#include #include #include #include #include #include #include #include #include #include extern struct clock_event_device *global_clock_event; #define HPET_MASK CLOCKSOURCE_MASK(32) #define HPET_SHIFT 22 /* FSEC = 10^-15 NSEC = 10^-9 */ #define FSEC_PER_NSEC 1000000 /* * HPET address is set in acpi/boot.c, when an ACPI entry exists */ unsigned long hpet_address; static void __iomem * hpet_virt_address; static inline unsigned long hpet_readl(unsigned long a) { return readl(hpet_virt_address + a); } static inline void hpet_writel(unsigned long d, unsigned long a) { writel(d, hpet_virt_address + a); } /* * HPET command line enable / disable */ static int boot_hpet_disable; static int __init hpet_setup(char* str) { if (str) { if (!strncmp("disable", str, 7)) boot_hpet_disable = 1; } return 1; } __setup("hpet=", hpet_setup); static inline int is_hpet_capable(void) { return (!boot_hpet_disable && hpet_address); } /* * HPET timer interrupt enable / disable */ static int hpet_legacy_int_enabled; /** * is_hpet_enabled - check whether the hpet timer interrupt is enabled */ int is_hpet_enabled(void) { return is_hpet_capable() && hpet_legacy_int_enabled; } /* * When the hpet driver (/dev/hpet) is enabled, we need to reserve * timer 0 and timer 1 in case of RTC emulation. */ #ifdef CONFIG_HPET static void hpet_reserve_platform_timers(unsigned long id) { struct hpet __iomem *hpet = hpet_virt_address; struct hpet_timer __iomem *timer = &hpet->hpet_timers[2]; unsigned int nrtimers, i; struct hpet_data hd; nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; memset(&hd, 0, sizeof (hd)); hd.hd_phys_address = hpet_address; hd.hd_address = hpet_virt_address; hd.hd_nirqs = nrtimers; hd.hd_flags = HPET_DATA_PLATFORM; hpet_reserve_timer(&hd, 0); #ifdef CONFIG_HPET_EMULATE_RTC hpet_reserve_timer(&hd, 1); #endif hd.hd_irq[0] = HPET_LEGACY_8254; hd.hd_irq[1] = HPET_LEGACY_RTC; for (i = 2; i < nrtimers; timer++, i++) hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT; hpet_alloc(&hd); } #else static void hpet_reserve_platform_timers(unsigned long id) { } #endif /* * Common hpet info */ static unsigned long hpet_period; static void hpet_set_mode(enum clock_event_mode mode, struct clock_event_device *evt); static int hpet_next_event(unsigned long delta, struct clock_event_device *evt); /* * The hpet clock event device */ static struct clock_event_device hpet_clockevent = { .name = "hpet", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_mode = hpet_set_mode, .set_next_event = hpet_next_event, .shift = 32, .irq = 0, }; static void hpet_start_counter(void) { unsigned long cfg = hpet_readl(HPET_CFG); cfg &= ~HPET_CFG_ENABLE; hpet_writel(cfg, HPET_CFG); hpet_writel(0, HPET_COUNTER); hpet_writel(0, HPET_COUNTER + 4); cfg |= HPET_CFG_ENABLE; hpet_writel(cfg, HPET_CFG); } static void hpet_enable_int(void) { unsigned long cfg = hpet_readl(HPET_CFG); cfg |= HPET_CFG_LEGACY; hpet_writel(cfg, HPET_CFG); hpet_legacy_int_enabled = 1; } static void hpet_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { unsigned long cfg, cmp, now; uint64_t delta; switch(mode) { case CLOCK_EVT_MODE_PERIODIC: delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult; delta >>= hpet_clockevent.shift; now = hpet_readl(HPET_COUNTER); cmp = now + (unsigned long) delta; cfg = hpet_readl(HPET_T0_CFG); cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL | HPET_TN_32BIT; hpet_writel(cfg, HPET_T0_CFG); /* * The first write after writing TN_SETVAL to the * config register sets the counter value, the second * write sets the period. */ hpet_writel(cmp, HPET_T0_CMP); udelay(1); hpet_writel((unsigned long) delta, HPET_T0_CMP); break; case CLOCK_EVT_MODE_ONESHOT: cfg = hpet_readl(HPET_T0_CFG); cfg &= ~HPET_TN_PERIODIC; cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; hpet_writel(cfg, HPET_T0_CFG); break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: