i, hw->palette_a[i]); printk(" PALETTE_B:\n"); for (i = 0; i < PALETTE_8_ENTRIES) printk(" %3d: 0x%08x\n", i, hw->palette_b[i]); #endif printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a); printk(" HBLANK_A: 0x%08x\n", hw->hblank_a); printk(" HSYNC_A: 0x%08x\n", hw->hsync_a); printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a); printk(" VBLANK_A: 0x%08x\n", hw->vblank_a); printk(" VSYNC_A: 0x%08x\n", hw->vsync_a); printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a); printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a); printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b); printk(" HBLANK_B: 0x%08x\n", hw->hblank_b); printk(" HSYNC_B: 0x%08x\n", hw->hsync_b); printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b); printk(" VBLANK_B: 0x%08x\n", hw->vblank_b); printk(" VSYNC_B: 0x%08x\n", hw->vsync_b); printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b); printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b); printk(" ADPA: 0x%08x\n", hw->adpa); printk(" DVOA: 0x%08x\n", hw->dvoa); printk(" DVOB: 0x%08x\n", hw->dvob); printk(" DVOC: 0x%08x\n", hw->dvoc); printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim); printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim); printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim); printk(" LVDS: 0x%08x\n", hw->lvds); printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf); printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf); printk(" DISPARB: 0x%08x\n", hw->disp_arb); printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control); printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control); printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base); printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base); printk(" CURSOR_A_PALETTE: "); for (i = 0; i < 4; i++) { printk("0x%08x", hw->cursor_a_palette[i]); if (i < 3) printk(", "); } printk("\n"); printk(" CURSOR_B_PALETTE: "); for (i = 0; i < 4; i++) { printk("0x%08x", hw->cursor_b_palette[i]); if (i < 3) printk(", "); } printk("\n"); printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size); printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl); printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl); printk(" DSPABASE: 0x%08x\n", hw->disp_a_base); printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base); printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride); printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride); printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl); printk(" ADD_ID: 0x%08x\n", hw->add_id); for (i = 0; i < 7; i++) { printk(" SWF0%d 0x%08x\n", i, hw->swf0x[i]); } for (i = 0; i < 7; i++) { printk(" SWF1%d 0x%08x\n", i, hw->swf1x[i]); } for (i = 0; i < 3; i++) { printk(" SWF3%d 0x%08x\n", i, hw->swf3x[i]); } for (i = 0; i < 8; i++) printk(" FENCE%d 0x%08x\n", i, hw->fence[i]); printk(" INSTPM 0x%08x\n", hw->instpm); printk(" MEM_MODE 0x%08x\n", hw->mem_mode); printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0); printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1); printk(" HWSTAM 0x%04x\n", hw->hwstam); printk(" IER 0x%04x\n", hw->ier); printk(" IIR 0x%04x\n", hw->iir); printk(" IMR 0x%04x\n", hw->imr); printk("hw state dump end\n"); #endif } /* Split the M parameter into M1 and M2. */ static int splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2) { int m1, m2; int testm; struct pll_min_max *pll = &plls[index]; /* no point optimising too much - brute force m */ for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) { for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) { testm = (5 * (m1 + 2)) + (m2 + 2); if (testm == m) { *retm1 = (unsigned int)m1; *retm2 = (unsigned int)m2; return 0; } } } return 1; } /* Split the P parameter into P1 and P2. */ static int splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2) { int p1, p2; struct pll_min_max *pll = &plls[index]; if (index == PLLS_I9xx) { p2 = (p % 10) ? 