/* * Copyright (c) 2008 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include "core.h" #include "hw.h" #include "reg.h" #include "phy.h" #include "initvals.h" static void ath9k_hw_iqcal_collect(struct ath_hal *ah); static void ath9k_hw_iqcalibrate(struct ath_hal *ah, u8 numChains); static void ath9k_hw_adc_gaincal_collect(struct ath_hal *ah); static void ath9k_hw_adc_gaincal_calibrate(struct ath_hal *ah, u8 numChains); static void ath9k_hw_adc_dccal_collect(struct ath_hal *ah); static void ath9k_hw_adc_dccal_calibrate(struct ath_hal *ah, u8 numChains); static const u8 CLOCK_RATE[] = { 40, 80, 22, 44, 88, 40 }; static const int16_t NOISE_FLOOR[] = { -96, -93, -98, -96, -93, -96 }; static const struct hal_percal_data iq_cal_multi_sample = { IQ_MISMATCH_CAL, MAX_CAL_SAMPLES, PER_MIN_LOG_COUNT, ath9k_hw_iqcal_collect, ath9k_hw_iqcalibrate }; static const struct hal_percal_data iq_cal_single_sample = { IQ_MISMATCH_CAL, MIN_CAL_SAMPLES, PER_MAX_LOG_COUNT, ath9k_hw_iqcal_collect, ath9k_hw_iqcalibrate }; static const struct hal_percal_data adc_gain_cal_multi_sample = { ADC_GAIN_CAL, MAX_CAL_SAMPLES, PER_MIN_LOG_COUNT, ath9k_hw_adc_gaincal_collect, ath9k_hw_adc_gaincal_calibrate }; static const struct hal_percal_data adc_gain_cal_single_sample = { ADC_GAIN_CAL, MIN_CAL_SAMPLES, PER_MAX_LOG_COUNT, ath9k_hw_adc_gaincal_collect, ath9k_hw_adc_gaincal_calibrate }; static const struct hal_percal_data adc_dc_cal_multi_sample = { ADC_DC_CAL, MAX_CAL_SAMPLES, PER_MIN_LOG_COUNT, ath9k_hw_adc_dccal_collect, ath9k_hw_adc_dccal_calibrate }; static const struct hal_percal_data adc_dc_cal_single_sample = { ADC_DC_CAL, MIN_CAL_SAMPLES, PER_MAX_LOG_COUNT, ath9k_hw_adc_dccal_collect, ath9k_hw_adc_dccal_calibrate }; static const struct hal_percal_data adc_init_dc_cal = { ADC_DC_INIT_CAL, MIN_CAL_SAMPLES, INIT_LOG_COUNT, ath9k_hw_adc_dccal_collect, ath9k_hw_adc_dccal_calibrate }; static struct ath9k_rate_table ar5416_11a_table = { 8, {0}, { {true, PHY_OFDM, 6000, 0x0b, 0x00, (0x80 | 12), 0}, {true, PHY_OFDM, 9000, 0x0f, 0x00, 18, 0}, {true, PHY_OFDM, 12000, 0x0a, 0x00, (0x80 | 24), 2}, {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 2}, {true, PHY_OFDM, 24000, 0x09, 0x00, (0x80 | 48), 4}, {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 4}, {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 4}, {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 4} }, }; static struct ath9k_rate_table ar5416_11b_table = { 4, {0}, { {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0}, {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1}, {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 1}, {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 1} }, }; static struct ath9k_rate_table ar5416_11g_table = { 12, {0}, { {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0}, {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1}, {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 2}, {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 3}, {false, PHY_OFDM, 6000, 0x0b, 0x00, 12, 4}, {false, PHY_OFDM, 9000, 0x0f, 0x00, 18, 4}, {true, PHY_OFDM, 12000, 0x0a, 0x00, 24, 6}, {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 6}, {true, PHY_OFDM, 24000, 0x09, 0x00, 48, 8}, {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 8}, {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 8}, {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 8} }, }; static struct ath9k_rate_table ar5416_11ng_table = { 28, {0}, { {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0}, {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1}, {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 2}, {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 3}, {false, PHY_OFDM, 6000, 0x0b, 0x00, 12, 4}, {false, PHY_OFDM, 9000, 0x0f, 0x00, 18, 4}, {true, PHY_OFDM, 12000, 0x0a, 0x00, 24, 6}, {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 6}, {true, PHY_OFDM, 24000, 0x09, 0x00, 48, 8}, {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 8}, {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 8}, {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 8}, {true, PHY_HT, 6500, 0x80, 0x00, 0, 4}, {true, PHY_HT, 13000, 0x81, 0x00, 1, 6}, {true, PHY_HT, 19500, 0x82, 0x00, 2, 6}, {true, PHY_HT, 26000, 0x83, 0x00, 3, 8}, {true, PHY_HT, 39000, 0x84, 0x00, 4, 8}, {true, PHY_HT, 52000, 0x85, 0x00, 5, 8}, {true, PHY_HT, 58500, 0x86, 0x00, 6, 8}, {true, PHY_HT, 65000, 0x87, 0x00, 7, 8}, {true, PHY_HT, 13000, 0x88, 0x00, 8, 4}, {true, PHY_HT, 26000, 0x89, 0x00, 9, 6}, {true, PHY_HT, 39000, 0x8a, 0x00, 10, 6}, {true, PHY_HT, 52000, 0x8b, 0x00, 11, 8}, {true, PHY_HT, 78000, 0x8c, 0x00, 12, 8}, {true, PHY_HT, 104000, 0x8d, 0x00, 13, 8}, {true, PHY_HT, 117000, 0x8e, 0x00, 14, 8}, {true, PHY_HT, 130000, 0x8f, 0x00, 15, 8}, }, }; static struct ath9k_rate_table ar5416_11na_table = { 24, {0}, { {true, PHY_OFDM, 6000, 0x0b, 0x00, (0x80 | 12), 0}, {true, PHY_OFDM, 9000, 0x0f, 0x00, 18, 0}, {true, PHY_OFDM, 12000, 0x0a, 0x00, (0x80 | 24), 2}, {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 2}, {true, PHY_OFDM, 24000, 0x09, 0x00, (0x80 | 48), 4}, {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 4}, {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 4}, {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 4}, {true, PHY_HT, 6500, 0x80, 0x00, 0, 0}, {true, PHY_HT, 13000, 0x81, 0x00, 1, 2}, {true, PHY_HT, 19500, 0x82, 0x00, 2, 2}, {true, PHY_HT, 26000, 0x83, 0x00, 3, 4}, {true, PHY_HT, 39000, 0x84, 0x00, 4, 4}, {true, PHY_HT, 52000, 0x85, 0x00, 5, 4}, {true, PHY_HT, 58500, 0x86, 0x00, 6, 4}, {true, PHY_HT, 65000, 0x87, 0x00, 7, 4}, {true, PHY_HT, 13000, 0x88, 0x00, 8, 0}, {true, PHY_HT, 26000, 0x89, 0x00, 9, 2}, {true, PHY_HT, 39000, 0x8a, 0x00, 10, 2}, {true, PHY_HT, 52000, 0x8b, 0x00, 11, 4}, {true, PHY_HT, 78000, 0x8c, 0x00, 12, 4}, {true, PHY_HT, 104000, 0x8d, 0x00, 13, 4}, {true, PHY_HT, 117000, 0x8e, 0x00, 14, 4}, {true, PHY_HT, 130000, 0x8f, 0x00, 15, 4}, }, }; static enum wireless_mode ath9k_hw_chan2wmode(struct ath_hal *ah, const struct ath9k_channel *chan) { if (IS_CHAN_CCK(chan)) return ATH9K_MODE_11A; if (IS_CHAN_G(chan)) return ATH9K_MODE_11G; return ATH9K_MODE_11A; } static bool ath9k_hw_wait(struct ath_hal *ah, u32 reg, u32 mask, u32 val) { int i; for (i = 0; i < (AH_TIMEOUT / AH_TIME_QUANTUM); i++) { if ((REG_READ(ah, reg) & mask) == val) return true; udelay(AH_TIME_QUANTUM); } DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO, "%s: timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", __func__, reg, REG_READ(ah, reg), mask, val); return false; } static bool ath9k_hw_eeprom_read(struct ath_hal *ah, u32 off, u16 *data) { (void) REG_READ(ah, AR5416_EEPROM_OFFSET + (off << AR5416_EEPROM_S)); if (!ath9k_hw_wait(ah, AR_EEPROM_STATUS_DATA, AR_EEPROM_STATUS_DATA_BUSY | AR_EEPROM_STATUS_DATA_PROT_ACCESS, 0)) { return false; } *data = MS(REG_READ(ah, AR_EEPROM_STATUS_DATA), AR_EEPROM_STATUS_DATA_VAL); return true; } static int ath9k_hw_flash_map(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); ahp->ah_cal_mem = ioremap(AR5416_EEPROM_START_ADDR, AR5416_EEPROM_MAX); if (!ahp->ah_cal_mem) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "%s: cannot remap eeprom region \n", __func__); return -EIO; } return 0; } static bool ath9k_hw_flash_read(struct ath_hal *ah, u32 off, u16 *data) { struct ath_hal_5416 *ahp = AH5416(ah); *data = ioread16(ahp->ah_cal_mem + off); return true; } static void ath9k_hw_read_revisions(struct ath_hal *ah) { u32 val; val = REG_READ(ah, AR_SREV) & AR_SREV_ID; if (val == 0xFF) { val = REG_READ(ah, AR_SREV); ah->ah_macVersion = (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; ah->ah_macRev = MS(val, AR_SREV_REVISION2); ah->ah_isPciExpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; } else { if (!AR_SREV_9100(ah)) ah->ah_macVersion = MS(val, AR_SREV_VERSION); ah->ah_macRev = val & AR_SREV_REVISION; if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE) ah->ah_isPciExpress = true; } } u32 ath9k_hw_reverse_bits(u32 val, u32 n) { u32 retval; int i; for (i = 0, retval = 0; i < n; i++) { retval = (retval << 1) | (val & 1); val >>= 1; } return retval; } static void ath9k_hw_set_defaults(struct ath_hal *ah) { int i; ah->ah_config.dma_beacon_response_time = 2; ah->ah_config.sw_beacon_response_time = 10; ah->ah_config.additional_swba_backoff = 0; ah->ah_config.ack_6mb = 0x0; ah->ah_config.cwm_ignore_extcca = 0; ah->ah_config.pcie_powersave_enable = 0; ah->ah_config.pcie_l1skp_enable = 0; ah->ah_config.pcie_clock_req = 0; ah->ah_config.pcie_power_reset = 0x100; ah->ah_config.pcie_restore = 0; ah->ah_config.pcie_waen = 0; ah->ah_config.analog_shiftreg = 1; ah->ah_config.ht_enable = 1; ah->ah_config.ofdm_trig_low = 200; ah->ah_config.ofdm_trig_high = 500; ah->ah_config.cck_trig_high = 200; ah->ah_config.cck_trig_low = 100; ah->ah_config.enable_ani = 1; ah->ah_config.noise_immunity_level = 4; ah->ah_config.ofdm_weaksignal_det = 1; ah->ah_config.cck_weaksignal_thr = 0; ah->ah_config.spur_immunity_level = 2; ah->ah_config.firstep_level = 0; ah->ah_config.rssi_thr_high = 40; ah->ah_config.rssi_thr_low = 7; ah->ah_config.diversity_control = 0; ah->ah_config.antenna_switch_swap = 0; for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { ah->ah_config.spurchans[i][0] = AR_NO_SPUR; ah->ah_config.spurchans[i][1] = AR_NO_SPUR; } ah->ah_config.intr_mitigation = 0; } static void ath9k_hw_override_ini(struct ath_hal *ah, struct ath9k_channel *chan) { if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_9280_10_OR_LATER(ah)) return; REG_WRITE(ah, 0x9800 + (651 << 2), 0x11); } static void ath9k_hw_init_bb(struct ath_hal *ah, struct ath9k_channel *chan) { u32 synthDelay; synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; if (IS_CHAN_CCK(chan)) synthDelay = (4 * synthDelay) / 22; else synthDelay /= 10; REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); udelay(synthDelay + BASE_ACTIVATE_DELAY); } static void ath9k_hw_init_interrupt_masks(struct ath_hal *ah, enum ath9k_opmode opmode) { struct ath_hal_5416 *ahp = AH5416(ah); ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN | AR_IMR_RXERR | AR_IMR_RXORN | AR_IMR_BCNMISC; if (ahp->ah_intrMitigation) ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; else ahp->ah_maskReg |= AR_IMR_RXOK; ahp->ah_maskReg |= AR_IMR_TXOK; if (opmode == ATH9K_M_HOSTAP) ahp->ah_maskReg |= AR_IMR_MIB; REG_WRITE(ah, AR_IMR, ahp->ah_maskReg); REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT); if (!AR_SREV_9100(ah)) { REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); } } static void ath9k_hw_init_qos(struct ath_hal *ah) { REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); REG_WRITE(ah, AR_QOS_NO_ACK, SM(2, AR_QOS_NO_ACK_TWO_BIT) | SM(5, AR_QOS_NO_ACK_BIT_OFF) | SM(0, AR_QOS_NO_ACK_BYTE_OFF)); REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); } static void ath9k_hw_analog_shift_rmw(struct ath_hal *ah, u32 reg, u32 mask, u32 shift, u32 val) { u32 regVal; regVal = REG_READ(ah, reg) & ~mask; regVal |= (val << shift) & mask; REG_WRITE(ah, reg, regVal); if (ah->ah_config.analog_shiftreg) udelay(100); return; } static u8 ath9k_hw_get_num_ant_config(struct ath_hal_5416 *ahp, enum ieee80211_band freq_band) { struct ar5416_eeprom *eep = &ahp->ah_eeprom; struct modal_eep_header *pModal = &(eep->modalHeader[IEEE80211_BAND_5GHZ == freq_band]); struct base_eep_header *pBase = &eep->baseEepHeader; u8 num_ant_config; num_ant_config = 1; if (pBase->version >= 0x0E0D) if (pModal->useAnt1) num_ant_config += 1; return num_ant_config; } static int ath9k_hw_get_eeprom_antenna_cfg(struct ath_hal_5416 *ahp, struct ath9k_channel *chan, u8 index, u16 *config) { struct ar5416_eeprom *eep = &ahp->ah_eeprom; struct modal_eep_header *pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]); struct base_eep_header *pBase = &eep->baseEepHeader; switch (index) { case 0: *config = pModal->antCtrlCommon & 0xFFFF; return 0; case 1: if (pBase->version >= 0x0E0D) { if (pModal->useAnt1) { *config = ((pModal->antCtrlCommon & 0xFFFF0000) >> 16); return 0; } } break; default: break; } return -EINVAL; } static inline bool ath9k_hw_nvram_read(struct ath_hal *ah, u32 off, u16 *data) { if (ath9k_hw_use_flash(ah)) return ath9k_hw_flash_read(ah, off, data); else return ath9k_hw_eeprom_read(ah, off, data); } static bool ath9k_hw_fill_eeprom(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom *eep = &ahp->ah_eeprom; u16 *eep_data; int addr, ar5416_eep_start_loc = 0; if (!ath9k_hw_use_flash(ah)) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "%s: Reading from EEPROM, not flash\n", __func__); ar5416_eep_start_loc = 256; } if (AR_SREV_9100(ah)) ar5416_eep_start_loc = 256; eep_data = (u16 *) eep; for (addr = 0; addr < sizeof(struct ar5416_eeprom) / sizeof(u16); addr++) { if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc, eep_data)) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "%s: Unable to read eeprom region \n", __func__); return false; } eep_data++; } return true; } /* XXX: Clean me up, make me more legible */ static bool ath9k_hw_eeprom_set_board_values(struct ath_hal *ah, struct ath9k_channel *chan) { struct modal_eep_header *pModal; int i, regChainOffset; struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom *eep = &ahp->ah_eeprom; u8 txRxAttenLocal; u16 ant_config; pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]); txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44; ath9k_hw_get_eeprom_antenna_cfg(ahp, chan, 1, &ant_config); REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config); for (i = 0; i < AR5416_MAX_CHAINS; i++) { if (AR_SREV_9280(ah)) { if (i >= 2) break; } if (AR_SREV_5416_V20_OR_LATER(ah) && (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) && (i != 0)) regChainOffset = (i == 1) ? 0x2000 : 0x1000; else regChainOffset = i * 0x1000; REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]); REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset, (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_3) { txRxAttenLocal = pModal->txRxAttenCh[i]; if (AR_SREV_9280_10_OR_LATER(ah)) { REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal-> bswMargin[i]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal-> bswAtten[i]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal-> xatten2Margin[i]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal-> xatten2Db[i]); } else { REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset, (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) | SM(pModal-> bswMargin[i], AR_PHY_GAIN_2GHZ_BSW_MARGIN)); REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset, (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) | SM(pModal->bswAtten[i], AR_PHY_GAIN_2GHZ_BSW_ATTEN)); } } if (AR_SREV_9280_10_OR_LATER(ah)) { REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]); } else { REG_WRITE(ah, AR_PHY_RXGAIN + regChainOffset, (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) & ~AR_PHY_RXGAIN_TXRX_ATTEN) | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN)); REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset, (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) | SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN)); } } } if (AR_SREV_9280_10_OR_LATER(ah)) { if (IS_CHAN_2GHZ(chan)) { ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, AR_AN_RF2G1_CH0_OB_S, pModal->ob); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, AR_AN_RF2G1_CH0_DB_S, pModal->db); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, AR_AN_RF2G1_CH1_OB_S, pModal->ob_ch1); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, AR_AN_RF2G1_CH1_DB_S, pModal->db_ch1); } else { ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, AR_AN_RF5G1_CH0_OB5_S, pModal->ob); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, AR_AN_RF5G1_CH0_DB5_S, pModal->db); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, AR_AN_RF5G1_CH1_OB5_S, pModal->ob_ch1); ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, AR_AN_RF5G1_CH1_DB5_S, pModal->db_ch1); } ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, AR_AN_TOP2_XPABIAS_LVL_S, pModal->xpaBiasLvl); ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS, AR_AN_TOP2_LOCALBIAS_S, pModal->local_bias); DPRINTF(ah->ah_sc, ATH_DBG_ANY, "ForceXPAon: %d\n", pModal->force_xpaon); REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG, pModal->force_xpaon); } REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling); REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize); if (!AR_SREV_9280_10_OR_LATER(ah)) REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize); REG_WRITE(ah, AR_PHY_RF_CTL4, SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn); if (AR_SREV_9280_10_OR_LATER(ah)) { REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, pModal->thresh62); REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62); } else { REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62, pModal->thresh62); REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62, pModal->thresh62); } if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_2) { REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart); REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn); } if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_3) { if (IS_CHAN_HT40(chan)) REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40); } return true; } static int ath9k_hw_check_eeprom(struct ath_hal *ah) { u32 sum = 0, el; u16 *eepdata; int i; struct ath_hal_5416 *ahp = AH5416(ah); bool need_swap = false; struct ar5416_eeprom *eep = (struct ar5416_eeprom *) &ahp->ah_eeprom; if (!ath9k_hw_use_flash(ah)) { u16 magic, magic2; int addr; if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "%s: Reading Magic # failed\n", __func__); return false; } DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "%s: Read Magic = 0x%04X\n", __func__, magic); if (magic != AR5416_EEPROM_MAGIC) { magic2 = swab16(magic); if (magic2 == AR5416_EEPROM_MAGIC) { need_swap = true; eepdata = (u16 *) (&ahp->ah_eeprom); for (addr = 0; addr < sizeof(struct ar5416_eeprom) / sizeof(u16); addr++) { u16 temp; temp = swab16(*eepdata); *eepdata = temp; eepdata++; DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "0x%04X ", *eepdata); if (((addr + 1) % 6) == 0) DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "\n"); } } else { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "Invalid EEPROM Magic. " "endianness missmatch.