cfg = hpet_readl(HPET_T0_CFG); cfg &= ~HPET_TN_ENABLE; hpet_writel(cfg, HPET_T0_CFG); break; case CLOCK_EVT_MODE_RESUME: hpet_enable_int(); break; } } static int hpet_next_event(unsigned long delta, struct clock_event_device *evt) { unsigned long cnt; cnt = hpet_readl(HPET_COUNTER); cnt += delta; hpet_writel(cnt, HPET_T0_CMP); return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0; } /* * Clock source related code */ static cycle_t read_hpet(void) { return (cycle_t)hpet_readl(HPET_COUNTER); } static struct clocksource clocksource_hpet = { .name = "hpet", .rating = 250, .read = read_hpet, .mask = HPET_MASK, .shift = HPET_SHIFT, .flags = CLOCK_SOURCE_IS_CONTINUOUS, .resume = hpet_start_counter, }; /* * Try to setup the HPET timer */ int __init hpet_enable(void) { unsigned long id; uint64_t hpet_freq; u64 tmp; if (!is_hpet_capable()) return 0; hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE); /* * Read the period and check for a sane value: */ hpet_period = hpet_readl(HPET_PERIOD); if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD) goto out_nohpet; /* * The period is a femto seconds value. We need to calculate the * scaled math multiplication factor for nanosecond to hpet tick * conversion. */ hpet_freq = 1000000000000000ULL; do_div(hpet_freq, hpet_period); hpet_clockevent.mult = div_sc((unsigned long) hpet_freq, NSEC_PER_SEC, 32); /* Calculate the min / max delta */ hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, &hpet_clockevent); hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30, &hpet_clockevent); /* * Read the HPET ID register to retrieve the IRQ routing * information and the number of channels */ id = hpet_readl(HPET_ID); #ifdef CONFIG_HPET_EMULATE_RTC /* * The legacy routing mode needs at least two channels, tick timer * and the rtc emulation channel. */ if (!(id & HPET_ID_NUMBER)) goto out_nohpet; #endif /* Start the counter */ hpet_start_counter(); /* Initialize and register HPET clocksource * * hpet period is in femto seconds per cycle * so we need to convert this to ns/cyc units * aproximated by mult/2^shift * * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift * fsec/cyc * 1ns/1000000fsec * 2^shift = mult * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult * (fsec/cyc << shift)/1000000 = mult * (hpet_period << shift)/FSEC_PER_NSEC = mult */ tmp = (u64)hpet_period << HPET_SHIFT; do_div(tmp, FSEC_PER_NSEC); clocksource_hpet.mult = (u32)tmp; clocksource_register(&clocksource_hpet); if (id & HPET_ID_LEGSUP) { hpet_enable_int(); hpet_reserve_platform_timers(id); /* * Start hpet with the boot cpu mask and make it * global after the IO_APIC has been initialized. */ hpet_clockevent.cpumask =cpumask_of_cpu(0); clockevents_register_device(&hpet_clockevent); global_clock_event = &hpet_clockevent; return 1; } return 0; out_nohpet: iounmap(hpet_virt_address); hpet_virt_address = NULL; boot_hpet_disable = 1; return 0; } #ifdef CONFIG_HPET_EMULATE_RTC /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET * is enabled, we support RTC interrupt functionality in software. * RTC has 3 kinds of interrupts: * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock * is updated * 2) Alarm Interrupt - generate an interrupt at a specific time of day * 3) Periodic Interrupt - generate periodic interrupt, with frequencies * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) * (1) and (2) above are implemented using polling at a frequency of * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt * overhead. (DEFAULT_RTC_INT_FREQ) * For (3), we use interrupts at 64Hz or user specified periodic * frequency, whichever is higher. */ #include #include #define DEFAULT_RTC_INT_FREQ 64 #define DEFAULT_RTC_SHIFT 6 #define