1 : 0; p1 = p / (p2 ? 5 : 10); *retp1 = (unsigned int)p1; *retp2 = (unsigned int)p2; return 0; } if (p % 4 == 0) p2 = 1; else p2 = 0; p1 = (p / (1 << (p2 + 1))) - 2; if (p % 4 == 0 && p1 < pll->min_p1) { p2 = 0; p1 = (p / (1 << (p2 + 1))) - 2; } if (p1 < pll->min_p1 || p1 > pll->max_p1 || (p1 + 2) * (1 << (p2 + 1)) != p) { return 1; } else { *retp1 = (unsigned int)p1; *retp2 = (unsigned int)p2; return 0; } } static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock) { u32 m1, m2, n, p1, p2, n1, testm; u32 f_vco, p, p_best = 0, m, f_out = 0; u32 err_max, err_target, err_best = 10000000; u32 n_best = 0, m_best = 0, f_best, f_err; u32 p_min, p_max, p_inc, div_max; struct pll_min_max *pll = &plls[index]; /* Accept 0.5% difference, but aim for 0.1% */ err_max = 5 * clock / 1000; err_target = clock / 1000; DBG_MSG("Clock is %d\n", clock); div_max = pll->max_vco / clock; p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi; p_min = p_inc; p_max = ROUND_DOWN_TO(div_max, p_inc); if (p_min < pll->min_p) p_min = pll->min_p; if (p_max > pll->max_p) p_max = pll->max_p; DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc); p = p_min; do { if (splitp(index, p, &p1, &p2)) { WRN_MSG("cannot split p = %d\n", p); p += p_inc; continue; } n = pll->min_n; f_vco = clock * p; do { m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk; if (m < pll->min_m) m = pll->min_m + 1; if (m > pll->max_m) m = pll->max_m - 1; for (testm = m - 1; testm <= m; testm++) { f_out = calc_vclock3(index, testm, n, p); if (splitm(index, testm, &m1, &m2)) { WRN_MSG("cannot split m = %d\n", testm); continue; } if (clock > f_out) f_err = clock - f_out; else/* slightly bias the error for bigger clocks */ f_err = f_out - clock + 1; if (f_err < err_best) { m_best = testm; n_best = n; p_best = p; f_best = f_out; err_best = f_err; } } n++; } while ((n <= pll->max_n) && (f_out >= clock)); p += p_inc; } while ((p <= p_max)); if (!m_best) { WRN_MSG("cannot find parameters for clock %d\n", clock); return 1; } m = m_best; n = n_best; p = p_best; splitm(index, m, &m1, &m2); splitp(index, p, &p1, &p2); n1 = n - 2; DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), " "f: %d (%d), VCO: %d\n", m, m1, m2, n, n1, p, p1, p2, calc_vclock3(index, m, n, p), calc_vclock(index, m1, m2, n1, p1, p2, 0), calc_vclock3(index, m, n, p) * p); *retm1 = m1; *retm2 = m2; *retn = n1; *retp1 = p1; *retp2 = p2; *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0); return 0; } static __inline__ int check_overflow(u32 value, u32 limit, const char *description) { if (value > limit) { WRN_MSG("%s value %d exceeds limit %d\n", description, value, limit); return 1; } return 0; } /* It is assumed that hw is filled in with the initial state information. */ int intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw, struct fb_var_screeninfo *var) { int pipe = PIPE_A; u32 *dpll, *fp0, *fp1; u32 m1, m2, n, p1, p2, clock_target, clock; u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive; u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive; u32 vsync_pol, hsync_pol; u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf; u32 stride_alignment; DBG_MSG("intelfbhw_mode_to_hw\n"); /* Disable VGA */ hw->vgacntrl |= VGA_DISABLE; /* Check whether pipe A or pipe B is enabled. */ if (hw->pipe_a_conf & PIPECONF_ENABLE) pipe = PIPE_A; else if (hw->pipe_b_conf & PIPECONF_ENABLE) pipe = PIPE_B; /* Set which pipe's registers will be set. */ if (pipe == PIPE_B) { dpll = &hw->dpll_b; fp0 = &hw->fpb0; fp1 = &hw->fpb1; hs = &hw->hsync_b; hb = &hw->hblank_b; ht = &hw->htotal_b; vs = &hw->vsync_b; vb = &hw->vblank_b; vt = &hw->vtotal_b; ss = &hw->src_size_b; pipe_conf = &hw->pipe_b_conf; } else { dpll = &hw->dpll_a; fp0 = &hw->fpa0; fp1 = &hw->fpa1; hs = &hw->hsync_a; hb = &hw->hblank_a; ht = &hw->htotal_a; vs = &hw->vsync_a; vb = &hw->vblank_a; vt = &hw->vtotal_a; ss = &hw->src_size_a; pipe_conf = &hw->pipe_a_conf; } /* Use ADPA register for sync control. */ hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY; /* sync polarity */ hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ? ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW; vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ? ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW; hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) | (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT)); hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) | (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT); /* Connect correct pipe to the analog port DAC */ hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT); hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT); /* Set DPMS state to D0 (on) */ hw->adpa &= ~ADPA_DPMS_CONTROL_MASK; hw->adpa |= ADPA_DPMS_D0; hw->adpa |= ADPA_DAC_ENABLE; *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE); *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK); *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0); /* Desired clock in kHz */ clock_target = 1000000000 / var->pixclock; if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2, &n, &p1, &p2, &clock)) { WRN_MSG("calc_pll_params failed\n"); return 1; } /* Check for overflow. */ if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter")) return 1; if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter")) return 1; if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter")) return 1; if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter")) return 1; if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter")) return 1; *dpll &= ~DPLL_P1_FORCE_DIV2; *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) | (DPLL_P1_MASK << DPLL_P1_SHIFT)); if (IS_I9XX(dinfo)) { *dpll |= (p2 << DPLL_I9XX_P2_SHIFT); *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT; } else { *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT); } *fp0 = (n << FP_N_DIVISOR_SHIFT) | (m1 << FP_M1_DIVISOR_SHIFT) | (m2 << FP_M2_DIVISOR_SHIFT); *fp1 = *fp0; hw->dvob &= ~PORT_ENABLE; hw->dvoc &= ~PORT_ENABLE; /* Use display plane A. */ hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE; hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE; hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK; switch (intelfb_var_to_depth(var)) { case 8: hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE; break; case 15: hw->disp_a_ctrl |= DISPPLANE_15_16BPP; break; case 16: hw->disp_a_ctrl |= DISPPLANE_16BPP; break; case 24: hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA; break; } hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT); hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT); /* Set CRTC registers. */ hactive = var->xres; hsync_start = hactive + var->right_margin; hsync_end = hsync_start + var->hsync_len; htotal = hsync_end + var->left_margin; hblank_start = hactive; hblank_end = htotal; DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n", hactive, hsync_start, hsync_end, htotal, hblank_start, hblank_end); vactive = var->yres; vsync_start = vactive + var->lower_margin; vsync_end = vsync_start + var->vsync_len; vtotal = vsync_end + var->upper_margin; vblank_start = vactive; vblank_end = vtotal; vblank_end = vsync_end + 1; DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n", vactive, vsync_start, vsync_end, vtotal, vblank_start, vblank_end); /* Adjust for register values, and check for overflow. */ hactive--; if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive")) return 1; hsync_start--; if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start")) return 1; hsync_end--; if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end")) return 1; htotal--; if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal")) return 1; hblank_start--; if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start")) return 