\n"); return -EINVAL; } } } DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n", need_swap ? "True" : "False"); if (need_swap) el = swab16(ahp->ah_eeprom.baseEepHeader.length); else el = ahp->ah_eeprom.baseEepHeader.length; if (el > sizeof(struct ar5416_eeprom)) el = sizeof(struct ar5416_eeprom) / sizeof(u16); else el = el / sizeof(u16); eepdata = (u16 *) (&ahp->ah_eeprom); for (i = 0; i < el; i++) sum ^= *eepdata++; if (need_swap) { u32 integer, j; u16 word; DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "EEPROM Endianness is not native.. Changing \n"); word = swab16(eep->baseEepHeader.length); eep->baseEepHeader.length = word; word = swab16(eep->baseEepHeader.checksum); eep->baseEepHeader.checksum = word; word = swab16(eep->baseEepHeader.version); eep->baseEepHeader.version = word; word = swab16(eep->baseEepHeader.regDmn[0]); eep->baseEepHeader.regDmn[0] = word; word = swab16(eep->baseEepHeader.regDmn[1]); eep->baseEepHeader.regDmn[1] = word; word = swab16(eep->baseEepHeader.rfSilent); eep->baseEepHeader.rfSilent = word; word = swab16(eep->baseEepHeader.blueToothOptions); eep->baseEepHeader.blueToothOptions = word; word = swab16(eep->baseEepHeader.deviceCap); eep->baseEepHeader.deviceCap = word; for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) { struct modal_eep_header *pModal = &eep->modalHeader[j]; integer = swab32(pModal->antCtrlCommon); pModal->antCtrlCommon = integer; for (i = 0; i < AR5416_MAX_CHAINS; i++) { integer = swab32(pModal->antCtrlChain[i]); pModal->antCtrlChain[i] = integer; } for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) { word = swab16(pModal->spurChans[i].spurChan); pModal->spurChans[i].spurChan = word; } } } if (sum != 0xffff || ar5416_get_eep_ver(ahp) != AR5416_EEP_VER || ar5416_get_eep_rev(ahp) < AR5416_EEP_NO_BACK_VER) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "Bad EEPROM checksum 0x%x or revision 0x%04x\n", sum, ar5416_get_eep_ver(ahp)); return -EINVAL; } return 0; } static bool ath9k_hw_chip_test(struct ath_hal *ah) { u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) }; u32 regHold[2]; u32 patternData[4] = { 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999 }; int i, j; for (i = 0; i < 2; i++) { u32 addr = regAddr[i]; u32 wrData, rdData; regHold[i] = REG_READ(ah, addr); for (j = 0; j < 0x100; j++) { wrData = (j << 16) | j; REG_WRITE(ah, addr, wrData); rdData = REG_READ(ah, addr); if (rdData != wrData) { DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "%s: address test failed " "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", __func__, addr, wrData, rdData); return false; } } for (j = 0; j < 4; j++) { wrData = patternData[j]; REG_WRITE(ah, addr, wrData); rdData = REG_READ(ah, addr); if (wrData != rdData) { DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "%s: address test failed " "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", __func__, addr, wrData, rdData); return false; } } REG_WRITE(ah, regAddr[i], regHold[i]); } udelay(100); return true; } u32 ath9k_hw_getrxfilter(struct ath_hal *ah) { u32 bits = REG_READ(ah, AR_RX_FILTER); u32 phybits = REG_READ(ah, AR_PHY_ERR); if (phybits & AR_PHY_ERR_RADAR) bits |= ATH9K_RX_FILTER_PHYRADAR; if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) bits |= ATH9K_RX_FILTER_PHYERR; return bits; } void ath9k_hw_setrxfilter(struct ath_hal *ah, u32 bits) { u32 phybits; REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR); phybits = 0; if (bits & ATH9K_RX_FILTER_PHYRADAR) phybits |= AR_PHY_ERR_RADAR; if (bits & ATH9K_RX_FILTER_PHYERR) phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; REG_WRITE(ah, AR_PHY_ERR, phybits); if (phybits) REG_WRITE(ah, AR_RXCFG, REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA); else REG_WRITE(ah, AR_RXCFG, REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA); } bool ath9k_hw_setcapability(struct ath_hal *ah, enum ath9k_capability_type type, u32 capability, u32 setting, int *status) { struct ath_hal_5416 *ahp = AH5416(ah); u32 v; switch (type) { case ATH9K_CAP_TKIP_MIC: if (setting) ahp->ah_staId1Defaults |= AR_STA_ID1_CRPT_MIC_ENABLE; else ahp->ah_staId1Defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE; return true; case ATH9K_CAP_DIVERSITY: v = REG_READ(ah, AR_PHY_CCK_DETECT); if (setting) v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; else v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; REG_WRITE(ah, AR_PHY_CCK_DETECT, v); return true; case ATH9K_CAP_MCAST_KEYSRCH: if (setting) ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH; else ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH; return true; case ATH9K_CAP_TSF_ADJUST: if (setting) ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF; else ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF; return true; default: return false; } } void ath9k_hw_dmaRegDump(struct ath_hal *ah) { u32 val[ATH9K_NUM_DMA_DEBUG_REGS]; int qcuOffset = 0, dcuOffset = 0; u32 *qcuBase = &val[0], *dcuBase = &val[4]; int i; REG_WRITE(ah, AR_MACMISC, ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) | (AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S))); DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "Raw DMA Debug values:\n"); for (i = 0; i < ATH9K_NUM_DMA_DEBUG_REGS; i++) { if (i % 4 == 0) DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n"); val[i] = REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u32))); DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "%d: %08x ", i, val[i]); } DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n\n"); DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n"); for (i = 0; i < ATH9K_NUM_QUEUES; i++, qcuOffset += 4, dcuOffset += 5) { if (i == 8) { qcuOffset = 0; qcuBase++; } if (i == 6) { dcuOffset = 0; dcuBase++; } DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "%2d %2x %1x %2x %2x\n", i, (*qcuBase & (0x7 << qcuOffset)) >> qcuOffset, (*qcuBase & (0x8 << qcuOffset)) >> (qcuOffset + 3), val[2] & (0x7 << (i * 3)) >> (i * 3), (*dcuBase & (0x1f << dcuOffset)) >> dcuOffset); } DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n"); DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "qcu_stitch state: %2x qcu_fetch state: %2x\n", (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22); DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "qcu_complete state: %2x dcu_complete state: %2x\n", (val[3] & 0x1c000000) >> 26, (val[6] & 0x3)); DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "dcu_arb state: %2x dcu_fp state: %2x\n", (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27); DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "chan_idle_dur: %3d chan_idle_dur_valid: %1d\n", (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10); DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "txfifo_valid_0: %1d txfifo_valid_1: %1d\n", (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12); DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "txfifo_dcu_num_0: %2d txfifo_dcu_num_1: %2d\n", (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17); DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "pcu observe 0x%x \n", REG_READ(ah, AR_OBS_BUS_1)); DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "AR_CR 0x%x \n", REG_READ(ah, AR_CR)); } u32 ath9k_hw_GetMibCycleCountsPct(struct ath_hal *ah, u32 *rxc_pcnt, u32 *rxf_pcnt, u32 *txf_pcnt) { static u32 cycles, rx_clear, rx_frame, tx_frame; u32 good = 1; u32 rc = REG_READ(ah, AR_RCCNT); u32 rf = REG_READ(ah, AR_RFCNT); u32 tf = REG_READ(ah, AR_TFCNT); u32 cc = REG_READ(ah, AR_CCCNT); if (cycles == 0 || cycles > cc) { DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: cycle counter wrap. ExtBusy = 0\n", __func__); good = 0; } else { u32 cc_d = cc - cycles; u32 rc_d = rc - rx_clear; u32 rf_d = rf - rx_frame; u32 tf_d = tf - tx_frame; if (cc_d != 0) { *rxc_pcnt = rc_d * 100 / cc_d; *rxf_pcnt = rf_d * 100 / cc_d; *txf_pcnt = tf_d * 100 / cc_d; } else { good = 0; } } cycles = cc; rx_frame = rf; rx_clear = rc; tx_frame = tf; return good; } void ath9k_hw_set11nmac2040(struct ath_hal *ah, enum ath9k_ht_macmode mode) { u32 macmode; if (mode == ATH9K_HT_MACMODE_2040 && !ah->ah_config.cwm_ignore_extcca) macmode = AR_2040_JOINED_RX_CLEAR; else macmode = 0; REG_WRITE(ah, AR_2040_MODE, macmode); } static void ath9k_hw_mark_phy_inactive(struct ath_hal *ah) { REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); } static struct ath_hal_5416 *ath9k_hw_newstate(u16 devid, struct ath_softc *sc, void __iomem *mem, int *status) { static const u8 defbssidmask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; struct ath_hal_5416 *ahp; struct ath_hal *ah; ahp = kzalloc(sizeof(struct ath_hal_5416), GFP_KERNEL); if (ahp == NULL) { DPRINTF(sc, ATH_DBG_FATAL, "%s: cannot allocate memory for state block\n", __func__); *status = -ENOMEM; return NULL; } ah = &ahp->ah; ah->ah_sc = sc; ah->ah_sh = mem; ah->ah_magic = AR5416_MAGIC; ah->ah_countryCode = CTRY_DEFAULT; ah->ah_devid = devid; ah->ah_subvendorid = 0; ah->ah_flags = 0; if ((devid == AR5416_AR9100_DEVID)) ah->ah_macVersion = AR_SREV_VERSION_9100; if (!AR_SREV_9100(ah)) ah->ah_flags = AH_USE_EEPROM; ah->ah_powerLimit = MAX_RATE_POWER; ah->ah_tpScale = ATH9K_TP_SCALE_MAX; ahp->ah_atimWindow = 0; ahp->ah_diversityControl = ah->ah_config.diversity_control; ahp->ah_antennaSwitchSwap = ah->ah_config.antenna_switch_swap; ahp->ah_staId1Defaults = AR_STA_ID1_CRPT_MIC_ENABLE; ahp->ah_beaconInterval = 100; ahp->ah_enable32kHzClock = DONT_USE_32KHZ; ahp->ah_slottime = (u32) -1; ahp->ah_acktimeout = (u32) -1; ahp->ah_ctstimeout = (u32) -1; ahp->ah_globaltxtimeout = (u32) -1; memcpy(&ahp->ah_bssidmask, defbssidmask, ETH_ALEN); ahp->ah_gBeaconRate = 0; return ahp; } static int ath9k_hw_eeprom_attach(struct ath_hal *ah) { int status; if (ath9k_hw_use_flash(ah)) ath9k_hw_flash_map(ah); if (!ath9k_hw_fill_eeprom(ah)) return -EIO; status = ath9k_hw_check_eeprom(ah); return status; } u32 ath9k_hw_get_eeprom(struct ath_hal_5416 *ahp, enum eeprom_param param) { struct ar5416_eeprom *eep = &ahp->ah_eeprom; struct modal_eep_header *pModal = eep->modalHeader; struct base_eep_header *pBase = &eep->baseEepHeader; switch (param) { case EEP_NFTHRESH_5: return -pModal[0].noiseFloorThreshCh[0]; case EEP_NFTHRESH_2: return -pModal[1].noiseFloorThreshCh[0]; case AR_EEPROM_MAC(0): return pBase->macAddr[0] << 8 | pBase->macAddr[1]; case AR_EEPROM_MAC(1): return pBase->macAddr[2] << 8 | pBase->macAddr[3]; case AR_EEPROM_MAC(2): return pBase->macAddr[4] << 8 | pBase->macAddr[5]; case EEP_REG_0: return pBase->regDmn[0]; case EEP_REG_1: return pBase->regDmn[1]; case EEP_OP_CAP: return pBase->deviceCap; case EEP_OP_MODE: return pBase->opCapFlags; case EEP_RF_SILENT: return pBase->rfSilent; case EEP_OB_5: return pModal[0].ob; case EEP_DB_5: return pModal[0].db; case EEP_OB_2: return pModal[1].ob; case EEP_DB_2: return pModal[1].db; case EEP_MINOR_REV: return pBase->version & AR5416_EEP_VER_MINOR_MASK; case EEP_TX_MASK: return pBase->txMask; case EEP_RX_MASK: return pBase->rxMask; default: return 0; } } static int ath9k_hw_get_radiorev(struct ath_hal *ah) { u32 val; int i; REG_WRITE(ah, AR_PHY(0x36), 0x00007058); for (i = 0; i < 8; i++) REG_WRITE(ah, AR_PHY(0x20), 0x00010000); val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff; val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4); return ath9k_hw_reverse_bits(val, 8); } static int ath9k_hw_init_macaddr(struct ath_hal *ah) { u32 sum; int i; u16 eeval; struct ath_hal_5416 *ahp = AH5416(ah); DECLARE_MAC_BUF(mac); sum = 0; for (i = 0; i < 3; i++) { eeval = ath9k_hw_get_eeprom(ahp, AR_EEPROM_MAC(i)); sum += eeval; ahp->ah_macaddr[2 * i] = eeval >> 8; ahp->ah_macaddr[2 * i + 1] = eeval & 0xff; } if (sum == 0 || sum == 0xffff * 3) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "%s: mac address read failed: %s\n", __func__, print_mac(mac, ahp->ah_macaddr)); return -EADDRNOTAVAIL; } return 0; } static inline int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight, int16_t targetLeft, int16_t targetRight) { int16_t rv; if (srcRight == srcLeft) { rv = targetLeft; } else { rv = (int16_t) (((target - srcLeft) * targetRight + (srcRight - target) * targetLeft) / (srcRight - srcLeft)); } return rv; } static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz) { if (fbin == AR5416_BCHAN_UNUSED) return fbin; return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin)); } static u16 ath9k_hw_eeprom_get_spur_chan(struct ath_hal *ah, u16 i, bool is2GHz) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom *eep = (struct ar5416_eeprom *) &ahp->ah_eeprom; u16 spur_val = AR_NO_SPUR; DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Getting spur idx %d is2Ghz. %d val %x\n", i, is2GHz, ah->ah_config.spurchans[i][is2GHz]); switch (ah->ah_config.spurmode) { case SPUR_DISABLE: break; case SPUR_ENABLE_IOCTL: spur_val = ah->ah_config.spurchans[i][is2GHz]; DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Getting spur val from new loc. %d\n", spur_val); break; case SPUR_ENABLE_EEPROM: spur_val = eep->modalHeader[is2GHz].spurChans[i].spurChan; break; } return spur_val; } static int ath9k_hw_rfattach(struct ath_hal *ah) { bool rfStatus = false; int ecode = 0; rfStatus = ath9k_hw_init_rf(ah, &ecode); if (!rfStatus) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: RF setup failed, status %u\n", __func__, ecode); return ecode; } return 0; } static int ath9k_hw_rf_claim(struct ath_hal *ah) { u32 val; REG_WRITE(ah, AR_PHY(0), 0x00000007); val = ath9k_hw_get_radiorev(ah); switch (val & AR_RADIO_SREV_MAJOR) { case 0: val = AR_RAD5133_SREV_MAJOR; break; case AR_RAD5133_SREV_MAJOR: case AR_RAD5122_SREV_MAJOR: case AR_RAD2133_SREV_MAJOR: case AR_RAD2122_SREV_MAJOR: break; default: DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: 5G Radio Chip Rev 0x%02X is not " "supported by this driver\n", __func__, ah->ah_analog5GhzRev); return -EOPNOTSUPP; } ah->ah_analog5GhzRev = val; return 0; } static void ath9k_hw_init_pll(struct ath_hal *ah, struct ath9k_channel *chan) { u32 pll; if (AR_SREV_9100(ah)) { if (chan && IS_CHAN_5GHZ(chan)) pll = 0x1450; else pll = 0x1458; } else { if (AR_SREV_9280_10_OR_LATER(ah)) { pll = SM(0x5, AR_RTC_9160_PLL_REFDIV); if (chan && IS_CHAN_HALF_RATE(chan)) pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL); else if (chan && IS_CHAN_QUARTER_RATE(chan)) pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL); if (chan && IS_CHAN_5GHZ(chan)) { pll |= SM(0x28, AR_RTC_9160_PLL_DIV); if (AR_SREV_9280_20(ah)) { if (((chan->channel % 20) == 0) || ((chan->channel % 10) == 0)) pll = 0x2850; else pll = 0x142c; } } else { pll |= SM(0x2c, AR_RTC_9160_PLL_DIV); } } else if (AR_SREV_9160_10_OR_LATER(ah)) { pll = SM(0x5, AR_RTC_9160_PLL_REFDIV); if (chan && IS_CHAN_HALF_RATE(chan)) pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL); else if (chan && IS_CHAN_QUARTER_RATE(chan)) pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL); if (chan && IS_CHAN_5GHZ(chan)) pll |= SM(0x50, AR_RTC_9160_PLL_DIV); else pll |= SM(0x58, AR_RTC_9160_PLL_DIV); } else { pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2; if (chan && IS_CHAN_HALF_RATE(chan)) pll |= SM(0x1, AR_RTC_PLL_CLKSEL); else if (chan && IS_CHAN_QUARTER_RATE(chan)) pll |= SM(0x2, AR_RTC_PLL_CLKSEL); if (chan && IS_CHAN_5GHZ(chan)) pll |= SM(0xa, AR_RTC_PLL_DIV); else pll |= SM(0xb, AR_RTC_PLL_DIV); } } REG_WRITE(ah, (u16) (AR_RTC_PLL_CONTROL), pll); udelay(RTC_PLL_SETTLE_DELAY); REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); } static void ath9k_hw_set_regs(struct ath_hal *ah, struct ath9k_channel *chan, enum ath9k_ht_macmode macmode) { u32 phymode; struct ath_hal_5416 *ahp = AH5416(ah); phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH; if (IS_CHAN_HT40(chan)) { phymode |= AR_PHY_FC_DYN2040_EN; if ((chan->chanmode == CHANNEL_A_HT40PLUS) || (chan->chanmode == CHANNEL_G_HT40PLUS)) phymode |= AR_PHY_FC_DYN2040_PRI_CH; if (ahp->ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_25) phymode |= AR_PHY_FC_DYN2040_EXT_CH; } REG_WRITE(ah, AR_PHY_TURBO, phymode); ath9k_hw_set11nmac2040(ah, macmode); REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S); REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); } static void ath9k_hw_set_operating_mode(struct ath_hal *ah, int opmode) { u32 val; val = REG_READ(ah, AR_STA_ID1); val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC); switch (opmode) { case ATH9K_M_HOSTAP: REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE); REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); break; case ATH9K_M_IBSS: REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE); REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); break; case ATH9K_M_STA: case ATH9K_M_MONITOR: REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE); break; } } static void ath9k_hw_set_rfmode(struct ath_hal *ah, struct ath9k_channel *chan) { u32 rfMode = 0; if (chan == NULL) return; rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan)) ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; if (!AR_SREV_9280_10_OR_LATER(ah)) rfMode |= (IS_CHAN_5GHZ(chan)) ? AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ; if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE); REG_WRITE(ah, AR_PHY_MODE, rfMode); } static bool ath9k_hw_set_reset(struct ath_hal *ah, int type) { u32 rst_flags; u32 tmpReg; REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); if (AR_SREV_9100(ah)) { rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; } else { tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); } else { REG_WRITE(ah, AR_RC, AR_RC_AHB); } rst_flags = AR_RTC_RC_MAC_WARM; if (type == ATH9K_RESET_COLD) rst_flags |= AR_RTC_RC_MAC_COLD; } REG_WRITE(ah, (u16) (AR_RTC_RC), rst_flags); udelay(50); REG_WRITE(ah, (u16) (AR_RTC_RC), 0); if (!ath9k_hw_wait(ah, (u16) (AR_RTC_RC), AR_RTC_RC_M, 0)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: RTC stuck in MAC reset\n", __func__); return false; } if (!AR_SREV_9100(ah)) REG_WRITE(ah, AR_RC, 0); ath9k_hw_init_pll(ah, NULL); if (AR_SREV_9100(ah)) udelay(50); return true; } static bool ath9k_hw_set_reset_power_on(struct ath_hal *ah) { REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); REG_WRITE(ah, (u16) (AR_RTC_RESET), 0); REG_WRITE(ah, (u16) (AR_RTC_RESET), 1); if (!ath9k_hw_wait(ah, AR_RTC_STATUS, AR_RTC_STATUS_M, AR_RTC_STATUS_ON)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: RTC not waking up\n", __func__); return false; } ath9k_hw_read_revisions(ah); return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); } static bool ath9k_hw_set_reset_reg(struct ath_hal *ah, u32 type) { REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); switch (type) { case ATH9K_RESET_POWER_ON: return ath9k_hw_set_reset_power_on(ah); break; case ATH9K_RESET_WARM: case ATH9K_RESET_COLD: return ath9k_hw_set_reset(ah, type); break; default: return false; } } static struct ath9k_channel *ath9k_hw_check_chan(struct ath_hal *ah, struct ath9k_channel *chan) { if (!