RTC_NUM_INTS 1 static unsigned long hpet_rtc_flags; static unsigned long hpet_prev_update_sec; static struct rtc_time hpet_alarm_time; static unsigned long hpet_pie_count; static unsigned long hpet_t1_cmp; static unsigned long hpet_default_delta; static unsigned long hpet_pie_delta; static unsigned long hpet_pie_limit; /* * Timer 1 for RTC emulation. We use one shot mode, as periodic mode * is not supported by all HPET implementations for timer 1. * * hpet_rtc_timer_init() is called when the rtc is initialized. */ int hpet_rtc_timer_init(void) { unsigned long cfg, cnt, delta, flags; if (!is_hpet_enabled()) return 0; if (!hpet_default_delta) { uint64_t clc; clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT; hpet_default_delta = (unsigned long) clc; } if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) delta = hpet_default_delta; else delta = hpet_pie_delta; local_irq_save(flags); cnt = delta + hpet_readl(HPET_COUNTER); hpet_writel(cnt, HPET_T1_CMP); hpet_t1_cmp = cnt; cfg = hpet_readl(HPET_T1_CFG); cfg &= ~HPET_TN_PERIODIC; cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; hpet_writel(cfg, HPET_T1_CFG); local_irq_restore(flags); return 1; } /* * The functions below are called from rtc driver. * Return 0 if HPET is not being used. * Otherwise do the necessary changes and return 1. */ int hpet_mask_rtc_irq_bit(unsigned long bit_mask) { if (!is_hpet_enabled()) return 0; hpet_rtc_flags &= ~bit_mask; return 1; } int hpet_set_rtc_irq_bit(unsigned long bit_mask) { unsigned long oldbits = hpet_rtc_flags; if (!is_hpet_enabled()) return 0; hpet_rtc_flags |= bit_mask; if (!oldbits) hpet_rtc_timer_init(); return 1; } int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) { if (!is_hpet_enabled()) return 0; hpet_alarm_time.tm_hour = hrs; hpet_alarm_time.tm_min = min; hpet_alarm_time.tm_sec = sec; return 1; } int hpet_set_periodic_freq(unsigned long freq) { uint64_t clc; if (!is_hpet_enabled()) return 0; if (freq <= DEFAULT_RTC_INT_FREQ) hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq; else { clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; do_div(clc, freq); clc >>= hpet_clockevent.shift; hpet_pie_delta = (unsigned long) clc; } return 1; } int hpet_rtc_dropped_irq(void) { return is_hpet_enabled(); } static void hpet_rtc_timer_reinit(void) { unsigned long cfg, delta; int lost_ints = -1; if (unlikely(!hpet_rtc_flags)) { cfg = hpet_readl(HPET_T1_CFG); cfg &= ~HPET_TN_ENABLE; hpet_writel(cfg, HPET_T1_CFG); return; } if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) delta = hpet_default_delta; else delta = hpet_pie_delta; /* * Increment the comparator value until we are ahead of the * current count. */ do { hpet_t1_cmp += delta; hpet_writel(hpet_t1_cmp, HPET_T1_CMP); lost_ints++; } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0); if (lost_ints) { if (hpet_rtc_flags & RTC_PIE) hpet_pie_count += lost_ints; if (printk_ratelimit()) printk(KERN_WARNING "rtc: lost %d interrupts\n", lost_ints); } } irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) { struct rtc_time curr_time; unsigned long rtc_int_flag = 0; hpet_rtc_timer_reinit(); if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) rtc_get_rtc_time(&curr_time); if (hpet_rtc_flags & RTC_UIE && curr_time.tm_sec != hpet_prev_update_sec) { rtc_int_flag = RTC_UF; hpet_prev_update_sec = curr_time.tm_sec; } if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) { rtc_int_flag |= RTC_PF; hpet_pie_count = 0; } if (hpet_rtc_flags & RTC_PIE && (curr_time.tm_sec == hpet_alarm_time.tm_sec) && (curr_time.tm_min == hpet_alarm_time.tm_min) && (curr_time.tm_hour == hpet_alarm_time.tm_hour)) rtc_int_flag |= RTC_AF; if (rtc_int_flag) { rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); rtc_interrupt(rtc_int_flag, dev_id); } return IRQ_HANDLED; } #endif