1; hblank_end--; if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end")) return 1; vactive--; if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive")) return 1; vsync_start--; if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start")) return 1; vsync_end--; if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end")) return 1; vtotal--; if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal")) return 1; vblank_start--; if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start")) return 1; vblank_end--; if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end")) return 1; *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT); *hb = (hblank_start << HBLANKSTART_SHIFT) | (hblank_end << HSYNCEND_SHIFT); *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT); *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT); *vb = (vblank_start << VBLANKSTART_SHIFT) | (vblank_end << VSYNCEND_SHIFT); *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT); *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) | (vactive << SRC_SIZE_VERT_SHIFT); hw->disp_a_stride = dinfo->pitch; DBG_MSG("pitch is %d\n", hw->disp_a_stride); hw->disp_a_base = hw->disp_a_stride * var->yoffset + var->xoffset * var->bits_per_pixel / 8; hw->disp_a_base += dinfo->fb.offset << 12; /* Check stride alignment. */ stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX : STRIDE_ALIGNMENT; if (hw->disp_a_stride % stride_alignment != 0) { WRN_MSG("display stride %d has bad alignment %d\n", hw->disp_a_stride, stride_alignment); return 1; } /* Set the palette to 8-bit mode. */ *pipe_conf &= ~PIPECONF_GAMMA; if (var->vmode & FB_VMODE_INTERLACED) *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; else *pipe_conf &= ~PIPECONF_INTERLACE_MASK; return 0; } /* Program a (non-VGA) video mode. */ int intelfbhw_program_mode(struct intelfb_info *dinfo, const struct intelfb_hwstate *hw, int blank) { int pipe = PIPE_A; u32 tmp; const u32 *dpll, *fp0, *fp1, *pipe_conf; const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss; u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg; u32 hsync_reg, htotal_reg, hblank_reg; u32 vsync_reg, vtotal_reg, vblank_reg; u32 src_size_reg; u32 count, tmp_val[3]; /* Assume single pipe, display plane A, analog CRT. */ #if VERBOSE > 0 DBG_MSG("intelfbhw_program_mode\n"); #endif /* Disable VGA */ tmp = INREG(VGACNTRL); tmp |= VGA_DISABLE; OUTREG(VGACNTRL, tmp); /* Check whether pipe A or pipe B is enabled. */ if (hw->pipe_a_conf & PIPECONF_ENABLE) pipe = PIPE_A; else if (hw->pipe_b_conf & PIPECONF_ENABLE) pipe = PIPE_B; dinfo->pipe = pipe; if (pipe == PIPE_B) { dpll = &hw->dpll_b; fp0 = &hw->fpb0; fp1 = &hw->fpb1; pipe_conf = &hw->pipe_b_conf; hs = &hw->hsync_b; hb = &hw->hblank_b; ht = &hw->htotal_b; vs = &hw->vsync_b; vb = &hw->vblank_b; vt = &hw->vtotal_b; ss = &hw->src_size_b; dpll_reg = DPLL_B; fp0_reg = FPB0; fp1_reg = FPB1; pipe_conf_reg = PIPEBCONF; hsync_reg = HSYNC_B; htotal_reg = HTOTAL_B; hblank_reg = HBLANK_B; vsync_reg = VSYNC_B; vtotal_reg = VTOTAL_B; vblank_reg = VBLANK_B; src_size_reg = SRC_SIZE_B; } else { dpll = &hw->dpll_a; fp0 = &hw->fpa0; fp1 = &hw->fpa1; pipe_conf = &hw->pipe_a_conf; hs = &hw->hsync_a; hb = &hw->hblank_a; ht = &hw->htotal_a; vs = &hw->vsync_a; vb = &hw->vblank_a; vt = &hw->vtotal_a; ss = &hw->src_size_a; dpll_reg = DPLL_A; fp0_reg = FPA0; fp1_reg = FPA1; pipe_conf_reg = PIPEACONF; hsync_reg = HSYNC_A; htotal_reg = HTOTAL_A; hblank_reg = HBLANK_A; vsync_reg = VSYNC_A; vtotal_reg = VTOTAL_A; vblank_reg = VBLANK_A; src_size_reg = SRC_SIZE_A; } /* turn off pipe */ tmp = INREG(pipe_conf_reg); tmp &= ~PIPECONF_ENABLE; OUTREG(pipe_conf_reg, tmp); count = 0; do { tmp_val[count%3] = INREG(0x70000); if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2])) break; count++; udelay(1); if (count % 200 == 0) { tmp = INREG(pipe_conf_reg); tmp &= ~PIPECONF_ENABLE; OUTREG(pipe_conf_reg, tmp); } } while(count < 2000); OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE); /* Disable planes A and B. */ tmp = INREG(DSPACNTR); tmp &= ~DISPPLANE_PLANE_ENABLE; OUTREG(DSPACNTR, tmp); tmp = INREG(DSPBCNTR); tmp &= ~DISPPLANE_PLANE_ENABLE; OUTREG(DSPBCNTR, tmp); /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */ mdelay(20); OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE); OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE); OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE); /* Disable Sync */ tmp = INREG(ADPA); tmp &= ~ADPA_DPMS_CONTROL_MASK; tmp |= ADPA_DPMS_D3; OUTREG(ADPA, tmp); /* do some funky magic - xyzzy */ OUTREG(0x61204, 0xabcd0000); /* turn off PLL */ tmp = INREG(dpll_reg); tmp &= ~DPLL_VCO_ENABLE; OUTREG(dpll_reg, tmp); /* Set PLL parameters */ OUTREG(fp0_reg, *fp0); OUTREG(fp1_reg, *fp1); /* Enable PLL */ OUTREG(dpll_reg, *dpll); /* Set DVOs B/C */ OUTREG(DVOB, hw->dvob); OUTREG(DVOC, hw->dvoc); /* undo funky magic */ OUTREG(0x61204, 0x00000000); /* Set ADPA */ OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE); OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3); /* Set pipe parameters */ OUTREG(hsync_reg, *hs); OUTREG(hblank_reg, *hb); OUTREG(htotal_reg, *ht); OUTREG(vsync_reg, *vs); OUTREG(vblank_reg, *vb); OUTREG(vtotal_reg, *vt); OUTREG(src_size_reg, *ss); /* Enable pipe */ OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE); /* Enable sync */ tmp = INREG(ADPA); tmp &= ~ADPA_DPMS_CONTROL_MASK; tmp |= ADPA_DPMS_D0; OUTREG(ADPA, tmp); /* setup display plane */ if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) { /* * i830M errata: the display plane must be enabled * to allow writes to the other bits in the plane * control register. */ tmp = INREG(DSPACNTR); if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) { tmp |= DISPPLANE_PLANE_ENABLE; OUTREG(DSPACNTR, tmp); OUTREG(DSPACNTR, hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE); mdelay(1); } } OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE); OUTREG(DSPASTRIDE, hw->disp_a_stride); OUTREG(DSPABASE, hw->disp_a_base); /* Enable plane */ if (!blank) { tmp = INREG(DSPACNTR); tmp |= DISPPLANE_PLANE_ENABLE; OUTREG(DSPACNTR, tmp); OUTREG(DSPABASE, hw->disp_a_base); } return 0; } /* forward declarations */ static void refresh_ring(struct intelfb_info *dinfo); static void reset_state(struct intelfb_info *dinfo); static void do_flush(struct intelfb_info *dinfo); static u32 get_ring_space(struct intelfb_info *dinfo) { u32 ring_space; if (dinfo->ring_tail >= dinfo->ring_head) ring_space = dinfo->ring.size - (dinfo->ring_tail - dinfo->ring_head); else ring_space = dinfo->ring_head - dinfo->ring_tail; if (ring_space > RING_MIN_FREE) ring_space -= RING_MIN_FREE; else ring_space = 0; return ring_space; } static int wait_ring(struct intelfb_info *dinfo, int n) { int i = 0; unsigned long end; u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK; #if VERBOSE > 0 DBG_MSG("wait_ring: %d\n", n); #endif end = jiffies + (HZ * 3); while (dinfo->ring_space < n) { dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK; dinfo->ring_space = get_ring_space(dinfo); if (dinfo->ring_head != last_head) { end = jiffies + (HZ * 3); last_head = dinfo->ring_head; } i++; if (time_before(end, jiffies)) { if (!i) { /* Try again */ reset_state(dinfo); refresh_ring(dinfo); do_flush(dinfo); end = jiffies + (HZ * 3); i = 1; } else { WRN_MSG("ring buffer : space: %d wanted %d\n", dinfo->ring_space, n); WRN_MSG("lockup - turning off hardware " "acceleration\n"); dinfo->ring_lockup = 1; break; } } udelay(1); } return i; } static void do_flush(struct intelfb_info *dinfo) { START_RING(2); OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE); OUT_RING(MI_NOOP); ADVANCE_RING(); } void intelfbhw_do_sync(struct intelfb_info *dinfo) { #if VERBOSE > 0 DBG_MSG("intelfbhw_do_sync\n"); #endif if (!dinfo->accel) return; /* * Send a