(IS_CHAN_2GHZ(chan) ^ IS_CHAN_5GHZ(chan))) { DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: invalid channel %u/0x%x; not marked as " "2GHz or 5GHz\n", __func__, chan->channel, chan->channelFlags); return NULL; } if (!IS_CHAN_OFDM(chan) && !IS_CHAN_CCK(chan) && !IS_CHAN_HT20(chan) && !IS_CHAN_HT40(chan)) { DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: invalid channel %u/0x%x; not marked as " "OFDM or CCK or HT20 or HT40PLUS or HT40MINUS\n", __func__, chan->channel, chan->channelFlags); return NULL; } return ath9k_regd_check_channel(ah, chan); } static inline bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize, u16 *indexL, u16 *indexR) { u16 i; if (target <= pList[0]) { *indexL = *indexR = 0; return true; } if (target >= pList[listSize - 1]) { *indexL = *indexR = (u16) (listSize - 1); return true; } for (i = 0; i < listSize - 1; i++) { if (pList[i] == target) { *indexL = *indexR = i; return true; } if (target < pList[i + 1]) { *indexL = i; *indexR = (u16) (i + 1); return false; } } return false; } static int16_t ath9k_hw_get_nf_hist_mid(int16_t *nfCalBuffer) { int16_t nfval; int16_t sort[ATH9K_NF_CAL_HIST_MAX]; int i, j; for (i = 0; i < ATH9K_NF_CAL_HIST_MAX; i++) sort[i] = nfCalBuffer[i]; for (i = 0; i < ATH9K_NF_CAL_HIST_MAX - 1; i++) { for (j = 1; j < ATH9K_NF_CAL_HIST_MAX - i; j++) { if (sort[j] > sort[j - 1]) { nfval = sort[j]; sort[j] = sort[j - 1]; sort[j - 1] = nfval; } } } nfval = sort[(ATH9K_NF_CAL_HIST_MAX - 1) >> 1]; return nfval; } static void ath9k_hw_update_nfcal_hist_buffer(struct ath9k_nfcal_hist *h, int16_t *nfarray) { int i; for (i = 0; i < NUM_NF_READINGS; i++) { h[i].nfCalBuffer[h[i].currIndex] = nfarray[i]; if (++h[i].currIndex >= ATH9K_NF_CAL_HIST_MAX) h[i].currIndex = 0; if (h[i].invalidNFcount > 0) { if (nfarray[i] < AR_PHY_CCA_MIN_BAD_VALUE || nfarray[i] > AR_PHY_CCA_MAX_HIGH_VALUE) { h[i].invalidNFcount = ATH9K_NF_CAL_HIST_MAX; } else { h[i].invalidNFcount--; h[i].privNF = nfarray[i]; } } else { h[i].privNF = ath9k_hw_get_nf_hist_mid(h[i].nfCalBuffer); } } return; } static void ar5416GetNoiseFloor(struct ath_hal *ah, int16_t nfarray[NUM_NF_READINGS]) { int16_t nf; if (AR_SREV_9280_10_OR_LATER(ah)) nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR); else nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "NF calibrated [ctl] [chain 0] is %d\n", nf); nfarray[0] = nf; if (AR_SREV_9280_10_OR_LATER(ah)) nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR); else nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL, "NF calibrated [ctl] [chain 1] is %d\n", nf); nfarray[1] = nf; if (!AR_SREV_9280(ah)) { nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL, "NF calibrated [ctl] [chain 2] is %d\n", nf); nfarray[2] = nf; } if (AR_SREV_9280_10_OR_LATER(ah)) nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR); else nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL, "NF calibrated [ext] [chain 0] is %d\n", nf); nfarray[3] = nf; if (AR_SREV_9280_10_OR_LATER(ah)) nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR); else nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "NF calibrated [ext] [chain 1] is %d\n", nf); nfarray[4] = nf; if (!AR_SREV_9280(ah)) { nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR); if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL, "NF calibrated [ext] [chain 2] is %d\n", nf); nfarray[5] = nf; } } static bool getNoiseFloorThresh(struct ath_hal *ah, const struct ath9k_channel *chan, int16_t *nft) { struct ath_hal_5416 *ahp = AH5416(ah); switch (chan->chanmode) { case CHANNEL_A: case CHANNEL_A_HT20: case CHANNEL_A_HT40PLUS: case CHANNEL_A_HT40MINUS: *nft = (int16_t) ath9k_hw_get_eeprom(ahp, EEP_NFTHRESH_5); break; case CHANNEL_B: case CHANNEL_G: case CHANNEL_G_HT20: case CHANNEL_G_HT40PLUS: case CHANNEL_G_HT40MINUS: *nft = (int16_t) ath9k_hw_get_eeprom(ahp, EEP_NFTHRESH_2); break; default: DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: invalid channel flags 0x%x\n", __func__, chan->channelFlags); return false; } return true; } static void ath9k_hw_start_nfcal(struct ath_hal *ah) { REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); } static void ath9k_hw_loadnf(struct ath_hal *ah, struct ath9k_channel *chan) { struct ath9k_nfcal_hist *h; int i, j; int32_t val; const u32 ar5416_cca_regs[6] = { AR_PHY_CCA, AR_PHY_CH1_CCA, AR_PHY_CH2_CCA, AR_PHY_EXT_CCA, AR_PHY_CH1_EXT_CCA, AR_PHY_CH2_EXT_CCA }; u8 chainmask; if (AR_SREV_9280(ah)) chainmask = 0x1B; else chainmask = 0x3F; #ifdef ATH_NF_PER_CHAN h = chan->nfCalHist; #else h = ah->nfCalHist; #endif for (i = 0; i < NUM_NF_READINGS; i++) { if (chainmask & (1 << i)) { val = REG_READ(ah, ar5416_cca_regs[i]); val &= 0xFFFFFE00; val |= (((u32) (h[i].privNF) << 1) & 0x1ff); REG_WRITE(ah, ar5416_cca_regs[i], val); } } REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); for (j = 0; j < 1000; j++) { if ((REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0) break; udelay(10); } for (i = 0; i < NUM_NF_READINGS; i++) { if (chainmask & (1 << i)) { val = REG_READ(ah, ar5416_cca_regs[i]); val &= 0xFFFFFE00; val |= (((u32) (-50) << 1) & 0x1ff); REG_WRITE(ah, ar5416_cca_regs[i], val); } } } static int16_t ath9k_hw_getnf(struct ath_hal *ah, struct ath9k_channel *chan) { int16_t nf, nfThresh; int16_t nfarray[NUM_NF_READINGS] = { 0 }; struct ath9k_nfcal_hist *h; u8 chainmask; if (AR_SREV_9280(ah)) chainmask = 0x1B; else chainmask = 0x3F; chan->channelFlags &= (~CHANNEL_CW_INT); if (REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) { DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%s: NF did not complete in calibration window\n", __func__); nf = 0; chan->rawNoiseFloor = nf; return chan->rawNoiseFloor; } else { ar5416GetNoiseFloor(ah, nfarray); nf = nfarray[0]; if (getNoiseFloorThresh(ah, chan, &nfThresh) && nf > nfThresh) { DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%s: noise floor failed detected; " "detected %d, threshold %d\n", __func__, nf, nfThresh); chan->channelFlags |= CHANNEL_CW_INT; } } #ifdef ATH_NF_PER_CHAN h = chan->nfCalHist; #else h = ah->nfCalHist; #endif ath9k_hw_update_nfcal_hist_buffer(h, nfarray); chan->rawNoiseFloor = h[0].privNF; return chan->rawNoiseFloor; } static void ath9k_hw_update_mibstats(struct ath_hal *ah, struct ath9k_mib_stats *stats) { stats->ackrcv_bad += REG_READ(ah, AR_ACK_FAIL); stats->rts_bad += REG_READ(ah, AR_RTS_FAIL); stats->fcs_bad += REG_READ(ah, AR_FCS_FAIL); stats->rts_good += REG_READ(ah, AR_RTS_OK); stats->beacons += REG_READ(ah, AR_BEACON_CNT); } static void ath9k_enable_mib_counters(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Enable mib counters\n"); ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats); REG_WRITE(ah, AR_FILT_OFDM, 0); REG_WRITE(ah, AR_FILT_CCK, 0); REG_WRITE(ah, AR_MIBC, ~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS) & 0x0f); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); } static void ath9k_hw_disable_mib_counters(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Disabling MIB counters\n"); REG_WRITE(ah, AR_MIBC, AR_MIBC_FMC | AR_MIBC_CMC); ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats); REG_WRITE(ah, AR_FILT_OFDM, 0); REG_WRITE(ah, AR_FILT_CCK, 0); } static int ath9k_hw_get_ani_channel_idx(struct ath_hal *ah, struct ath9k_channel *chan) { struct ath_hal_5416 *ahp = AH5416(ah); int i; for (i = 0; i < ARRAY_SIZE(ahp->ah_ani); i++) { if (ahp->ah_ani[i].c.channel == chan->channel) return i; if (ahp->ah_ani[i].c.channel == 0) { ahp->ah_ani[i].c.channel = chan->channel; ahp->ah_ani[i].c.channelFlags = chan->channelFlags; return i; } } DPRINTF(ah->ah_sc, ATH_DBG_ANI, "No more channel states left. Using channel 0\n"); return 0; } static void ath9k_hw_ani_attach(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); int i; ahp->ah_hasHwPhyCounters = 1; memset(ahp->ah_ani, 0, sizeof(ahp->ah_ani)); for (i = 0; i < ARRAY_SIZE(ahp->ah_ani); i++) { ahp->ah_ani[i].ofdmTrigHigh = ATH9K_ANI_OFDM_TRIG_HIGH; ahp->ah_ani[i].ofdmTrigLow = ATH9K_ANI_OFDM_TRIG_LOW; ahp->ah_ani[i].cckTrigHigh = ATH9K_ANI_CCK_TRIG_HIGH; ahp->ah_ani[i].cckTrigLow = ATH9K_ANI_CCK_TRIG_LOW; ahp->ah_ani[i].rssiThrHigh = ATH9K_ANI_RSSI_THR_HIGH; ahp->ah_ani[i].rssiThrLow = ATH9K_ANI_RSSI_THR_LOW; ahp->ah_ani[i].ofdmWeakSigDetectOff = !ATH9K_ANI_USE_OFDM_WEAK_SIG; ahp->ah_ani[i].cckWeakSigThreshold = ATH9K_ANI_CCK_WEAK_SIG_THR; ahp->ah_ani[i].spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL; ahp->ah_ani[i].firstepLevel = ATH9K_ANI_FIRSTEP_LVL; if (ahp->ah_hasHwPhyCounters) { ahp->ah_ani[i].ofdmPhyErrBase = AR_PHY_COUNTMAX - ATH9K_ANI_OFDM_TRIG_HIGH; ahp->ah_ani[i].cckPhyErrBase = AR_PHY_COUNTMAX - ATH9K_ANI_CCK_TRIG_HIGH; } } if (ahp->ah_hasHwPhyCounters) { DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Setting OfdmErrBase = 0x%08x\n", ahp->ah_ani[0].ofdmPhyErrBase); DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Setting cckErrBase = 0x%08x\n", ahp->ah_ani[0].cckPhyErrBase); REG_WRITE(ah, AR_PHY_ERR_1, ahp->ah_ani[0].ofdmPhyErrBase); REG_WRITE(ah, AR_PHY_ERR_2, ahp->ah_ani[0].cckPhyErrBase); ath9k_enable_mib_counters(ah); } ahp->ah_aniPeriod = ATH9K_ANI_PERIOD; if (ah->ah_config.enable_ani) ahp->ah_procPhyErr |= HAL_PROCESS_ANI; } static void ath9k_hw_ani_setup(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); int i; const int totalSizeDesired[] = { -55, -55, -55, -55, -62 }; const int coarseHigh[] = { -14, -14, -14, -14, -12 }; const int coarseLow[] = { -64, -64, -64, -64, -70 }; const int firpwr[] = { -78, -78, -78, -78, -80 }; for (i = 0; i < 5; i++) { ahp->ah_totalSizeDesired[i] = totalSizeDesired[i]; ahp->ah_coarseHigh[i] = coarseHigh[i]; ahp->ah_coarseLow[i] = coarseLow[i]; ahp->ah_firpwr[i] = firpwr[i]; } } static void ath9k_hw_ani_detach(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Detaching Ani\n"); if (ahp->ah_hasHwPhyCounters) { ath9k_hw_disable_mib_counters(ah); REG_WRITE(ah, AR_PHY_ERR_1, 0); REG_WRITE(ah, AR_PHY_ERR_2, 0); } } static bool ath9k_hw_ani_control(struct ath_hal *ah, enum ath9k_ani_cmd cmd, int param) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416AniState *aniState = ahp->ah_curani; switch (cmd & ahp->ah_ani_function) { case ATH9K_ANI_NOISE_IMMUNITY_LEVEL:{ u32 level = param; if (level >= ARRAY_SIZE(ahp->ah_totalSizeDesired)) { DPRINTF(ah->ah_sc, ATH_DBG_ANI, "%s: level out of range (%u > %u)\n", __func__, level, (unsigned) ARRAY_SIZE(ahp-> ah_totalSizeDesired)); return false; } REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_TOT_DES, ahp->ah_totalSizeDesired[level]); REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1, AR_PHY_AGC_CTL1_COARSE_LOW, ahp->ah_coarseLow[level]); REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1, AR_PHY_AGC_CTL1_COARSE_HIGH, ahp->ah_coarseHigh[level]); REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_FIRPWR, ahp->ah_firpwr[level]); if (level > aniState->noiseImmunityLevel) ahp->ah_stats.ast_ani_niup++; else if (level < aniState->noiseImmunityLevel) ahp->ah_stats.ast_ani_nidown++; aniState->noiseImmunityLevel = level; break; } case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{ const int m1ThreshLow[] = { 127, 50 }; const int m2ThreshLow[] = { 127, 40 }; const int m1Thresh[] = { 127, 0x4d }; const int m2Thresh[] = { 127, 0x40 }; const int m2CountThr[] = { 31, 16 }; const int m2CountThrLow[] = { 63, 48 }; u32 on = param ? 1 : 0; REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, m1ThreshLow[on]); REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, m2ThreshLow[on]); REG_RMW_FIELD(ah, AR_PHY_SFCORR, AR_PHY_SFCORR_M1_THRESH, m1Thresh[on]); REG_RMW_FIELD(ah, AR_PHY_SFCORR, AR_PHY_SFCORR_M2_THRESH, m2Thresh[on]); REG_RMW_FIELD(ah, AR_PHY_SFCORR, AR_PHY_SFCORR_M2COUNT_THR, m2CountThr[on]); REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, m2CountThrLow[on]); REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLow[on]); REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLow[on]); REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_M1_THRESH, m1Thresh[on]); REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_M2_THRESH, m2Thresh[on]); if (on) REG_SET_BIT(ah, AR_PHY_SFCORR_LOW, AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); else REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW, AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); if (!on != aniState->ofdmWeakSigDetectOff) { if (on) ahp->ah_stats.ast_ani_ofdmon++; else ahp->ah_stats.ast_ani_ofdmoff++; aniState->ofdmWeakSigDetectOff = !on; } break; } case ATH9K_ANI_CCK_WEAK_SIGNAL_THR:{ const int weakSigThrCck[] = { 8, 6 }; u32 high = param ? 1 : 0; REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, weakSigThrCck[high]); if (high != aniState->cckWeakSigThreshold) { if (high) ahp->ah_stats.ast_ani_cckhigh++; else ahp->ah_stats.ast_ani_ccklow++; aniState->cckWeakSigThreshold = high; } break; } case ATH9K_ANI_FIRSTEP_LEVEL:{ const int firstep[] = { 0, 4, 8 }; u32 level = param; if (level >= ARRAY_SIZE(firstep)) { DPRINTF(ah->ah_sc, ATH_DBG_ANI, "%s: level out of range (%u > %u)\n", __func__, level, (unsigned) ARRAY_SIZE(firstep)); return false; } REG_RMW_FIELD(ah, AR_PHY_FIND_SIG, AR_PHY_FIND_SIG_FIRSTEP, firstep[level]); if (level > aniState->firstepLevel) ahp->ah_stats.ast_ani_stepup++; else if (level < aniState->firstepLevel) ahp->ah_stats.ast_ani_stepdown++; aniState->firstepLevel = level; break; } case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{ const int cycpwrThr1[] = { 2, 4, 6, 8, 10, 12, 14, 16 }; u32 level = param; if (level >= ARRAY_SIZE(cycpwrThr1)) { DPRINTF(ah->ah_sc, ATH_DBG_ANI, "%s: level out of range (%u > %u)\n", __func__, level, (unsigned) ARRAY_SIZE(cycpwrThr1)); return false; } REG_RMW_FIELD(ah, AR_PHY_TIMING5, AR_PHY_TIMING5_CYCPWR_THR1, cycpwrThr1[level]); if (level > aniState->spurImmunityLevel) ahp->ah_stats.ast_ani_spurup++; else if (level < aniState->spurImmunityLevel) ahp->ah_stats.ast_ani_spurdown++; aniState->spurImmunityLevel = level; break; } case ATH9K_ANI_PRESENT: break; default: DPRINTF(ah->ah_sc, ATH_DBG_ANI, "%s: invalid cmd %u\n", __func__, cmd); return false; } DPRINTF(ah->ah_sc, ATH_DBG_ANI, "%s: ANI parameters:\n", __func__); DPRINTF(ah->ah_sc, ATH_DBG_ANI, "noiseImmunityLevel=%d, spurImmunityLevel=%d, " "ofdmWeakSigDetectOff=%d\n", aniState->noiseImmunityLevel, aniState->spurImmunityLevel, !aniState->ofdmWeakSigDetectOff); DPRINTF(ah->ah_sc, ATH_DBG_ANI, "cckWeakSigThreshold=%d, " "firstepLevel=%d, listenTime=%d\n", aniState->cckWeakSigThreshold, aniState->firstepLevel, aniState->listenTime); DPRINTF(ah->ah_sc, ATH_DBG_ANI, "cycleCount=%d, ofdmPhyErrCount=%d, cckPhyErrCount=%d\n\n", aniState->cycleCount, aniState->ofdmPhyErrCount, aniState->cckPhyErrCount); return true; } static void ath9k_ani_restart(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416AniState *aniState; if (!DO_ANI(ah)) return; aniState = ahp->ah_curani; aniState->listenTime = 0; if (ahp->ah_hasHwPhyCounters) { if (aniState->ofdmTrigHigh > AR_PHY_COUNTMAX) { aniState->ofdmPhyErrBase = 0; DPRINTF(ah->ah_sc, ATH_DBG_ANI, "OFDM Trigger is too high for hw counters\n"); } else { aniState->ofdmPhyErrBase = AR_PHY_COUNTMAX - aniState->ofdmTrigHigh; } if (aniState->cckTrigHigh > AR_PHY_COUNTMAX) { aniState->cckPhyErrBase = 0; DPRINTF(ah->ah_sc, ATH_DBG_ANI, "CCK Trigger is too high for hw counters\n"); } else { aniState->cckPhyErrBase = AR_PHY_COUNTMAX - aniState->cckTrigHigh; } DPRINTF(ah->ah_sc, ATH_DBG_ANI, "%s: Writing ofdmbase=%u cckbase=%u\n", __func__, aniState->ofdmPhyErrBase, aniState->cckPhyErrBase); REG_WRITE(ah, AR_PHY_ERR_1, aniState->ofdmPhyErrBase); REG_WRITE(ah, AR_PHY_ERR_2, aniState->cckPhyErrBase); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats); } aniState->ofdmPhyErrCount = 0; aniState->cckPhyErrCount = 0; } static void ath9k_hw_ani_ofdm_err_trigger(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); struct ath9k_channel *chan = ah->ah_curchan; struct ar5416AniState *aniState; enum wireless_mode mode; int32_t rssi; if (!DO_ANI(ah)) return; aniState = ahp->ah_curani; if (aniState->noiseImmunityLevel < HAL_NOISE_IMMUNE_MAX) { if (ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, aniState->noiseImmunityLevel + 1)) { return; } } if (aniState->spurImmunityLevel < HAL_SPUR_IMMUNE_MAX) { if (ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, aniState->spurImmunityLevel + 1)) { return; } } if (ah->ah_opmode == ATH9K_M_HOSTAP) { if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) { ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel + 1); } return; } rssi = BEACON_RSSI(ahp); if (rssi > aniState->rssiThrHigh) { if (!aniState->ofdmWeakSigDetectOff) { if (ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, false)) { ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, 0); return; } } if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) { ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel + 1); return; } } else if (rssi > aniState->rssiThrLow) { if (aniState->ofdmWeakSigDetectOff) ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, true); if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel + 1); return; } else { mode = ath9k_hw_chan2wmode(ah, chan); if (mode == ATH9K_MODE_11G || mode == ATH9K_MODE_11B) { if (!aniState->ofdmWeakSigDetectOff) ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, false); if (aniState->firstepLevel > 0) ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, 0); return; } } } static void ath9k_hw_ani_cck_err_trigger(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); struct ath9k_channel *chan = ah->ah_curchan; struct ar5416AniState *aniState; enum wireless_mode mode; int32_t rssi; if (!DO_ANI(ah)) return; aniState = ahp->ah_curani; if (aniState->noiseImmunityLevel < HAL_NOISE_IMMUNE_MAX) { if (ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, aniState->noiseImmunityLevel + 1)) { return; } } if (ah->ah_opmode == ATH9K_M_HOSTAP) { if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) { ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel + 1); } return; } rssi = BEACON_RSSI(ahp); if (rssi > aniState->rssiThrLow) { if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel + 1); } else { mode = ath9k_hw_chan2wmode(ah, chan); if (mode == ATH9K_MODE_11G || mode == ATH9K_MODE_11B) { if (aniState->firstepLevel > 0) ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, 0); } } } static void ath9k_ani_reset(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416AniState *aniState; struct ath9k_channel *chan = ah->ah_curchan; int index; if (!DO_ANI(ah)) return; index = ath9k_hw_get_ani_channel_idx(ah, chan); aniState = &ahp->ah_ani[index]; ahp->ah_curani = aniState; if (DO_ANI(ah) && ah->ah_opmode != ATH9K_M_STA && ah->ah_opmode != ATH9K_M_IBSS) { DPRINTF(ah->ah_sc, ATH_DBG_ANI, "%s: Reset ANI state opmode %u\n", __func__, ah->ah_opmode); ahp->ah_stats.ast_ani_reset++; ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, 0); ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, 0); ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, 0); ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, !ATH9K_ANI_USE_OFDM_WEAK_SIG); ath9k_hw_ani_control(ah, ATH9K_ANI_CCK_WEAK_SIGNAL_THR, ATH9K_ANI_CCK_WEAK_SIG_THR); ath9k_hw_setrxfilter(ah, ath9k_hw_getrxfilter(ah) | ATH9K_RX_FILTER_PHYERR); if (ah->ah_opmode == ATH9K_M_HOSTAP) { ahp->ah_curani->ofdmTrigHigh = ah->ah_config.ofdm_trig_high; ahp->ah_curani->ofdmTrigLow = ah->ah_config.ofdm_trig_low; ahp->ah_curani->cckTrigHigh = ah->ah_config.cck_trig_high; ahp->ah_curani->cckTrigLow = ah->ah_config.cck_trig_low; } ath9k_ani_restart(ah); return; } if (aniState->noiseImmunityLevel != 0) ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, aniState->noiseImmunityLevel); if (aniState->spurImmunityLevel != 0) ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, aniState->spurImmunityLevel); if (aniState->ofdmWeakSigDetectOff) ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, !aniState->ofdmWeakSigDetectOff); if (aniState->cckWeakSigThreshold) ath9k_hw_ani_control(ah, ATH9K_ANI_CCK_WEAK_SIGNAL_THR, aniState->cckWeakSigThreshold); if (aniState->firstepLevel != 0) ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel); if (ahp->ah_hasHwPhyCounters) { ath9k_hw_setrxfilter(ah, ath9k_hw_getrxfilter(ah) & ~ATH9K_RX_FILTER_PHYERR); ath9k_ani_restart(ah); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); } else { ath9k_ani_restart(ah); ath9k_hw_setrxfilter(ah, ath9k_hw_getrxfilter(ah) | ATH9K_RX_FILTER_PHYERR); } } /* * Process a MIB interrupt. We may potentially be invoked because * any of the MIB counters overflow/trigger so don't assume we're * here because a PHY error counter triggered. */ void ath9k_hw_procmibevent(struct ath_hal *ah, const struct ath9k_node_stats *stats) { struct ath_hal_5416 *ahp = AH5416(ah); u32 phyCnt1, phyCnt2; DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Processing Mib Intr\n"); /* Reset these counters regardless */ REG_WRITE(ah, AR_FILT_OFDM, 0); REG_WRITE(ah, AR_FILT_CCK, 0); if (!(REG_READ(ah, AR_SLP_MIB_CTRL) & AR_SLP_MIB_PENDING)) REG_WRITE(ah, AR_SLP_MIB_CTRL, AR_SLP_MIB_CLEAR); /* Clear the mib counters and save them in the stats */ ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats); ahp->ah_stats.ast_nodestats = *stats; if (!DO_ANI(ah)) return; /* NB: these are not reset-on-read */ phyCnt1 = REG_READ(ah, AR_PHY_ERR_1); phyCnt2 = REG_READ(ah, AR_PHY_ERR_2); if (((phyCnt1 & AR_MIBCNT_INTRMASK) == AR_MIBCNT_INTRMASK) || ((phyCnt2 & AR_MIBCNT_INTRMASK) == AR_MIBCNT_INTRMASK)) { struct ar5416AniState *aniState = ahp->ah_curani; u32 ofdmPhyErrCnt, cckPhyErrCnt; /* NB: only use ast_ani_*errs with AH_PRIVATE_DIAG */ ofdmPhyErrCnt = phyCnt1 - aniState->ofdmPhyErrBase; ahp->ah_stats.ast_ani_ofdmerrs += ofdmPhyErrCnt - aniState->ofdmPhyErrCount; aniState->ofdmPhyErrCount = ofdmPhyErrCnt; cckPhyErrCnt = phyCnt2 - aniState->cckPhyErrBase; ahp->ah_stats.ast_ani_cckerrs += cckPhyErrCnt - aniState->cckPhyErrCount; aniState->cckPhyErrCount = cckPhyErrCnt; /* * NB: figure out which counter triggered. If both * trigger we'll only deal with one as the processing * clobbers the error counter so the trigger threshold * check will never be true. */ if (aniState->ofdmPhyErrCount > aniState->ofdmTrigHigh) ath9k_hw_ani_ofdm_err_trigger(ah); if (aniState->cckPhyErrCount > aniState->cckTrigHigh) ath9k_hw_ani_cck_err_trigger(ah); /* NB: always restart to insure the h/w counters are reset */ ath9k_ani_restart(ah); } } static void ath9k_hw_ani_lower_immunity(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416AniState *aniState; int32_t rssi; aniState = ahp->ah_curani; if (ah->ah_opmode == ATH9K_M_HOSTAP) { if (aniState->firstepLevel > 0) { if (ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel - 1)) { return; } } } else { rssi = BEACON_RSSI(ahp); if (rssi > aniState->rssiThrHigh) { /* XXX: Handle me */ } else if (rssi > aniState->rssiThrLow) { if (aniState->ofdmWeakSigDetectOff) { if (ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, true) == true) { return; } } if (aniState->firstepLevel > 0) { if (ath9k_hw_ani_control (ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel - 1) == true) { return; } } } else { if (aniState->firstepLevel > 0) { if (ath9k_hw_ani_control (ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel - 1) == true) { return; } } } } if (aniState->spurImmunityLevel > 0) { if (ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, aniState->spurImmunityLevel - 1)) { return; } } if (aniState->noiseImmunityLevel > 0) { ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, aniState->noiseImmunityLevel - 1); return; } } static int32_t ath9k_hw_ani_get_listen_time(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416AniState *aniState; u32 txFrameCount, rxFrameCount, cycleCount; int32_t listenTime; txFrameCount = REG_READ(ah, AR_TFCNT); rxFrameCount = REG_READ(ah, AR_RFCNT); cycleCount = REG_READ(ah, AR_CCCNT); aniState = ahp->ah_curani; if (aniState->cycleCount == 0 || aniState->cycleCount > cycleCount) { listenTime = 0; ahp->ah_stats.ast_ani_lzero++; } else { int32_t ccdelta = cycleCount - aniState->cycleCount; int32_t rfdelta = rxFrameCount - aniState->rxFrameCount; int32_t tfdelta = txFrameCount - aniState->txFrameCount; listenTime = (ccdelta - rfdelta - tfdelta) / 44000; } aniState->cycleCount = cycleCount; aniState->txFrameCount = txFrameCount; aniState->rxFrameCount = rxFrameCount; return listenTime; } void ath9k_hw_ani_monitor(struct ath_hal *ah, const struct ath9k_node_stats *stats, struct ath9k_channel *chan) { struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416AniState *aniState; int32_t listenTime; aniState = ahp->ah_curani; ahp->ah_stats.ast_nodestats = *stats; listenTime = ath9k_hw_ani_get_listen_time(ah); if (listenTime < 0) { ahp->ah_stats.ast_ani_lneg++; ath9k_ani_restart(ah); return; } aniState->listenTime += listenTime; if (ahp->ah_hasHwPhyCounters) { u32 phyCnt1, phyCnt2; u32 ofdmPhyErrCnt, cckPhyErrCnt; ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats); phyCnt1 = REG_READ(ah, AR_PHY_ERR_1); phyCnt2 = REG_READ(ah, AR_PHY_ERR_2); if (phyCnt1 < aniState->ofdmPhyErrBase || phyCnt2 < aniState->cckPhyErrBase) { if (phyCnt1 < aniState->ofdmPhyErrBase) { DPRINTF(ah->ah_sc, ATH_DBG_ANI, "%s: phyCnt1 0x%x, resetting " "counter value to 0x%x\n", __func__, phyCnt1, aniState->ofdmPhyErrBase); REG_WRITE(ah, AR_PHY_ERR_1, aniState->ofdmPhyErrBase); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); } if (phyCnt2 < aniState->cckPhyErrBase) { DPRINTF(ah->ah_sc, ATH_DBG_ANI, "%s: phyCnt2 0x%x, resetting " "counter value to 0x%x\n", __func__, phyCnt2, aniState->cckPhyErrBase); REG_WRITE(ah, AR_PHY_ERR_2, aniState->cckPhyErrBase); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); } return; } ofdmPhyErrCnt = phyCnt1 - aniState->ofdmPhyErrBase; ahp->ah_stats.ast_ani_ofdmerrs += ofdmPhyErrCnt - aniState->ofdmPhyErrCount; aniState->ofdmPhyErrCount = ofdmPhyErrCnt; cckPhyErrCnt = phyCnt2 - aniState->cckPhyErrBase; ahp->ah_stats.ast_ani_cckerrs += cckPhyErrCnt - aniState->cckPhyErrCount; aniState->cckPhyErrCount = cckPhyErrCnt; } if (!DO_ANI(ah)) return; if (aniState->listenTime > 5 * ahp->ah_aniPeriod) { if (aniState->ofdmPhyErrCount <= aniState->listenTime * aniState->ofdmTrigLow / 1000 && aniState->cckPhyErrCount <= aniState->listenTime * aniState->cckTrigLow / 1000) ath9k_hw_ani_lower_immunity(ah); ath9k_ani_restart(ah); } else if (aniState->listenTime > ahp->ah_aniPeriod) { if (aniState->ofdmPhyErrCount > aniState->listenTime * aniState->ofdmTrigHigh / 1000) { ath9k_hw_ani_ofdm_err_trigger(ah); ath9k_ani_restart(ah); } else if (aniState->cckPhyErrCount > aniState->listenTime * aniState->cckTrigHigh / 1000) { ath9k_hw_ani_cck_err_trigger(ah); ath9k_ani_restart(ah); } } } #ifndef ATH_NF_PER_CHAN static void ath9k_init_nfcal_hist_buffer(struct ath_hal *ah) { int i, j; for (i = 0; i < NUM_NF_READINGS; i++) { ah->nfCalHist[i].currIndex = 0; ah->nfCalHist[i].privNF = AR_PHY_CCA_MAX_GOOD_VALUE; ah->nfCalHist[i].invalidNFcount = AR_PHY_CCA_FILTERWINDOW_LENGTH; for (j = 0; j < ATH9K_NF_CAL_HIST_MAX; j++) { ah->nfCalHist[i].nfCalBuffer[j] = AR_PHY_CCA_MAX_GOOD_VALUE; } } return; } #endif static void ath9k_hw_gpio_cfg_output_mux(struct ath_hal *ah, u32 gpio, u32 type) { int addr; u32 gpio_shift, tmp; if (gpio > 11) addr = AR_GPIO_OUTPUT_MUX3; else if (gpio > 5) addr = AR_GPIO_OUTPUT_MUX2; else addr = AR_GPIO_OUTPUT_MUX1; gpio_shift = (gpio % 6) * 5; if (AR_SREV_9280_20_OR_LATER(ah) || (addr != AR_GPIO_OUTPUT_MUX1)) { REG_RMW(ah, addr, (type << gpio_shift), (0x1f << gpio_shift)); } else { tmp = REG_READ(ah, addr); tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); tmp &= ~(0x1f << gpio_shift); tmp |= (type << gpio_shift); REG_WRITE(ah, addr, tmp); } } void ath9k_hw_cfg_output(struct ath_hal *ah, u32 gpio, u32 ah_signal_type) { u32 gpio_shift; ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); gpio_shift = 2 * gpio; REG_RMW(ah, AR_GPIO_OE_OUT, (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift), (AR_GPIO_OE_OUT_DRV << gpio_shift)); } void ath9k_hw_set_gpio(struct ath_hal *ah, u32 gpio, u32 val) { REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio), AR_GPIO_BIT(gpio)); } /* * Configure GPIO Input lines */ void ath9k_hw_cfg_gpio_input(struct ath_hal *ah, u32 gpio) { u32 gpio_shift; ASSERT(gpio < ah->ah_caps.num_gpio_pins); gpio_shift = gpio << 1; REG_RMW(ah, AR_GPIO_OE_OUT, (AR_GPIO_OE_OUT_DRV_NO << gpio_shift), (AR_GPIO_OE_OUT_DRV << gpio_shift)); } #ifdef CONFIG_RFKILL static void ath9k_enable_rfkill(struct ath_hal *ah) { REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB); REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2, AR_GPIO_INPUT_MUX2_RFSILENT); ath9k_hw_cfg_gpio_input(ah, ah->ah_rfkill_gpio); REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB); } #endif u32 ath9k_hw_gpio_get(struct ath_hal *ah, u32 gpio) { if (gpio >= ah->ah_caps.num_gpio_pins) return 0xffffffff; if (AR_SREV_9280_10_OR_LATER(ah)) { return (MS (REG_READ(ah, AR_GPIO_IN_OUT), AR928X_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) != 0; } else { return (MS(REG_READ(ah, AR_GPIO_IN_OUT), AR_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) != 0; } } static int ath9k_hw_post_attach(struct ath_hal *ah) { int ecode; if (!ath9k_hw_chip_test(ah)) { DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "%s: hardware self-test failed\n", __func__); return -ENODEV; } ecode = ath9k_hw_rf_claim(ah); if (ecode != 0) return ecode; ecode = ath9k_hw_eeprom_attach(ah); if (ecode != 0) return ecode; ecode = ath9k_hw_rfattach(ah); if (ecode != 0) return ecode; if (!AR_SREV_9100(ah)) { ath9k_hw_ani_setup(ah); ath9k_hw_ani_attach(ah); } return 0; } static u32 ath9k_hw_ini_fixup(struct ath_hal *ah, struct ar5416_eeprom *pEepData, u32 reg, u32 value) { struct base_eep_header *pBase = &(pEepData->baseEepHeader); switch (ah->ah_devid) { case AR9280_DEVID_PCI: if (reg == 0x7894) { DPRINTF(ah->ah_sc, ATH_DBG_ANY, "ini VAL: %x EEPROM: %x\n", value, (pBase->version & 0xff)); if ((pBase->version & 0xff) > 0x0a) { DPRINTF(ah->ah_sc, ATH_DBG_ANY, "PWDCLKIND: %d\n", pBase->pwdclkind); value &= ~AR_AN_TOP2_PWDCLKIND; value |= AR_AN_TOP2_PWDCLKIND & (pBase-> pwdclkind << AR_AN_TOP2_PWDCLKIND_S); } else { DPRINTF(ah->ah_sc, ATH_DBG_ANY, "PWDCLKIND Earlier Rev\n"); } DPRINTF(ah->ah_sc, ATH_DBG_ANY, "final ini VAL: %x\n", value); } break; } return value; } static bool ath9k_hw_fill_cap_info(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); struct ath9k_hw_capabilities *pCap = &ah->ah_caps; u16 capField = 0, eeval; eeval = ath9k_hw_get_eeprom(ahp, EEP_REG_0); ah->ah_currentRD = eeval; eeval = ath9k_hw_get_eeprom(ahp, EEP_REG_1); ah->ah_currentRDExt = eeval; capField = ath9k_hw_get_eeprom(ahp, EEP_OP_CAP); if (ah->ah_opmode != ATH9K_M_HOSTAP && ah->ah_subvendorid == AR_SUBVENDOR_ID_NEW_A) { if (ah->ah_currentRD == 0x64 || ah->ah_currentRD == 0x65) ah->ah_currentRD += 5; else if (ah->ah_currentRD == 0x41) ah->ah_currentRD = 0x43; DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY, "%s: regdomain mapped to 0x%x\n", __func__, ah->ah_currentRD); } eeval = ath9k_hw_get_eeprom(ahp, EEP_OP_MODE); bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX); if (eeval & AR5416_OPFLAGS_11A) { set_bit(ATH9K_MODE_11A, pCap->wireless_modes); if (ah->ah_config.ht_enable) { if (!(eeval & AR5416_OPFLAGS_N_5G_HT20)) set_bit(ATH9K_MODE_11NA_HT20, pCap->wireless_modes); if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) { set_bit(ATH9K_MODE_11NA_HT40PLUS, pCap->wireless_modes); set_bit(ATH9K_MODE_11NA_HT40MINUS, pCap->wireless_modes); } } } if (eeval & AR5416_OPFLAGS_11G) { set_bit(ATH9K_MODE_11B, pCap->wireless_modes); set_bit(ATH9K_MODE_11G, pCap->wireless_modes); if (ah->ah_config.ht_enable) { if (!(eeval & AR5416_OPFLAGS_N_2G_HT20)) set_bit(ATH9K_MODE_11NG_HT20, pCap->wireless_modes); if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) { set_bit(ATH9K_MODE_11NG_HT40PLUS, pCap->wireless_modes); set_bit(ATH9K_MODE_11NG_HT40MINUS, pCap->wireless_modes); } } } pCap->tx_chainmask = ath9k_hw_get_eeprom(ahp, EEP_TX_MASK); if ((ah->ah_isPciExpress) || (eeval & AR5416_OPFLAGS_11A)) { pCap->rx_chainmask = ath9k_hw_get_eeprom(ahp, EEP_RX_MASK); } else { pCap->rx_chainmask = (ath9k_hw_gpio_get(ah, 0)) ? 0x5 : 0x7; } if (!(AR_SREV_9280(ah) && (ah->ah_macRev == 0))) ahp->ah_miscMode |= AR_PCU_MIC_NEW_LOC_ENA; pCap->low_2ghz_chan = 2312; pCap->high_2ghz_chan = 2732; pCap->low_5ghz_chan = 4920; pCap->high_5ghz_chan = 6100; pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP; pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP; pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM; pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP; pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP; pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM; pCap->hw_caps |= ATH9K_HW_CAP_CHAN_SPREAD; if (ah->ah_config.ht_enable) pCap->hw_caps |= ATH9K_HW_CAP_HT; else pCap->hw_caps &= ~ATH9K_HW_CAP_HT; pCap->hw_caps |= ATH9K_HW_CAP_GTT; pCap->hw_caps |= ATH9K_HW_CAP_VEOL; pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK; pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH; if (capField & AR_EEPROM_EEPCAP_MAXQCU) pCap->total_queues = MS(capField, AR_EEPROM_EEPCAP_MAXQCU); else pCap->total_queues = ATH9K_NUM_TX_QUEUES; if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES) pCap->keycache_size = 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES); else pCap->keycache_size = AR_KEYTABLE_SIZE; pCap->hw_caps |= ATH9K_HW_CAP_FASTCC; pCap->num_mr_retries = 4; pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD; if (AR_SREV_9280_10_OR_LATER(ah)) pCap->num_gpio_pins = AR928X_NUM_GPIO; else pCap->num_gpio_pins = AR_NUM_GPIO; if (AR_SREV_9280_10_OR_LATER(ah)) { pCap->hw_caps |= ATH9K_HW_CAP_WOW; pCap->hw_caps |= ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT; } else { pCap->hw_caps &= ~ATH9K_HW_CAP_WOW; pCap->hw_caps &= ~ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT; } if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) { pCap->hw_caps |= ATH9K_HW_CAP_CST; pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; } else { pCap->rts_aggr_limit = (8 * 1024); } pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM; #ifdef CONFIG_RFKILL ah->ah_rfsilent = ath9k_hw_get_eeprom(ahp, EEP_RF_SILENT); if (ah->ah_rfsilent & EEP_RFSILENT_ENABLED) { ah->ah_rfkill_gpio = MS(ah->ah_rfsilent, EEP_RFSILENT_GPIO_SEL); ah->ah_rfkill_polarity = MS(ah->ah_rfsilent, EEP_RFSILENT_POLARITY); pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; } #endif if ((ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) || (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE) || (ah->ah_macVersion == AR_SREV_VERSION_9160) || (ah->ah_macVersion == AR_SREV_VERSION_9100) || (ah->ah_macVersion == AR_SREV_VERSION_9280)) pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; else pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; if (AR_SREV_9280(ah)) pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; else pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; if (ah->ah_currentRDExt & (1 << REG_EXT_JAPAN_MIDBAND)) { pCap->reg_cap = AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN | AR_EEPROM_EEREGCAP_EN_KK_U2 | AR_EEPROM_EEREGCAP_EN_KK_MIDBAND; } else { pCap->reg_cap = AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN; } pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND; pCap->num_antcfg_5ghz = ath9k_hw_get_num_ant_config(ahp, IEEE80211_BAND_5GHZ); pCap->num_antcfg_2ghz = ath9k_hw_get_num_ant_config(ahp, IEEE80211_BAND_2GHZ); return true; } static void ar5416DisablePciePhy(struct ath_hal *ah) { if (!AR_SREV_9100(ah)) return; REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); } static void ath9k_set_power_sleep(struct ath_hal *ah, int setChip) { REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); if (setChip) { REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); if (!AR_SREV_9100(ah)) REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); REG_CLR_BIT(ah, (u16) (AR_RTC_RESET), AR_RTC_RESET_EN); } } static void ath9k_set_power_network_sleep(struct ath_hal *ah, int setChip) { REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); if (setChip) { struct ath9k_hw_capabilities *pCap = &ah->ah_caps; if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_ON_INT); } else { REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); } } } static bool ath9k_hw_set_power_awake(struct ath_hal *ah, int setChip) { u32 val; int i; if (setChip) { if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { if (ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON) != true) { return false; } } if (AR_SREV_9100(ah)) REG_SET_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN); REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); udelay(50); for (i = POWER_UP_TIME / 50; i > 0; i--) { val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; if (val == AR_RTC_STATUS_ON) break; udelay(50); REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); } if (i == 0) { DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s: Failed to wakeup in %uus\n", __func__, POWER_UP_TIME / 20); return false; } } REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); return true; } bool ath9k_hw_setpower(struct ath_hal *ah, enum ath9k_power_mode mode) { struct ath_hal_5416 *ahp = AH5416(ah); static const char *modes[] = { "AWAKE", "FULL-SLEEP", "NETWORK SLEEP", "UNDEFINED" }; int status = true, setChip = true; DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s: %s -> %s (%s)\n", __func__, modes[ahp->ah_powerMode], modes[mode], setChip ? "set chip " : ""); switch (mode) { case ATH9K_PM_AWAKE: status = ath9k_hw_set_power_awake(ah, setChip); break; case ATH9K_PM_FULL_SLEEP: ath9k_set_power_sleep(ah, setChip); ahp->ah_chipFullSleep = true; break; case ATH9K_PM_NETWORK_SLEEP: ath9k_set_power_network_sleep(ah, setChip); break; default: DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s: unknown power mode %u\n", __func__, mode); return false; } ahp->ah_powerMode = mode; return status; } static struct ath_hal *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc, void __iomem *mem, int *status) { struct ath_hal_5416 *ahp; struct ath_hal *ah; int ecode; #ifndef CONFIG_SLOW_ANT_DIV u32 i; u32 j; #endif ahp = ath9k_hw_newstate(devid, sc, mem, status); if (ahp == NULL) return NULL; ah = &ahp->ah; ath9k_hw_set_defaults(ah); if (ah->ah_config.intr_mitigation != 0) ahp->ah_intrMitigation = true; if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: couldn't reset chip\n", __func__); ecode = -EIO; goto bad; } if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: couldn't wakeup chip\n", __func__); ecode = -EIO; goto bad; } if (ah->ah_config.serialize_regmode == SER_REG_MODE_AUTO) { if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) { ah->ah_config.serialize_regmode = SER_REG_MODE_ON; } else { ah->ah_config.serialize_regmode = SER_REG_MODE_OFF; } } DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: serialize_regmode is %d\n", __func__, ah->ah_config.serialize_regmode); if ((ah->ah_macVersion != AR_SREV_VERSION_5416_PCI) && (ah->ah_macVersion != AR_SREV_VERSION_5416_PCIE) && (ah->ah_macVersion != AR_SREV_VERSION_9160) && (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah))) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: Mac Chip Rev 0x%02x.%x is not supported by " "this driver\n", __func__, ah->ah_macVersion, ah->ah_macRev); ecode = -EOPNOTSUPP; goto bad; } if (AR_SREV_9100(ah)) { ahp->ah_iqCalData.calData = &iq_cal_multi_sample; ahp->ah_suppCals = IQ_MISMATCH_CAL; ah->ah_isPciExpress = false; } ah->ah_phyRev = REG_READ(ah, AR_PHY_CHIP_ID); if (AR_SREV_9160_10_OR_LATER(ah)) { if (AR_SREV_9280_10_OR_LATER(ah)) { ahp->ah_iqCalData.calData = &iq_cal_single_sample; ahp->ah_adcGainCalData.calData = &adc_gain_cal_single_sample; ahp->ah_adcDcCalData.calData = &adc_dc_cal_single_sample; ahp->ah_adcDcCalInitData.calData = &adc_init_dc_cal; } else { ahp->ah_iqCalData.calData = &iq_cal_multi_sample; ahp->ah_adcGainCalData.calData = &adc_gain_cal_multi_sample; ahp->ah_adcDcCalData.calData = &adc_dc_cal_multi_sample; ahp->ah_adcDcCalInitData.calData = &adc_init_dc_cal; } ahp->ah_suppCals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL; } if (AR_SREV_9160(ah)) { ah->ah_config.enable_ani = 1; ahp->ah_ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL | ATH9K_ANI_FIRSTEP_LEVEL); } else { ahp->ah_ani_function = ATH9K_ANI_ALL; if (AR_SREV_9280_10_OR_LATER(ah)) { ahp->ah_ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL; } } DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: This Mac Chip Rev 0x%02x.%x is \n", __func__, ah->ah_macVersion, ah->ah_macRev); if (AR_SREV_9280_20_OR_LATER(ah)) { INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280_2, ARRAY_SIZE(ar9280Modes_9280_2), 6); INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280_2, ARRAY_SIZE(ar9280Common_9280_2), 2); if (ah->ah_config.pcie_clock_req) { INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes, ar9280PciePhy_clkreq_off_L1_9280, ARRAY_SIZE (ar9280PciePhy_clkreq_off_L1_9280), 2); } else { INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes, ar9280PciePhy_clkreq_always_on_L1_9280, ARRAY_SIZE (ar9280PciePhy_clkreq_always_on_L1_9280), 2); } INIT_INI_ARRAY(&ahp->ah_iniModesAdditional, ar9280Modes_fast_clock_9280_2, ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3); } else if (AR_SREV_9280_10_OR_LATER(ah)) { INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280, ARRAY_SIZE(ar9280Modes_9280), 6); INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280, ARRAY_SIZE(ar9280Common_9280), 2); } else if (AR_SREV_9160_10_OR_LATER(ah)) { INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9160, ARRAY_SIZE(ar5416Modes_9160), 6); INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9160, ARRAY_SIZE(ar5416Common_9160), 2); INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9160, ARRAY_SIZE(ar5416Bank0_9160), 2); INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9160, ARRAY_SIZE(ar5416BB_RfGain_9160), 3); INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9160, ARRAY_SIZE(ar5416Bank1_9160), 2); INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9160, ARRAY_SIZE(ar5416Bank2_9160), 2); INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9160, ARRAY_SIZE(ar5416Bank3_9160), 3); INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9160, ARRAY_SIZE(ar5416Bank6_9160), 3); INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9160, ARRAY_SIZE(ar5416Bank6TPC_9160), 3); INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9160, ARRAY_SIZE(ar5416Bank7_9160), 2); if (AR_SREV_9160_11(ah)) { INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_91601_1, ARRAY_SIZE(ar5416Addac_91601_1), 2); } else { INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9160, ARRAY_SIZE(ar5416Addac_9160), 2); } } else if (AR_SREV_9100_OR_LATER(ah)) { INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9100, ARRAY_SIZE(ar5416Modes_9100), 6); INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9100, ARRAY_SIZE(ar5416Common_9100), 2); INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9100, ARRAY_SIZE(ar5416Bank0_9100), 2); INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9100, ARRAY_SIZE(ar5416BB_RfGain_9100), 3); INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9100, ARRAY_SIZE(ar5416Bank1_9100), 2); INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9100, ARRAY_SIZE(ar5416Bank2_9100), 2); INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9100, ARRAY_SIZE(ar5416Bank3_9100), 3); INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9100, ARRAY_SIZE(ar5416Bank6_9100), 3); INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9100, ARRAY_SIZE(ar5416Bank6TPC_9100), 3); INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9100, ARRAY_SIZE(ar5416Bank7_9100), 2); INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9100, ARRAY_SIZE(ar5416Addac_9100), 2); } else { INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes, ARRAY_SIZE(ar5416Modes), 6); INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common, ARRAY_SIZE(ar5416Common), 2); INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0, ARRAY_SIZE(ar5416Bank0), 2); INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain, ARRAY_SIZE(ar5416BB_RfGain), 3); INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1, ARRAY_SIZE(ar5416Bank1), 2); INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2, ARRAY_SIZE(ar5416Bank2), 2); INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3, ARRAY_SIZE(ar5416Bank3), 3); INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6, ARRAY_SIZE(ar5416Bank6), 3); INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC, ARRAY_SIZE(ar5416Bank6TPC), 3); INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7, ARRAY_SIZE(ar5416Bank7), 2); INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac, ARRAY_SIZE(ar5416Addac), 2); } if (ah->ah_isPciExpress) ath9k_hw_configpcipowersave(ah, 0); else ar5416DisablePciePhy(ah); ecode = ath9k_hw_post_attach(ah); if (ecode != 0) goto bad; #ifndef CONFIG_SLOW_ANT_DIV if (ah->ah_devid == AR9280_DEVID_PCI) { for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) { u32 reg = INI_RA(&ahp->ah_iniModes, i, 0); for (j = 1; j < ahp->ah_iniModes.ia_columns; j++) { u32 val = INI_RA(&ahp->ah_iniModes, i, j); INI_RA(&ahp->ah_iniModes, i, j) = ath9k_hw_ini_fixup(ah, &ahp->ah_eeprom, reg, val); } } } #endif if (!ath9k_hw_fill_cap_info(ah)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s:failed ath9k_hw_fill_cap_info\n", __func__); ecode = -EINVAL; goto bad; } ecode = ath9k_hw_init_macaddr(ah); if (ecode != 0) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: failed initializing mac address\n", __func__); goto bad; } if (AR_SREV_9285(ah)) ah->ah_txTrigLevel = (AR_FTRIG_256B >> AR_FTRIG_S); else ah->ah_txTrigLevel = (AR_FTRIG_512B >> AR_FTRIG_S); #ifndef ATH_NF_PER_CHAN ath9k_init_nfcal_hist_buffer(ah); #endif return ah; bad: if (ahp) ath9k_hw_detach((struct ath_hal *) ahp); if (status) *status = ecode; return NULL; } void ath9k_hw_detach(struct ath_hal *ah) { if (!AR_SREV_9100(ah)) ath9k_hw_ani_detach(ah); ath9k_hw_rfdetach(ah); ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); kfree(ah); } bool ath9k_get_channel_edges(struct ath_hal *ah, u16 flags, u16 *low, u16 *high) { struct ath9k_hw_capabilities *pCap = &ah->ah_caps; if (flags & CHANNEL_5GHZ) { *low = pCap->low_5ghz_chan; *high = pCap->high_5ghz_chan; return true; } if ((flags & CHANNEL_2GHZ)) { *low = pCap->low_2ghz_chan; *high = pCap->high_2ghz_chan; return true; } return false; } static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList, u8 *pVpdList, u16 numIntercepts, u8 *pRetVpdList) { u16 i, k; u8 currPwr = pwrMin; u16 idxL = 0, idxR = 0; for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) { ath9k_hw_get_lower_upper_index(currPwr, pPwrList, numIntercepts, &(idxL), &(idxR)); if (idxR < 1) idxR = 1; if (idxL == numIntercepts - 1) idxL = (u16) (numIntercepts - 2); if (pPwrList[idxL] == pPwrList[idxR]) k = pVpdList[idxL]; else k = (u16) (((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) / (pPwrList[idxR] - pPwrList[idxL])); pRetVpdList[i] = (u8) k; currPwr += 2; } return true; } static void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hal *ah, struct ath9k_channel *chan, struct cal_data_per_freq *pRawDataSet, u8 *bChans, u16 availPiers, u16 tPdGainOverlap, int16_t *pMinCalPower, u16 *pPdGainBoundaries, u8 *pPDADCValues, u16 numXpdGains) { int i, j, k; int16_t ss; u16 idxL = 0, idxR = 0, numPiers; static u8 vpdTableL[AR5416_NUM_PD_GAINS] [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; static u8 vpdTableR[AR5416_NUM_PD_GAINS] [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; static u8 vpdTableI[AR5416_NUM_PD_GAINS] [AR5416_MAX_PWR_RANGE_IN_HALF_DB]; u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR; u8 minPwrT4[AR5416_NUM_PD_GAINS]; u8 maxPwrT4[AR5416_NUM_PD_GAINS]; int16_t vpdStep; int16_t tmpVal; u16 sizeCurrVpdTable, maxIndex, tgtIndex; bool match; int16_t minDelta = 0; struct chan_centers centers; ath9k_hw_get_channel_centers(ah, chan, ¢ers); for (numPiers = 0; numPiers < availPiers; numPiers++) { if (bChans[numPiers] == AR5416_BCHAN_UNUSED) break; } match = ath9k_hw_get_lower_upper_index((u8) FREQ2FBIN(centers. synth_center, IS_CHAN_2GHZ (chan)), bChans, numPiers, &idxL, &idxR); if (match) { for (i = 0; i < numXpdGains; i++) { minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0]; maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4]; ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL]. pwrPdg[i], pRawDataSet[idxL]. vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]); } } else { for (i = 0; i < numXpdGains; i++) { pVpdL = pRawDataSet[idxL].vpdPdg[i]; pPwrL = pRawDataSet[idxL].pwrPdg[i]; pVpdR = pRawDataSet[idxR].vpdPdg[i]; pPwrR = pRawDataSet[idxR].pwrPdg[i]; minPwrT4[i] = max(pPwrL[0], pPwrR[0]); maxPwrT4[i] = min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]); ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]); ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]); for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) { vpdTableI[i][j] = (u8) (ath9k_hw_interpolate ((u16) FREQ2FBIN(centers. synth_center, IS_CHAN_2GHZ (chan)), bChans[idxL], bChans[idxR], vpdTableL[i] [j], vpdTableR[i] [j])); } } } *pMinCalPower = (int16_t) (minPwrT4[0] / 2); k = 0; for (i = 0; i < numXpdGains; i++) { if (i == (numXpdGains - 1)) pPdGainBoundaries[i] = (u16) (maxPwrT4[i] / 2); else pPdGainBoundaries[i] = (u16) ((maxPwrT4[i] + minPwrT4[i + 1]) / 4); pPdGainBoundaries[i] = min((u16) AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]); if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) { minDelta = pPdGainBoundaries[0] - 23; pPdGainBoundaries[0] = 23; } else { minDelta = 0; } if (i == 0) { if (AR_SREV_9280_10_OR_LATER(ah)) ss = (int16_t) (0 - (minPwrT4[i] / 2)); else ss = 0; } else { ss = (int16_t) ((pPdGainBoundaries[i - 1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta); } vpdStep = (int16_t) (vpdTableI[i][1] - vpdTableI[i][0]); vpdStep = (int16_t) ((vpdStep < 1) ? 1 : vpdStep); while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { tmpVal = (int16_t) (vpdTableI[i][0] + ss * vpdStep); pPDADCValues[k++] = (u8) ((tmpVal < 0) ? 0 : tmpVal); ss++; } sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1); tgtIndex = (u8) (pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2)); maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { pPDADCValues[k++] = vpdTableI[i][ss++]; } vpdStep = (int16_t) (vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]); vpdStep = (int16_t) ((vpdStep < 1) ? 1 : vpdStep); if (tgtIndex > maxIndex) { while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { tmpVal = (int16_t) ((vpdTableI[i] [sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep)); pPDADCValues[k++] = (u8) ((tmpVal > 255) ? 255 : tmpVal); ss++; } } } while (i < AR5416_PD_GAINS_IN_MASK) { pPdGainBoundaries[i] = pPdGainBoundaries[i - 1]; i++; } while (k < AR5416_NUM_PDADC_VALUES) { pPDADCValues[k] = pPDADCValues[k - 1]; k++; } return; } static bool ath9k_hw_set_power_cal_table(struct ath_hal *ah, struct ar5416_eeprom *pEepData, struct ath9k_channel *chan, int16_t *pTxPowerIndexOffset) { struct cal_data_per_freq *pRawDataset; u8 *pCalBChans = NULL; u16 pdGainOverlap_t2; static u8 pdadcValues[AR5416_NUM_PDADC_VALUES]; u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK]; u16 numPiers, i, j; int16_t tMinCalPower; u16 numXpdGain, xpdMask; u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 }; u32 reg32, regOffset, regChainOffset; int16_t modalIdx; struct ath_hal_5416 *ahp = AH5416(ah); modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0; xpdMask = pEepData->modalHeader[modalIdx].xpdGain; if ((pEepData->baseEepHeader. version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_2) { pdGainOverlap_t2 = pEepData->modalHeader[modalIdx].pdGainOverlap; } else { pdGainOverlap_t2 = (u16) (MS (REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); } if (IS_CHAN_2GHZ(chan)) { pCalBChans = pEepData->calFreqPier2G; numPiers = AR5416_NUM_2G_CAL_PIERS; } else { pCalBChans = pEepData->calFreqPier5G; numPiers = AR5416_NUM_5G_CAL_PIERS; } numXpdGain = 0; for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { if (numXpdGain >= AR5416_NUM_PD_GAINS) break; xpdGainValues[numXpdGain] = (u16) (AR5416_PD_GAINS_IN_MASK - i); numXpdGain++; } } REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, (numXpdGain - 1) & 0x3); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1, xpdGainValues[0]); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2, xpdGainValues[1]); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, xpdGainValues[2]); for (i = 0; i < AR5416_MAX_CHAINS; i++) { if (AR_SREV_5416_V20_OR_LATER(ah) && (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) && (i != 0)) { regChainOffset = (i == 1) ? 