flush, then wait until the ring is empty. This is what * the XFree86 driver does, and actually it doesn't seem a lot worse * than the recommended method (both have problems). */ do_flush(dinfo); wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE); dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE; } static void refresh_ring(struct intelfb_info *dinfo) { #if VERBOSE > 0 DBG_MSG("refresh_ring\n"); #endif dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK; dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK; dinfo->ring_space = get_ring_space(dinfo); } static void reset_state(struct intelfb_info *dinfo) { int i; u32 tmp; #if VERBOSE > 0 DBG_MSG("reset_state\n"); #endif for (i = 0; i < FENCE_NUM; i++) OUTREG(FENCE + (i << 2), 0); /* Flush the ring buffer if it's enabled. */ tmp = INREG(PRI_RING_LENGTH); if (tmp & RING_ENABLE) { #if VERBOSE > 0 DBG_MSG("reset_state: ring was enabled\n"); #endif refresh_ring(dinfo); intelfbhw_do_sync(dinfo); DO_RING_IDLE(); } OUTREG(PRI_RING_LENGTH, 0); OUTREG(PRI_RING_HEAD, 0); OUTREG(PRI_RING_TAIL, 0); OUTREG(PRI_RING_START, 0); } /* Stop the 2D engine, and turn off the ring buffer. */ void intelfbhw_2d_stop(struct intelfb_info *dinfo) { #if VERBOSE > 0 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel, dinfo->ring_active); #endif if (!dinfo->accel) return; dinfo->ring_active = 0; reset_state(dinfo); } /* * Enable the ring buffer, and initialise the 2D engine. * It is assumed that the graphics engine has been stopped by previously * calling intelfb_2d_stop(). */ void intelfbhw_2d_start(struct intelfb_info *dinfo) { #if VERBOSE > 0 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n", dinfo->accel, dinfo->ring_active); #endif if (!dinfo->accel) return; /* Initialise the primary ring buffer. */ OUTREG(PRI_RING_LENGTH, 0); OUTREG(PRI_RING_TAIL, 0); OUTREG(PRI_RING_HEAD, 0); OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK); OUTREG(PRI_RING_LENGTH, ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) | RING_NO_REPORT | RING_ENABLE); refresh_ring(dinfo); dinfo->ring_active = 1; } /* 2D fillrect (solid fill or invert) */ void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h, u32 color, u32 pitch, u32 bpp, u32 rop) { u32 br00, br09, br13, br14, br16; #if VERBOSE > 0 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, " "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop); #endif br00 = COLOR_BLT_CMD; br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8)); br13 = (rop << ROP_SHIFT) | pitch; br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT); br16 = color; switch (bpp) { case 8: br13 |= COLOR_DEPTH_8; break; case 16: br13 |= COLOR_DEPTH_16; break; case 32: br13 |= COLOR_DEPTH_32; br00 |= WRITE_ALPHA | WRITE_RGB; break; } START_RING(6); OUT_RING(br00); OUT_RING(br13); OUT_RING(br14); OUT_RING(br09); OUT_RING(br16); OUT_RING(MI_NOOP); ADVANCE_RING(); #if VERBOSE > 0 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head, dinfo->ring_tail, dinfo->ring_space); #endif } void intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury, u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp) { u32 br00, br09, br11, br12, br13, br22, br23, br26; #if VERBOSE > 0 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n", curx, cury, dstx, dsty, w, h, pitch, bpp); #endif br00 = XY_SRC_COPY_BLT_CMD; br09 = dinfo->fb_start; br11 = (pitch << PITCH_SHIFT); br12 = dinfo->fb_start; br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT); br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT); br23 = ((dstx + w) << WIDTH_SHIFT) | ((dsty + h) << HEIGHT_SHIFT); br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT); switch (bpp) { case 8: br13 |= COLOR_DEPTH_8; break; case 16: br13 |= COLOR_DEPTH_16; break; case 32: br13 |= COLOR_DEPTH_32; br00 |= WRITE_ALPHA | WRITE_RGB; break; } START_RING(8); OUT_RING(br00); OUT_RING(br13); OUT_RING(br22); OUT_RING(br23); OUT_RING(br09); OUT_RING(br26); OUT_RING(br11); OUT_RING(br12); ADVANCE_RING(); } int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w, u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp) { int nbytes, ndwords, pad, tmp; u32 br00, br09, br13, br18, br19, br22, br23; int dat, ix, iy, iw; int i, j; #if VERBOSE > 0 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h); #endif /* size in bytes of a padded scanline */ nbytes = ROUND_UP_TO(w, 16) / 8; /* Total bytes of padded scanline data to write out. */ nbytes = nbytes * h; /* * Check if the glyph data exceeds the immediate mode limit. * It would take a large font (1K pixels) to hit this limit. */ if (nbytes > MAX_MONO_IMM_SIZE) return 0; /* Src data is packaged a dword (32-bit) at a time. */ ndwords = ROUND_UP_TO(nbytes, 4) / 4; /* * Ring has to be padded to a quad word. But because the command starts with 7 bytes, pad only if there is an even number of ndwords */ pad = !(ndwords % 2); tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords; br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp; br09 = dinfo->fb_start; br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT); br18 = bg; br19 = fg; br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT); br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT); switch (bpp) { case 8: br13 |= COLOR_DEPTH_8; break; case 16: br13 |= COLOR_DEPTH_16; break; case 32: br13 |= COLOR_DEPTH_32; br00 |= WRITE_ALPHA | WRITE_RGB; break; } START_RING(8 + ndwords); OUT_RING(br00); OUT_RING(br13); OUT_RING(br22); OUT_RING(br23); OUT_RING(br09); OUT_RING(br18); OUT_RING(br19); ix = iy = 0; iw = ROUND_UP_TO(w, 8) / 8; while (ndwords--) { dat = 0; for (j = 0; j < 2; ++j) { for (i = 0; i < 2; ++i) { if (ix != iw || i == 0) dat |= cdat[iy*iw + ix++] << (i+j*2)*8; } if (ix == iw && iy != (h-1)) { ix = 0; ++iy; } } OUT_RING(dat); } if (pad) OUT_RING(MI_NOOP); ADVANCE_RING(); return 1; } /* HW cursor functions. */ void intelfbhw_cursor_init(struct intelfb_info *dinfo) { u32 tmp; #if VERBOSE > 0 DBG_MSG("intelfbhw_cursor_init\n"); #endif if (dinfo->mobile || IS_I9XX(dinfo)) { if (!dinfo->cursor.physical) return; tmp = INREG(CURSOR_A_CONTROL); tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE | CURSOR_MEM_TYPE_LOCAL | (1 << CURSOR_PIPE_SELECT_SHIFT)); tmp |= CURSOR_MODE_DISABLE; OUTREG(CURSOR_A_CONTROL, tmp); OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); } else { tmp = INREG(CURSOR_CONTROL); tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE | CURSOR_ENABLE | CURSOR_STRIDE_MASK); tmp = CURSOR_FORMAT_3C; OUTREG(CURSOR_CONTROL, tmp); OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12); tmp = (64 << CURSOR_SIZE_H_SHIFT) | (64 << CURSOR_SIZE_V_SHIFT); OUTREG(CURSOR_SIZE, tmp); } } void intelfbhw_cursor_hide(struct intelfb_info *dinfo) { u32 tmp; #if VERBOSE > 0 DBG_MSG("intelfbhw_cursor_hide\n"); #endif dinfo->cursor_on = 0; if (dinfo->mobile || IS_I9XX(dinfo)) { if (!dinfo->cursor.physical) return; tmp = INREG(CURSOR_A_CONTROL); tmp &= ~CURSOR_MODE_MASK; tmp |= CURSOR_MODE_DISABLE; OUTREG(CURSOR_A_CONTROL, tmp); /* Flush changes */ OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); } else { tmp = INREG(CURSOR_CONTROL); tmp &= ~CURSOR_ENABLE; OUTREG(CURSOR_CONTROL, tmp); } } void intelfbhw_cursor_show(struct intelfb_info *dinfo) { u32 tmp; #if VERBOSE > 0 DBG_MSG("intelfbhw_cursor_show\n"); #endif dinfo->cursor_on = 1; if (dinfo->cursor_blanked) return; if (dinfo->mobile || IS_I9XX(dinfo)) { if (!dinfo->cursor.physical) return; tmp = INREG(CURSOR_A_CONTROL); tmp &= ~CURSOR_MODE_MASK; tmp |= CURSOR_MODE_64_4C_AX; OUTREG(CURSOR_A_CONTROL, tmp); /* Flush changes */ OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); } else { tmp = INREG(CURSOR_CONTROL); tmp |= CURSOR_ENABLE; OUTREG(CURSOR_CONTROL, tmp); } } void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y) { u32 tmp; #if VERBOSE > 0 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y); #endif /* * Sets the position. The coordinates are assumed to already * have any offset adjusted. Assume that the cursor is never * completely off-screen, and that x, y are always >= 0. */ tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) | ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT); OUTREG(CURSOR_A_POSITION, tmp); if (IS_I9XX(dinfo)) { OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical); } } void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg) { #if VERBOSE > 0 DBG_MSG("intelfbhw_cursor_setcolor\n"); #endif OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK); OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK); OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK); OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK); } void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height, u8 *data) { u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual; int i, j, w = width / 8; int mod = width % 8, t_mask, d_mask; #if VERBOSE > 0 DBG_MSG("intelfbhw_cursor_load\n"); #endif if (!dinfo->cursor.virtual) return; t_mask = 0xff >> mod; d_mask = ~(0xff >> mod); for (i = height; i--; ) { for (j = 0; j < w; j++) { writeb(0x00, addr + j); writeb(*(data++), addr + j+8); } if (mod) { writeb(t_mask, addr + j); writeb(*(data++) & d_mask, addr + j+8); } addr += 16; } } void intelfbhw_cursor_reset(struct intelfb_info *dinfo) { u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual; int i, j; #if VERBOSE > 0 DBG_MSG("intelfbhw_cursor_reset\n"); #endif if (!dinfo->cursor.virtual) return; for (i = 64; i--; ) { for (j = 0; j < 8; j++) { writeb(0xff, addr + j+0); writeb(0x00, addr + j+8); } addr += 16; } } static irqreturn_t intelfbhw_irq(int irq, void *dev_id) { int handled = 0; u16 tmp; struct intelfb_info *dinfo = (struct intelfb_info *)dev_id; spin_lock(&dinfo->int_lock); tmp = INREG16(IIR); tmp &= VSYNC_PIPE_A_INTERRUPT; if (tmp == 0) { spin_unlock(&dinfo->int_lock); return IRQ_RETVAL(handled); } OUTREG16(IIR, tmp); if (tmp & VSYNC_PIPE_A_INTERRUPT) { dinfo->vsync.count++; if (dinfo->vsync.pan_display) { dinfo->vsync.pan_display = 0; OUTREG(DSPABASE, dinfo->vsync.pan_offset); } wake_up_interruptible(&dinfo->vsync.wait); handled = 1; } spin_unlock(&dinfo->int_lock); return IRQ_RETVAL(handled); } int intelfbhw_enable_irq(struct intelfb_info *dinfo, int reenable) { if (!test_and_set_bit(0, &dinfo->irq_flags)) { if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED, "intelfb", dinfo)) { clear_bit(0, &dinfo->irq_flags); return -EINVAL; } spin_lock_irq(&dinfo->int_lock); OUTREG16(HWSTAM, 0xfffe); OUTREG16(IMR, 0x0); OUTREG16(IER, VSYNC_PIPE_A_INTERRUPT); spin_unlock_irq(&dinfo->int_lock); } else if (reenable) { u16 ier; spin_lock_irq(&dinfo->int_lock); ier = INREG16(IER); if ((ier & VSYNC_PIPE_A_INTERRUPT)) { DBG_MSG("someone disabled the IRQ [%08X]\n", ier); OUTREG(IER, VSYNC_PIPE_A_INTERRUPT); } spin_unlock_irq(&dinfo->int_lock); } return 0; } void intelfbhw_disable_irq(struct intelfb_info *dinfo) { u16 tmp; if (test_and_clear_bit(0, &dinfo->irq_flags)) { if (dinfo->vsync.pan_display) { dinfo->vsync.pan_display = 0; OUTREG(DSPABASE, dinfo->vsync.pan_offset); } spin_lock_irq(&dinfo->int_lock); OUTREG16(HWSTAM, 0xffff); OUTREG16(IMR, 0xffff); OUTREG16(IER, 0x0); tmp = INREG16(IIR); OUTREG16(IIR, tmp); spin_unlock_irq(&dinfo->int_lock); free_irq(dinfo->pdev->irq, dinfo); } } int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe) { struct intelfb_vsync *vsync; unsigned int count; int ret; switch (pipe) { case 0: vsync = &dinfo->vsync; break; default: return -ENODEV; } ret = intelfbhw_enable_irq(dinfo, 0); if (ret) { return ret; } count = vsync->count; ret = wait_event_interruptible_timeout(vsync->wait, count != vsync->count, HZ/10); if (ret < 0) { return ret; } if (ret == 0) { intelfbhw_enable_irq(dinfo, 1); DBG_MSG("wait_for_vsync timed out!\n"); return -ETIMEDOUT; } return 0; }