0x2000 : 0x1000; } else regChainOffset = i * 0x1000; if (pEepData->baseEepHeader.txMask & (1 << i)) { if (IS_CHAN_2GHZ(chan)) pRawDataset = pEepData->calPierData2G[i]; else pRawDataset = pEepData->calPierData5G[i]; ath9k_hw_get_gain_boundaries_pdadcs(ah, chan, pRawDataset, pCalBChans, numPiers, pdGainOverlap_t2, &tMinCalPower, gainBoundaries, pdadcValues, numXpdGain); if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset, SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); } regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; for (j = 0; j < 32; j++) { reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) | ((pdadcValues[4 * j + 1] & 0xFF) << 8) | ((pdadcValues[4 * j + 2] & 0xFF) << 16) | ((pdadcValues[4 * j + 3] & 0xFF) << 24); REG_WRITE(ah, regOffset, reg32); DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO, "PDADC (%d,%4x): %4.4x %8.8x\n", i, regChainOffset, regOffset, reg32); DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO, "PDADC: Chain %d | PDADC %3d Value %3d | " "PDADC %3d Value %3d | PDADC %3d Value %3d | " "PDADC %3d Value %3d |\n", i, 4 * j, pdadcValues[4 * j], 4 * j + 1, pdadcValues[4 * j + 1], 4 * j + 2, pdadcValues[4 * j + 2], 4 * j + 3, pdadcValues[4 * j + 3]); regOffset += 4; } } } *pTxPowerIndexOffset = 0; return true; } void ath9k_hw_configpcipowersave(struct ath_hal *ah, int restore) { struct ath_hal_5416 *ahp = AH5416(ah); u8 i; if (ah->ah_isPciExpress != true) return; if (ah->ah_config.pcie_powersave_enable == 2) return; if (restore) return; if (AR_SREV_9280_20_OR_LATER(ah)) { for (i = 0; i < ahp->ah_iniPcieSerdes.ia_rows; i++) { REG_WRITE(ah, INI_RA(&ahp->ah_iniPcieSerdes, i, 0), INI_RA(&ahp->ah_iniPcieSerdes, i, 1)); } udelay(1000); } else if (AR_SREV_9280(ah) && (ah->ah_macRev == AR_SREV_REVISION_9280_10)) { REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00); REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019); REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820); REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560); if (ah->ah_config.pcie_clock_req) REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc); else REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd); REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007); REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); udelay(1000); } else { REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039); REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824); REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579); REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff); REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007); REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); } REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA); if (ah->ah_config.pcie_waen) { REG_WRITE(ah, AR_WA, ah->ah_config.pcie_waen); } else { if (AR_SREV_9280(ah)) REG_WRITE(ah, AR_WA, 0x0040073f); else REG_WRITE(ah, AR_WA, 0x0000073f); } } static void ath9k_hw_get_legacy_target_powers(struct ath_hal *ah, struct ath9k_channel *chan, struct cal_target_power_leg *powInfo, u16 numChannels, struct cal_target_power_leg *pNewPower, u16 numRates, bool isExtTarget) { u16 clo, chi; int i; int matchIndex = -1, lowIndex = -1; u16 freq; struct chan_centers centers; ath9k_hw_get_channel_centers(ah, chan, ¢ers); freq = (isExtTarget) ? centers.ext_center : centers.ctl_center; if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) { matchIndex = 0; } else { for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) { matchIndex = i; break; } else if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) && (freq > ath9k_hw_fbin2freq(powInfo[i - 1]. bChannel, IS_CHAN_2GHZ (chan)))) { lowIndex = i - 1; break; } } if ((matchIndex == -1) && (lowIndex == -1)) matchIndex = i - 1; } if (matchIndex != -1) { *pNewPower = powInfo[matchIndex]; } else { clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan)); chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan)); for (i = 0; i < numRates; i++) { pNewPower->tPow2x[i] = (u8) ath9k_hw_interpolate(freq, clo, chi, powInfo [lowIndex]. tPow2x[i], powInfo [lowIndex + 1].tPow2x[i]); } } } static void ath9k_hw_get_target_powers(struct ath_hal *ah, struct ath9k_channel *chan, struct cal_target_power_ht *powInfo, u16 numChannels, struct cal_target_power_ht *pNewPower, u16 numRates, bool isHt40Target) { u16 clo, chi; int i; int matchIndex = -1, lowIndex = -1; u16 freq; struct chan_centers centers; ath9k_hw_get_channel_centers(ah, chan, ¢ers); freq = isHt40Target ? centers.synth_center : centers.ctl_center; if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) { matchIndex = 0; } else { for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) { matchIndex = i; break; } else if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) && (freq > ath9k_hw_fbin2freq(powInfo[i - 1]. bChannel, IS_CHAN_2GHZ (chan)))) { lowIndex = i - 1; break; } } if ((matchIndex == -1) && (lowIndex == -1)) matchIndex = i - 1; } if (matchIndex != -1) { *pNewPower = powInfo[matchIndex]; } else { clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan)); chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan)); for (i = 0; i < numRates; i++) { pNewPower->tPow2x[i] = (u8) ath9k_hw_interpolate(freq, clo, chi, powInfo [lowIndex]. tPow2x[i], powInfo [lowIndex + 1].tPow2x[i]); } } } static u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower, bool is2GHz) { u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER; int i; for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) { if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) { twiceMaxEdgePower = pRdEdgesPower[i].tPower; break; } else if ((i > 0) && (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i]. bChannel, is2GHz))) { if (ath9k_hw_fbin2freq (pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && pRdEdgesPower[i - 1].flag) { twiceMaxEdgePower = pRdEdgesPower[i - 1].tPower; } break; } } return twiceMaxEdgePower; } static bool ath9k_hw_set_power_per_rate_table(struct ath_hal *ah, struct ar5416_eeprom *pEepData, struct ath9k_channel *chan, int16_t *ratesArray, u16 cfgCtl, u8 AntennaReduction, u8 twiceMaxRegulatoryPower, u8 powerLimit) { u8 twiceMaxEdgePower = AR5416_MAX_RATE_POWER; static const u16 tpScaleReductionTable[5] = { 0, 3, 6, 9, AR5416_MAX_RATE_POWER }; int i; int8_t twiceLargestAntenna; struct cal_ctl_data *rep; struct cal_target_power_leg targetPowerOfdm, targetPowerCck = { 0, { 0, 0, 0, 0} }; struct cal_target_power_leg targetPowerOfdmExt = { 0, { 0, 0, 0, 0} }, targetPowerCckExt = { 0, { 0, 0, 0, 0 } }; struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = { 0, {0, 0, 0, 0} }; u8 scaledPower = 0, minCtlPower, maxRegAllowedPower; u16 ctlModesFor11a[] = { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 }; u16 ctlModesFor11g[] = { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 }; u16 numCtlModes, *pCtlMode, ctlMode, freq; struct chan_centers centers; int tx_chainmask; u8 twiceMinEdgePower; struct ath_hal_5416 *ahp = AH5416(ah); tx_chainmask = ahp->ah_txchainmask; ath9k_hw_get_channel_centers(ah, chan, ¢ers); twiceLargestAntenna = max( pEepData->modalHeader [IS_CHAN_2GHZ(chan)].antennaGainCh[0], pEepData->modalHeader [IS_CHAN_2GHZ(chan)].antennaGainCh[1]); twiceLargestAntenna = max((u8) twiceLargestAntenna, pEepData->modalHeader [IS_CHAN_2GHZ(chan)].antennaGainCh[2]); twiceLargestAntenna = (int8_t) min(AntennaReduction - twiceLargestAntenna, 0); maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna; if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) { maxRegAllowedPower -= (tpScaleReductionTable[(ah->ah_tpScale)] * 2); } scaledPower = min(powerLimit, maxRegAllowedPower); switch (ar5416_get_ntxchains(tx_chainmask)) { case 1: break; case 2: scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)]. pwrDecreaseFor2Chain; break; case 3: scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)]. pwrDecreaseFor3Chain; break; } scaledPower = max(0, (int32_t) scaledPower); if (IS_CHAN_2GHZ(chan)) { numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; pCtlMode = ctlModesFor11g; ath9k_hw_get_legacy_target_powers(ah, chan, pEepData-> calTargetPowerCck, AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, false); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData-> calTargetPower2G, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, false); ath9k_hw_get_target_powers(ah, chan, pEepData->calTargetPower2GHT20, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, false); if (IS_CHAN_HT40(chan)) { numCtlModes = ARRAY_SIZE(ctlModesFor11g); ath9k_hw_get_target_powers(ah, chan, pEepData-> calTargetPower2GHT40, AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, true); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData-> calTargetPowerCck, AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, true); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData-> calTargetPower2G, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, true); } } else { numCtlModes = ARRAY_SIZE(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; pCtlMode = ctlModesFor11a; ath9k_hw_get_legacy_target_powers(ah, chan, pEepData-> calTargetPower5G, AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, false); ath9k_hw_get_target_powers(ah, chan, pEepData->calTargetPower5GHT20, AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, false); if (IS_CHAN_HT40(chan)) { numCtlModes = ARRAY_SIZE(ctlModesFor11a); ath9k_hw_get_target_powers(ah, chan, pEepData-> calTargetPower5GHT40, AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, true); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData-> calTargetPower5G, AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, true); } } for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || (pCtlMode[ctlMode] == CTL_2GHT40); if (isHt40CtlMode) freq = centers.synth_center; else if (pCtlMode[ctlMode] & EXT_ADDITIVE) freq = centers.ext_center; else freq = centers.ctl_center; if (ar5416_get_eep_ver(ahp) == 14 && ar5416_get_eep_rev(ahp) <= 2) twiceMaxEdgePower = AR5416_MAX_RATE_POWER; DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, " "EXT_ADDITIVE %d\n", ctlMode, numCtlModes, isHt40CtlMode, (pCtlMode[ctlMode] & EXT_ADDITIVE)); for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) { DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, " LOOP-Ctlidx %d: cfgCtl 0x%2.2x " "pCtlMode 0x%2.2x ctlIndex 0x%2.2x " "chan %d\n", i, cfgCtl, pCtlMode[ctlMode], pEepData->ctlIndex[i], chan->channel); if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == ((pEepData-> ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) { rep = &(pEepData->ctlData[i]); twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq, rep-> ctlEdges [ar5416_get_ntxchains (tx_chainmask) - 1], IS_CHAN_2GHZ (chan)); DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, " MATCH-EE_IDX %d: ch %d is2 %d " "2xMinEdge %d chainmask %d chains %d\n", i, freq, IS_CHAN_2GHZ(chan), twiceMinEdgePower, tx_chainmask, ar5416_get_ntxchains (tx_chainmask)); if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { twiceMaxEdgePower = min(twiceMaxEdgePower, twiceMinEdgePower); } else { twiceMaxEdgePower = twiceMinEdgePower; break; } } } minCtlPower = min(twiceMaxEdgePower, scaledPower); DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, " SEL-Min ctlMode %d pCtlMode %d " "2xMaxEdge %d sP %d minCtlPwr %d\n", ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower, scaledPower, minCtlPower); switch (pCtlMode[ctlMode]) { case CTL_11B: for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) { targetPowerCck.tPow2x[i] = min(targetPowerCck.tPow2x[i], minCtlPower); } break; case CTL_11A: case CTL_11G: for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) { targetPowerOfdm.tPow2x[i] = min(targetPowerOfdm.tPow2x[i], minCtlPower); } break; case CTL_5GHT20: case CTL_2GHT20: for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) { targetPowerHt20.tPow2x[i] = min(targetPowerHt20.tPow2x[i], minCtlPower); } break; case CTL_11B_EXT: targetPowerCckExt.tPow2x[0] = min(targetPowerCckExt.tPow2x[0], minCtlPower); break; case CTL_11A_EXT: case CTL_11G_EXT: targetPowerOfdmExt.tPow2x[0] = min(targetPowerOfdmExt.tPow2x[0], minCtlPower); break; case CTL_5GHT40: case CTL_2GHT40: for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { targetPowerHt40.tPow2x[i] = min(targetPowerHt40.tPow2x[i], minCtlPower); } break; default: break; } } ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0]; ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1]; ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2]; ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3]; ratesArray[rateXr] = targetPowerOfdm.tPow2x[0]; for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i]; if (IS_CHAN_2GHZ(chan)) { ratesArray[rate1l] = targetPowerCck.tPow2x[0]; ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1]; ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2]; ; ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3]; ; } if (IS_CHAN_HT40(chan)) { for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i]; } ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0]; ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0]; ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0]; if (IS_CHAN_2GHZ(chan)) { ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0]; } } return true; } static int ath9k_hw_set_txpower(struct ath_hal *ah, struct ar5416_eeprom *pEepData, struct ath9k_channel *chan, u16 cfgCtl, u8 twiceAntennaReduction, u8 twiceMaxRegulatoryPower, u8 powerLimit) { struct modal_eep_header *pModal = &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]); int16_t ratesArray[Ar5416RateSize]; int16_t txPowerIndexOffset = 0; u8 ht40PowerIncForPdadc = 2; int i; memset(ratesArray, 0, sizeof(ratesArray)); if ((pEepData->baseEepHeader. version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_2) { ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; } if (!ath9k_hw_set_power_per_rate_table(ah, pEepData, chan, &ratesArray[0], cfgCtl, twiceAntennaReduction, twiceMaxRegulatoryPower, powerLimit)) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ath9k_hw_set_txpower: unable to set " "tx power per rate table\n"); return -EIO; } if (!ath9k_hw_set_power_cal_table (ah, pEepData, chan, &txPowerIndexOffset)) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ath9k_hw_set_txpower: unable to set power table\n"); return -EIO; } for (i = 0; i < ARRAY_SIZE(ratesArray); i++) { ratesArray[i] = (int16_t) (txPowerIndexOffset + ratesArray[i]); if (ratesArray[i] > AR5416_MAX_RATE_POWER) ratesArray[i] = AR5416_MAX_RATE_POWER; } if (AR_SREV_9280_10_OR_LATER(ah)) { for (i = 0; i < Ar5416RateSize; i++) ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2; } REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, ATH9K_POW_SM(ratesArray[rate18mb], 24) | ATH9K_POW_SM(ratesArray[rate12mb], 16) | ATH9K_POW_SM(ratesArray[rate9mb], 8) | ATH9K_POW_SM(ratesArray[rate6mb], 0) ); REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, ATH9K_POW_SM(ratesArray[rate54mb], 24) | ATH9K_POW_SM(ratesArray[rate48mb], 16) | ATH9K_POW_SM(ratesArray[rate36mb], 8) | ATH9K_POW_SM(ratesArray[rate24mb], 0) ); if (IS_CHAN_2GHZ(chan)) { REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, ATH9K_POW_SM(ratesArray[rate2s], 24) | ATH9K_POW_SM(ratesArray[rate2l], 16) | ATH9K_POW_SM(ratesArray[rateXr], 8) | ATH9K_POW_SM(ratesArray[rate1l], 0) ); REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, ATH9K_POW_SM(ratesArray[rate11s], 24) | ATH9K_POW_SM(ratesArray[rate11l], 16) | ATH9K_POW_SM(ratesArray[rate5_5s], 8) | ATH9K_POW_SM(ratesArray[rate5_5l], 0) ); } REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, ATH9K_POW_SM(ratesArray[rateHt20_3], 24) | ATH9K_POW_SM(ratesArray[rateHt20_2], 16) | ATH9K_POW_SM(ratesArray[rateHt20_1], 8) | ATH9K_POW_SM(ratesArray[rateHt20_0], 0) ); REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, ATH9K_POW_SM(ratesArray[rateHt20_7], 24) | ATH9K_POW_SM(ratesArray[rateHt20_6], 16) | ATH9K_POW_SM(ratesArray[rateHt20_5], 8) | ATH9K_POW_SM(ratesArray[rateHt20_4], 0) ); if (IS_CHAN_HT40(chan)) { REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, ATH9K_POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24) | ATH9K_POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16) | ATH9K_POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8) | ATH9K_POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0) ); REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, ATH9K_POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24) | ATH9K_POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16) | ATH9K_POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8) | ATH9K_POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0) ); REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) | ATH9K_POW_SM(ratesArray[rateExtCck], 16) | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) | ATH9K_POW_SM(ratesArray[rateDupCck], 0) ); } REG_WRITE(ah, AR_PHY_POWER_TX_SUB, ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6) | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0) ); i = rate6mb; if (IS_CHAN_HT40(chan)) i = rateHt40_0; else if (IS_CHAN_HT20(chan)) i = rateHt20_0; if (AR_SREV_9280_10_OR_LATER(ah)) ah->ah_maxPowerLevel = ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2; else ah->ah_maxPowerLevel = ratesArray[i]; return 0; } static inline void ath9k_hw_get_delta_slope_vals(struct ath_hal *ah, u32 coef_scaled, u32 *coef_mantissa, u32 *coef_exponent) { u32 coef_exp, coef_man; for (coef_exp = 31; coef_exp > 0; coef_exp--) if ((coef_scaled >> coef_exp) & 0x1) break; coef_exp = 14 - (coef_exp - COEF_SCALE_S); coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); *coef_exponent = coef_exp - 16; } static void ath9k_hw_set_delta_slope(struct ath_hal *ah, struct ath9k_channel *chan) { u32 coef_scaled, ds_coef_exp, ds_coef_man; u32 clockMhzScaled = 0x64000000; struct chan_centers centers; if (IS_CHAN_HALF_RATE(chan)) clockMhzScaled = clockMhzScaled >> 1; else if (IS_CHAN_QUARTER_RATE(chan)) clockMhzScaled = clockMhzScaled >> 2; ath9k_hw_get_channel_centers(ah, chan, ¢ers); coef_scaled = clockMhzScaled / centers.synth_center; ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_MAN, ds_coef_man); REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); coef_scaled = (9 * coef_scaled) / 10; ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); REG_RMW_FIELD(ah, AR_PHY_HALFGI, AR_PHY_HALFGI_DSC_MAN, ds_coef_man); REG_RMW_FIELD(ah, AR_PHY_HALFGI, AR_PHY_HALFGI_DSC_EXP, ds_coef_exp); } static void ath9k_hw_9280_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan) { int bb_spur = AR_NO_SPUR; int freq; int bin, cur_bin; int bb_spur_off, spur_subchannel_sd; int spur_freq_sd; int spur_delta_phase; int denominator; int upper, lower, cur_vit_mask; int tmp, newVal; int i; int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8, AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 }; int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10, AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 }; int inc[4] = { 0, 100, 0, 0 }; struct chan_centers centers; int8_t mask_m[123]; int8_t mask_p[123]; int8_t mask_amt; int tmp_mask; int cur_bb_spur; bool is2GHz = IS_CHAN_2GHZ(chan); memset(&mask_m, 0, sizeof(int8_t) * 123); memset(&mask_p, 0, sizeof(int8_t) * 123); ath9k_hw_get_channel_centers(ah, chan, ¢ers); freq = centers.synth_center; ah->ah_config.spurmode = SPUR_ENABLE_EEPROM; for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz); if (is2GHz) cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ; else cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ; if (AR_NO_SPUR == cur_bb_spur) break; cur_bb_spur = cur_bb_spur - freq; if (IS_CHAN_HT40(chan)) { if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) && (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) { bb_spur = cur_bb_spur; break; } } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) && (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) { bb_spur = cur_bb_spur; break; } } if (AR_NO_SPUR == bb_spur) { REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); return; } else { REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); } bin = bb_spur * 320; tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0)); newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal); newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL | AR_PHY_SPUR_REG_ENABLE_MASK_PPM | AR_PHY_SPUR_REG_MASK_RATE_SELECT | AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH)); REG_WRITE(ah, AR_PHY_SPUR_REG, newVal); if (IS_CHAN_HT40(chan)) { if (bb_spur < 0) { spur_subchannel_sd = 1; bb_spur_off = bb_spur + 10; } else { spur_subchannel_sd = 0; bb_spur_off = bb_spur - 10; } } else { spur_subchannel_sd = 0; bb_spur_off = bb_spur; } if (IS_CHAN_HT40(chan)) spur_delta_phase = ((bb_spur * 262144) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; else spur_delta_phase = ((bb_spur * 524288) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; denominator = IS_CHAN_2GHZ(chan) ? 44 : 40; spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff; newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC | SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) | SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE)); REG_WRITE(ah, AR_PHY_TIMING11, newVal); newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S; REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal); cur_bin = -6000; upper = bin + 100; lower = bin - 100; for (i = 0; i < 4; i++) { int pilot_mask = 0; int chan_mask = 0; int bp = 0; for (bp = 0; bp < 30; bp++) { if ((cur_bin > lower) && (cur_bin < upper)) { pilot_mask = pilot_mask | 0x1 << bp; chan_mask = chan_mask | 0x1 << bp; } cur_bin += 100; } cur_bin += inc[i]; REG_WRITE(ah, pilot_mask_reg[i], pilot_mask); REG_WRITE(ah, chan_mask_reg[i], chan_mask); } cur_vit_mask = 6100; upper = bin + 120; lower = bin - 120; for (i = 0; i < 123; i++) { if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) { /* workaround for gcc bug #37014 */ volatile int tmp = abs(cur_vit_mask - bin); if (tmp < 75) mask_amt = 1; else mask_amt = 0; if (cur_vit_mask < 0) mask_m[abs(cur_vit_mask / 100)] = mask_amt; else mask_p[cur_vit_mask / 100] = mask_amt; } cur_vit_mask -= 100; } tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) | (mask_m[48] << 26) | (mask_m[49] << 24) | (mask_m[50] << 22) | (mask_m[51] << 20) | (mask_m[52] << 18) | (mask_m[53] << 16) | (mask_m[54] << 14) | (mask_m[55] << 12) | (mask_m[56] << 10) | (mask_m[57] << 8) | (mask_m[58] << 6) | (mask_m[59] << 4) | (mask_m[60] << 2) | (mask_m[61] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask); REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask); tmp_mask = (mask_m[31] << 28) | (mask_m[32] << 26) | (mask_m[33] << 24) | (mask_m[34] << 22) | (mask_m[35] << 20) | (mask_m[36] << 18) | (mask_m[37] << 16) | (mask_m[48] << 14) | (mask_m[39] << 12) | (mask_m[40] << 10) | (mask_m[41] << 8) | (mask_m[42] << 6) | (mask_m[43] << 4) | (mask_m[44] << 2) | (mask_m[45] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask); tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) | (mask_m[18] << 26) | (mask_m[18] << 24) | (mask_m[20] << 22) | (mask_m[20] << 20) | (mask_m[22] << 18) | (mask_m[22] << 16) | (mask_m[24] << 14) | (mask_m[24] << 12) | (mask_m[25] << 10) | (mask_m[26] << 8) | (mask_m[27] << 6) | (mask_m[28] << 4) | (mask_m[29] << 2) | (mask_m[30] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask); tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28) | (mask_m[2] << 26) | (mask_m[3] << 24) | (mask_m[4] << 22) | (mask_m[5] << 20) | (mask_m[6] << 18) | (mask_m[7] << 16) | (mask_m[8] << 14) | (mask_m[9] << 12) | (mask_m[10] << 10) | (mask_m[11] << 8) | (mask_m[12] << 6) | (mask_m[13] << 4) | (mask_m[14] << 2) | (mask_m[15] << 0); REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask); tmp_mask = (mask_p[15] << 28) | (mask_p[14] << 26) | (mask_p[13] << 24) | (mask_p[12] << 22) | (mask_p[11] << 20) | (mask_p[10] << 18) | (mask_p[9] << 16) | (mask_p[8] << 14) | (mask_p[7] << 12) | (mask_p[6] << 10) | (mask_p[5] << 8) | (mask_p[4] << 6) | (mask_p[3] << 4) | (mask_p[2] << 2) | (mask_p[1] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask); tmp_mask = (mask_p[30] << 28) | (mask_p[29] << 26) | (mask_p[28] << 24) | (mask_p[27] << 22) | (mask_p[26] << 20) | (mask_p[25] << 18) | (mask_p[24] << 16) | (mask_p[23] << 14) | (mask_p[22] << 12) | (mask_p[21] << 10) | (mask_p[20] << 8) | (mask_p[19] << 6) | (mask_p[18] << 4) | (mask_p[17] << 2) | (mask_p[16] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask); tmp_mask = (mask_p[45] << 28) | (mask_p[44] << 26) | (mask_p[43] << 24) | (mask_p[42] << 22) | (mask_p[41] << 20) | (mask_p[40] << 18) | (mask_p[39] << 16) | (mask_p[38] << 14) | (mask_p[37] << 12) | (mask_p[36] << 10) | (mask_p[35] << 8) | (mask_p[34] << 6) | (mask_p[33] << 4) | (mask_p[32] << 2) | (mask_p[31] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask); tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) | (mask_p[59] << 26) | (mask_p[58] << 24) | (mask_p[57] << 22) | (mask_p[56] << 20) | (mask_p[55] << 18) | (mask_p[54] << 16) | (mask_p[53] << 14) | (mask_p[52] << 12) | (mask_p[51] << 10) | (mask_p[50] << 8) | (mask_p[49] << 6) | (mask_p[48] << 4) | (mask_p[47] << 2) | (mask_p[46] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask); } static void ath9k_hw_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan) { int bb_spur = AR_NO_SPUR; int bin, cur_bin; int spur_freq_sd; int spur_delta_phase; int denominator; int upper, lower, cur_vit_mask; int tmp, new; int i; int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8, AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 }; int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10, AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 }; int inc[4] = { 0, 100, 0, 0 }; int8_t mask_m[123]; int8_t mask_p[123]; int8_t mask_amt; int tmp_mask; int cur_bb_spur; bool is2GHz = IS_CHAN_2GHZ(chan); memset(&mask_m, 0, sizeof(int8_t) * 123); memset(&mask_p, 0, sizeof(int8_t) * 123); for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz); if (AR_NO_SPUR == cur_bb_spur) break; cur_bb_spur = cur_bb_spur - (chan->channel * 10); if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) { bb_spur = cur_bb_spur; break; } } if (AR_NO_SPUR == bb_spur) return; bin = bb_spur * 32; tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0)); new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new); new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL | AR_PHY_SPUR_REG_ENABLE_MASK_PPM | AR_PHY_SPUR_REG_MASK_RATE_SELECT | AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH)); REG_WRITE(ah, AR_PHY_SPUR_REG, new); spur_delta_phase = ((bb_spur * 524288) / 100) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; denominator = IS_CHAN_2GHZ(chan) ? 440 : 400; spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff; new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC | SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) | SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE)); REG_WRITE(ah, AR_PHY_TIMING11, new); cur_bin = -6000; upper = bin + 100; lower = bin - 100; for (i = 0; i < 4; i++) { int pilot_mask = 0; int chan_mask = 0; int bp = 0; for (bp = 0; bp < 30; bp++) { if ((cur_bin > lower) && (cur_bin < upper)) { pilot_mask = pilot_mask | 0x1 << bp; chan_mask = chan_mask | 0x1 << bp; } cur_bin += 100; } cur_bin += inc[i]; REG_WRITE(ah, pilot_mask_reg[i], pilot_mask); REG_WRITE(ah, chan_mask_reg[i], chan_mask); } cur_vit_mask = 6100; upper = bin + 120; lower = bin - 120; for (i = 0; i < 123; i++) { if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) { /* workaround for gcc bug #37014 */ volatile int tmp = abs(cur_vit_mask - bin); if (tmp < 75) mask_amt = 1; else mask_amt = 0; if (cur_vit_mask < 0) mask_m[abs(cur_vit_mask / 100)] = mask_amt; else mask_p[cur_vit_mask / 100] = mask_amt; } cur_vit_mask -= 100; } tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) | (mask_m[48] << 26) | (mask_m[49] << 24) | (mask_m[50] << 22) | (mask_m[51] << 20) | (mask_m[52] << 18) | (mask_m[53] << 16) | (mask_m[54] << 14) | (mask_m[55] << 12) | (mask_m[56] << 10) | (mask_m[57] << 8) | (mask_m[58] << 6) | (mask_m[59] << 4) | (mask_m[60] << 2) | (mask_m[61] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask); REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask); tmp_mask = (mask_m[31] << 28) | (mask_m[32] << 26) | (mask_m[33] << 24) | (mask_m[34] << 22) | (mask_m[35] << 20) | (mask_m[36] << 18) | (mask_m[37] << 16) | (mask_m[48] << 14) | (mask_m[39] << 12) | (mask_m[40] << 10) | (mask_m[41] << 8) | (mask_m[42] << 6) | (mask_m[43] << 4) | (mask_m[44] << 2) | (mask_m[45] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask); tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) | (mask_m[18] << 26) | (mask_m[18] << 24) | (mask_m[20] << 22) | (mask_m[20] << 20) | (mask_m[22] << 18) | (mask_m[22] << 16) | (mask_m[24] << 14) | (mask_m[24] << 12) | (mask_m[25] << 10) | (mask_m[26] << 8) | (mask_m[27] << 6) | (mask_m[28] << 4) | (mask_m[29] << 2) | (mask_m[30] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask); tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28) | (mask_m[2] << 26) | (mask_m[3] << 24) | (mask_m[4] << 22) | (mask_m[5] << 20) | (mask_m[6] << 18) | (mask_m[7] << 16) | (mask_m[8] << 14) | (mask_m[9] << 12) | (mask_m[10] << 10) | (mask_m[11] << 8) | (mask_m[12] << 6) | (mask_m[13] << 4) | (mask_m[14] << 2) | (mask_m[15] << 0); REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask); tmp_mask = (mask_p[15] << 28) | (mask_p[14] << 26) | (mask_p[13] << 24) | (mask_p[12] << 22) | (mask_p[11] << 20) | (mask_p[10] << 18) | (mask_p[9] << 16) | (mask_p[8] << 14) | (mask_p[7] << 12) | (mask_p[6] << 10) | (mask_p[5] << 8) | (mask_p[4] << 6) | (mask_p[3] << 4) | (mask_p[2] << 2) | (mask_p[1] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask); tmp_mask = (mask_p[30] << 28) | (mask_p[29] << 26) | (mask_p[28] << 24) | (mask_p[27] << 22) | (mask_p[26] << 20) | (mask_p[25] << 18) | (mask_p[24] << 16) | (mask_p[23] << 14) | (mask_p[22] << 12) | (mask_p[21] << 10) | (mask_p[20] << 8) | (mask_p[19] << 6) | (mask_p[18] << 4) | (mask_p[17] << 2) | (mask_p[16] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask); tmp_mask = (mask_p[45] << 28) | (mask_p[44] << 26) | (mask_p[43] << 24) | (mask_p[42] << 22) | (mask_p[41] << 20) | (mask_p[40] << 18) | (mask_p[39] << 16) | (mask_p[38] << 14) | (mask_p[37] << 12) | (mask_p[36] << 10) | (mask_p[35] << 8) | (mask_p[34] << 6) | (mask_p[33] << 4) | (mask_p[32] << 2) | (mask_p[31] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask); tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) | (mask_p[59] << 26) | (mask_p[58] << 24) | (mask_p[57] << 22) | (mask_p[56] << 20) | (mask_p[55] << 18) | (mask_p[54] << 16) | (mask_p[53] << 14) | (mask_p[52] << 12) | (mask_p[51] << 10) | (mask_p[50] << 8) | (mask_p[49] << 6) | (mask_p[48] << 4) | (mask_p[47] << 2) | (mask_p[46] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask); } static void ath9k_hw_init_chain_masks(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); int rx_chainmask, tx_chainmask; rx_chainmask = ahp->ah_rxchainmask; tx_chainmask = ahp->ah_txchainmask; switch (rx_chainmask) { case 0x5: REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); case 0x3: if (((ah)->ah_macVersion <= AR_SREV_VERSION_9160)) { REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7); REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7); break; } case 0x1: case 0x2: if (!AR_SREV_9280(ah)) break; case 0x7: REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); break; default: break; } REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask); if (tx_chainmask == 0x5) { REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); } if (AR_SREV_9100(ah)) REG_WRITE(ah, AR_PHY_ANALOG_SWAP, REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001); } static void ath9k_hw_set_addac(struct ath_hal *ah, struct ath9k_channel *chan) { struct modal_eep_header *pModal; struct ath_hal_5416 *ahp = AH5416(ah); struct ar5416_eeprom *eep = &ahp->ah_eeprom; u8 biaslevel; if (ah->ah_macVersion != AR_SREV_VERSION_9160) return; if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7) return; pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]); if (pModal->xpaBiasLvl != 0xff) { biaslevel = pModal->xpaBiasLvl; } else { u16 resetFreqBin, freqBin, freqCount = 0; struct chan_centers centers; ath9k_hw_get_channel_centers(ah, chan, ¢ers); resetFreqBin = FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)); freqBin = pModal->xpaBiasLvlFreq[0] & 0xff; biaslevel = (u8) (pModal->xpaBiasLvlFreq[0] >> 14); freqCount++; while (freqCount < 3) { if (pModal->xpaBiasLvlFreq[freqCount] == 0x0) break; freqBin = pModal->xpaBiasLvlFreq[freqCount] & 0xff; if (resetFreqBin >= freqBin) { biaslevel = (u8) (pModal-> xpaBiasLvlFreq[freqCount] >> 14); } else { break; } freqCount++; } } if (IS_CHAN_2GHZ(chan)) { INI_RA(&ahp->ah_iniAddac, 7, 1) = (INI_RA(&ahp->ah_iniAddac, 7, 1) & (~0x18)) | biaslevel << 3; } else { INI_RA(&ahp->ah_iniAddac, 6, 1) = (INI_RA(&ahp->ah_iniAddac, 6, 1) & (~0xc0)) | biaslevel << 6; } } static u32 ath9k_hw_mac_usec(struct ath_hal *ah, u32 clks) { if (ah->ah_curchan != NULL) return clks / CLOCK_RATE[ath9k_hw_chan2wmode(ah, ah->ah_curchan)]; else return clks / CLOCK_RATE[ATH9K_MODE_11B]; } static u32 ath9k_hw_mac_to_usec(struct ath_hal *ah, u32 clks) { struct ath9k_channel *chan = ah->ah_curchan; if (chan && IS_CHAN_HT40(chan)) return ath9k_hw_mac_usec(ah, clks) / 2; else return ath9k_hw_mac_usec(ah, clks); } static u32 ath9k_hw_mac_clks(struct ath_hal *ah, u32 usecs) { if (ah->ah_curchan != NULL) return usecs * CLOCK_RATE[ath9k_hw_chan2wmode(ah, ah->ah_curchan)]; else return usecs * CLOCK_RATE[ATH9K_MODE_11B]; } static u32 ath9k_hw_mac_to_clks(struct ath_hal *ah, u32 usecs) { struct ath9k_channel *chan = ah->ah_curchan; if (chan && IS_CHAN_HT40(chan)) return ath9k_hw_mac_clks(ah, usecs) * 2; else return ath9k_hw_mac_clks(ah, usecs); } static bool ath9k_hw_set_ack_timeout(struct ath_hal *ah, u32 us) { struct ath_hal_5416 *ahp = AH5416(ah); if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad ack timeout %u\n", __func__, us); ahp->ah_acktimeout = (u32) -1; return false; } else { REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us)); ahp->ah_acktimeout = us; return true; } } static bool ath9k_hw_set_cts_timeout(struct ath_hal *ah, u32 us) { struct ath_hal_5416 *ahp = AH5416(ah); if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad cts timeout %u\n", __func__, us); ahp->ah_ctstimeout = (u32) -1; return false; } else { REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us)); ahp->ah_ctstimeout = us; return true; } } static bool ath9k_hw_set_global_txtimeout(struct ath_hal *ah, u32 tu) { struct ath_hal_5416 *ahp = AH5416(ah); if (tu > 0xFFFF) { DPRINTF(ah->ah_sc, ATH_DBG_XMIT, "%s: bad global tx timeout %u\n", __func__, tu); ahp->ah_globaltxtimeout = (u32) -1; return false; } else { REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); ahp->ah_globaltxtimeout = tu; return true; } } bool ath9k_hw_setslottime(struct ath_hal *ah, u32 us) { struct ath_hal_5416 *ahp = AH5416(ah); if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad slot time %u\n", __func__, us); ahp->ah_slottime = (u32) -1; return false; } else { REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us)); ahp->ah_slottime = us; return true; } } static void ath9k_hw_init_user_settings(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); DPRINTF(ah->ah_sc, ATH_DBG_RESET, "--AP %s ahp->ah_miscMode 0x%x\n", __func__, ahp->ah_miscMode); if (ahp->ah_miscMode != 0) REG_WRITE(ah, AR_PCU_MISC, REG_READ(ah, AR_PCU_MISC) | ahp->ah_miscMode); if (ahp->ah_slottime != (u32) -1) ath9k_hw_setslottime(ah, ahp->ah_slottime); if (ahp->ah_acktimeout != (u32) -1) ath9k_hw_set_ack_timeout(ah, ahp->ah_acktimeout); if (ahp->ah_ctstimeout != (u32) -1) ath9k_hw_set_cts_timeout(ah, ahp->ah_ctstimeout); if (ahp->ah_globaltxtimeout != (u32) -1) ath9k_hw_set_global_txtimeout(ah, ahp->ah_globaltxtimeout); } static int ath9k_hw_process_ini(struct ath_hal *ah, struct ath9k_channel *chan, enum ath9k_ht_macmode macmode) { int i, regWrites = 0; struct ath_hal_5416 *ahp = AH5416(ah); u32 modesIndex, freqIndex; int status; switch (chan->chanmode) { case CHANNEL_A: case CHANNEL_A_HT20: modesIndex = 1; freqIndex = 1; break; case CHANNEL_A_HT40PLUS: case CHANNEL_A_HT40MINUS: modesIndex = 2; freqIndex = 1; break; case CHANNEL_G: case CHANNEL_G_HT20: case CHANNEL_B: modesIndex = 4; freqIndex = 2; break; case CHANNEL_G_HT40PLUS: case CHANNEL_G_HT40MINUS: modesIndex = 3; freqIndex = 2; break; default: return -EINVAL; } REG_WRITE(ah, AR_PHY(0), 0x00000007); REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO); ath9k_hw_set_addac(ah, chan); if (AR_SREV_5416_V22_OR_LATER(ah)) { REG_WRITE_ARRAY(&ahp->ah_iniAddac, 1, regWrites); } else { struct ar5416IniArray temp; u32 addacSize = sizeof(u32) * ahp->ah_iniAddac.ia_rows * ahp->ah_iniAddac.ia_columns; memcpy(ahp->ah_addac5416_21, ahp->ah_iniAddac.ia_array, addacSize); (ahp->ah_addac5416_21)[31 * ahp->ah_iniAddac.ia_columns + 1] = 0; temp.ia_array = ahp->ah_addac5416_21; temp.ia_columns = ahp->ah_iniAddac.ia_columns; temp.ia_rows = ahp->ah_iniAddac.ia_rows; REG_WRITE_ARRAY(&temp, 1, regWrites); } REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC); for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) { u32 reg = INI_RA(&ahp->ah_iniModes, i, 0); u32 val = INI_RA(&ahp->ah_iniModes, i, modesIndex); #ifdef CONFIG_SLOW_ANT_DIV if (ah->ah_devid == AR9280_DEVID_PCI) val = ath9k_hw_ini_fixup(ah, &ahp->ah_eeprom, reg, val); #endif REG_WRITE(ah, reg, val); if (reg >= 0x7800 && reg < 0x78a0 && ah->ah_config.analog_shiftreg) { udelay(100); } DO_DELAY(regWrites); } for (i = 0; i < ahp->ah_iniCommon.ia_rows; i++) { u32 reg = INI_RA(&ahp->ah_iniCommon, i, 0); u32 val = INI_RA(&ahp->ah_iniCommon, i, 1); REG_WRITE(ah, reg, val); if (reg >= 0x7800 && reg < 0x78a0 && ah->ah_config.analog_shiftreg) { udelay(100); } DO_DELAY(regWrites); } ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites); if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) { REG_WRITE_ARRAY(&ahp->ah_iniModesAdditional, modesIndex, regWrites); } ath9k_hw_override_ini(ah, chan); ath9k_hw_set_regs(ah, chan, macmode); ath9k_hw_init_chain_masks(ah); status = ath9k_hw_set_txpower(ah, &ahp->ah_eeprom, chan, ath9k_regd_get_ctl(ah, chan), ath9k_regd_get_antenna_allowed(ah, chan), chan->maxRegTxPower * 2, min((u32) MAX_RATE_POWER, (u32) ah->ah_powerLimit)); if (status != 0) { DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s: error init'ing transmit power\n", __func__); return -EIO; } if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) { DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "%s: ar5416SetRfRegs failed\n", __func__); return -EIO; } return 0; } static void ath9k_hw_setup_calibration(struct ath_hal *ah, struct hal_cal_list *currCal) { REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(0), AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX, currCal->calData->calCountMax); switch (currCal->calData->calType) { case IQ_MISMATCH_CAL: REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%s: starting IQ Mismatch Calibration\n", __func__); break; case ADC_GAIN_CAL: REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_GAIN); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%s: starting ADC Gain Calibration\n", __func__); break; case ADC_DC_CAL: REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_PER); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%s: starting ADC DC Calibration\n", __func__); break; case ADC_DC_INIT_CAL: REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_INIT); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%s: starting Init ADC DC Calibration\n", __func__); break; } REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0), AR_PHY_TIMING_CTRL4_DO_CAL); } static void ath9k_hw_reset_calibration(struct ath_hal *ah, struct hal_cal_list *currCal) { struct ath_hal_5416 *ahp = AH5416(ah); int i; ath9k_hw_setup_calibration(ah, currCal); currCal->calState = CAL_RUNNING; for (i = 0; i < AR5416_MAX_CHAINS; i++) { ahp->ah_Meas0.sign[i] = 0; ahp->ah_Meas1.sign[i] = 0; ahp->ah_Meas2.sign[i] = 0; ahp->ah_Meas3.sign[i] = 0; } ahp->ah_CalSamples = 0; } static void ath9k_hw_per_calibration(struct ath_hal *ah, struct ath9k_channel *ichan, u8 rxchainmask, struct hal_cal_list *currCal, bool *isCalDone) { struct ath_hal_5416 *ahp = AH5416(ah); *isCalDone = false; if (currCal->calState == CAL_RUNNING) { if (!(REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) & AR_PHY_TIMING_CTRL4_DO_CAL)) { currCal->calData->calCollect(ah); ahp->ah_CalSamples++; if (ahp->ah_CalSamples >= currCal->calData->calNumSamples) { int i, numChains = 0; for (i = 0; i < AR5416_MAX_CHAINS; i++) { if (rxchainmask & (1 << i)) numChains++; } currCal->calData->calPostProc(ah, numChains); ichan->CalValid |= currCal->calData->calType; currCal->calState = CAL_DONE; *isCalDone = true; } else { ath9k_hw_setup_calibration(ah, currCal); } } } else if (!(ichan->CalValid & currCal->calData->calType)) { ath9k_hw_reset_calibration(ah, currCal); } } static inline bool ath9k_hw_run_init_cals(struct ath_hal *ah, int init_cal_count) { struct ath_hal_5416 *ahp = AH5416(ah); struct ath9k_channel ichan; bool isCalDone; struct hal_cal_list *currCal = ahp->ah_cal_list_curr; const struct hal_percal_data *calData = currCal->calData; int i; if (currCal == NULL) return false; ichan.CalValid = 0; for (i = 0; i < init_cal_count; i++) { ath9k_hw_reset_calibration(ah, currCal); if (!ath9k_hw_wait(ah, AR_PHY_TIMING_CTRL4(0), AR_PHY_TIMING_CTRL4_DO_CAL, 0)) { DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%s: Cal %d failed to complete in 100ms.\n", __func__, calData->calType); ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr = NULL; return false; } ath9k_hw_per_calibration(ah, &ichan, ahp->ah_rxchainmask, currCal, &isCalDone); if (!isCalDone) { DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%s: Not able to run Init Cal %d.\n", __func__, calData->calType); } if (currCal->calNext) { currCal = currCal->calNext; calData = currCal->calData; } } ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr = NULL; return true; } static bool ath9k_hw_channel_change(struct ath_hal *ah, struct ath9k_channel *chan, enum ath9k_ht_macmode macmode) { u32 synthDelay, qnum; struct ath_hal_5416 *ahp = AH5416(ah); for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { if (ath9k_hw_numtxpending(ah, qnum)) { DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: Transmit frames pending on queue %d\n", __func__, qnum); return false; } } REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) { DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO, "%s: Could not kill baseband RX\n", __func__); return false; } ath9k_hw_set_regs(ah, chan, macmode); if (AR_SREV_9280_10_OR_LATER(ah)) { if (!(ath9k_hw_ar9280_set_channel(ah, chan))) { DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: failed to set channel\n", __func__); return false; } } else { if (!(ath9k_hw_set_channel(ah, chan))) { DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: failed to set channel\n", __func__); return false; } } if (ath9k_hw_set_txpower(ah, &ahp->ah_eeprom, chan, ath9k_regd_get_ctl(ah, chan), ath9k_regd_get_antenna_allowed(ah, chan), chan->maxRegTxPower * 2, min((u32) MAX_RATE_POWER, (u32) ah->ah_powerLimit)) != 0) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "%s: error init'ing transmit power\n", __func__); return false; } synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; if (IS_CHAN_CCK(chan)) synthDelay = (4 * synthDelay) / 22; else synthDelay /= 10; udelay(synthDelay + BASE_ACTIVATE_DELAY); REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) ath9k_hw_set_delta_slope(ah, chan); if (AR_SREV_9280_10_OR_LATER(ah)) ath9k_hw_9280_spur_mitigate(ah, chan); else ath9k_hw_spur_mitigate(ah, chan); if (!chan->oneTimeCalsDone) chan->oneTimeCalsDone = true; return true; } static bool ath9k_hw_chip_reset(struct ath_hal *ah, struct ath9k_channel *chan) { struct ath_hal_5416 *ahp = AH5416(ah); if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) return false; if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) return false; ahp->ah_chipFullSleep = false; ath9k_hw_init_pll(ah, chan); ath9k_hw_set_rfmode(ah, chan); return true; } static inline void ath9k_hw_set_dma(struct ath_hal *ah) { u32 regval; regval = REG_READ(ah, AR_AHB_MODE); REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN); regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK; REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B); REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->ah_txTrigLevel); regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK; REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B); REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); if (AR_SREV_9285(ah)) { REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); } else { REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE); } } bool ath9k_hw_stopdmarecv(struct ath_hal *ah) { REG_WRITE(ah, AR_CR, AR_CR_RXD); if (!ath9k_hw_wait(ah, AR_CR, AR_CR_RXE, 0)) { DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: dma failed to stop in 10ms\n" "AR_CR=0x%08x\nAR_DIAG_SW=0x%08x\n", __func__, REG_READ(ah, AR_CR), REG_READ(ah, AR_DIAG_SW)); return false; } else { return true; } } void ath9k_hw_startpcureceive(struct ath_hal *ah) { REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); ath9k_enable_mib_counters(ah); ath9k_ani_reset(ah); } void ath9k_hw_stoppcurecv(struct ath_hal *ah) { REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS); ath9k_hw_disable_mib_counters(ah); } static bool ath9k_hw_iscal_supported(struct ath_hal *ah, struct ath9k_channel *chan, enum hal_cal_types calType) { struct ath_hal_5416 *ahp = AH5416(ah); bool retval = false; switch (calType & ahp->ah_suppCals) { case IQ_MISMATCH_CAL: if (!IS_CHAN_B(chan)) retval = true; break; case ADC_GAIN_CAL: case ADC_DC_CAL: if (!IS_CHAN_B(chan) && !(IS_CHAN_2GHZ(chan) && IS_CHAN_HT20(chan))) retval = true; break; } return retval; } static bool ath9k_hw_init_cal(struct ath_hal *ah, struct ath9k_channel *chan) { struct ath_hal_5416 *ahp = AH5416(ah); struct ath9k_channel *ichan = ath9k_regd_check_channel(ah, chan); REG_WRITE(ah, AR_PHY_AGC_CONTROL, REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL); if (!ath9k_hw_wait (ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) { DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%s: offset calibration failed to complete in 1ms; " "noisy environment?\n", __func__); return false; } REG_WRITE(ah, AR_PHY_AGC_CONTROL, REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF); ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr = NULL; if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah)) { if (ath9k_hw_iscal_supported(ah, chan, ADC_GAIN_CAL)) { INIT_CAL(&ahp->ah_adcGainCalData); INSERT_CAL(ahp, &ahp->ah_adcGainCalData); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%s: enabling ADC Gain Calibration.\n", __func__); } if (ath9k_hw_iscal_supported(ah, chan, ADC_DC_CAL)) { INIT_CAL(&ahp->ah_adcDcCalData); INSERT_CAL(ahp, &ahp->ah_adcDcCalData); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%s: enabling ADC DC Calibration.\n", __func__); } if (ath9k_hw_iscal_supported(ah, chan, IQ_MISMATCH_CAL)) { INIT_CAL(&ahp->ah_iqCalData); INSERT_CAL(ahp, &ahp->ah_iqCalData); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%s: enabling IQ Calibration.\n", __func__); } ahp->ah_cal_list_curr = ahp->ah_cal_list; if (ahp->ah_cal_list_curr) ath9k_hw_reset_calibration(ah, ahp->ah_cal_list_curr); } ichan->CalValid = 0; return true; } bool ath9k_hw_reset(struct ath_hal *ah, struct ath9k_channel *chan, enum ath9k_ht_macmode macmode, u8 txchainmask, u8 rxchainmask, enum ath9k_ht_extprotspacing extprotspacing, bool bChannelChange, int *status) { u32 saveLedState; struct ath_hal_5416 *ahp = AH5416(ah); struct ath9k_channel *curchan = ah->ah_curchan; u32 saveDefAntenna; u32 macStaId1; int ecode; int i, rx_chainmask; ahp->ah_extprotspacing = extprotspacing; ahp->ah_txchainmask = txchainmask; ahp->ah_rxchainmask = rxchainmask; if (AR_SREV_9280(ah)) { ahp->ah_txchainmask &= 0x3; ahp->ah_rxchainmask &= 0x3; } if (ath9k_hw_check_chan(ah, chan) == NULL) { DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: invalid channel %u/0x%x; no mapping\n", __func__, chan->channel, chan->channelFlags); ecode = -EINVAL; goto bad; } if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) return false; if (curchan) ath9k_hw_getnf(ah, curchan); if (bChannelChange && (ahp->ah_chipFullSleep != true) && (ah->ah_curchan != NULL) && (chan->channel != ah->ah_curchan->channel) && ((chan->channelFlags & CHANNEL_ALL) == (ah->ah_curchan->channelFlags & CHANNEL_ALL)) && (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) && !IS_CHAN_A_5MHZ_SPACED(ah-> ah_curchan)))) { if (ath9k_hw_channel_change(ah, chan, macmode)) { ath9k_hw_loadnf(ah, ah->ah_curchan); ath9k_hw_start_nfcal(ah); return true; } } saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); if (saveDefAntenna == 0) saveDefAntenna = 1; macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; saveLedState = REG_READ(ah, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); ath9k_hw_mark_phy_inactive(ah); if (!ath9k_hw_chip_reset(ah, chan)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: chip reset failed\n", __func__); ecode = -EINVAL; goto bad; } if (AR_SREV_9280(ah)) { REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); if (test_bit(ATH9K_MODE_11A, ah->ah_caps.wireless_modes)) { if (IS_CHAN_5GHZ(chan)) ath9k_hw_set_gpio(ah, 9, 0); else ath9k_hw_set_gpio(ah, 9, 1); } ath9k_hw_cfg_output(ah, 9, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); } ecode = ath9k_hw_process_ini(ah, chan, macmode); if (ecode != 0) { ecode = -EINVAL; goto bad; } if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) ath9k_hw_set_delta_slope(ah, chan); if (AR_SREV_9280_10_OR_LATER(ah)) ath9k_hw_9280_spur_mitigate(ah, chan); else ath9k_hw_spur_mitigate(ah, chan); if (!ath9k_hw_eeprom_set_board_values(ah, chan)) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "%s: error setting board options\n", __func__); ecode = -EIO; goto bad; } ath9k_hw_decrease_chain_power(ah, chan); REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ahp->ah_macaddr)); REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ahp->ah_macaddr + 4) | macStaId1 | AR_STA_ID1_RTS_USE_DEF | (ah->ah_config. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0) | ahp->ah_staId1Defaults); ath9k_hw_set_operating_mode(ah, ah->ah_opmode); REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask)); REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4)); REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid)); REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) | ((ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S)); REG_WRITE(ah, AR_ISR, ~0); REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); if (AR_SREV_9280_10_OR_LATER(ah)) { if (!(ath9k_hw_ar9280_set_channel(ah, chan))) { ecode = -EIO; goto bad; } } else { if (!(ath9k_hw_set_channel(ah, chan))) { ecode = -EIO; goto bad; } } for (i = 0; i < AR_NUM_DCU; i++) REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); ahp->ah_intrTxqs = 0; for (i = 0; i < ah->ah_caps.total_queues; i++) ath9k_hw_resettxqueue(ah, i); ath9k_hw_init_interrupt_masks(ah, ah->ah_opmode); ath9k_hw_init_qos(ah); #ifdef CONFIG_RFKILL if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT) ath9k_enable_rfkill(ah); #endif ath9k_hw_init_user_settings(ah); REG_WRITE(ah, AR_STA_ID1, REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM); ath9k_hw_set_dma(ah); REG_WRITE(ah, AR_OBS, 8); if (ahp->ah_intrMitigation) { REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500); REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000); } ath9k_hw_init_bb(ah, chan); if (!ath9k_hw_init_cal(ah, chan)){ ecode = -EIO;; goto bad; } rx_chainmask = ahp->ah_rxchainmask; if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) { REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); } REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); if (AR_SREV_9100(ah)) { u32 mask; mask = REG_READ(ah, AR_CFG); if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s CFG Byte Swap Set 0x%x\n", __func__, mask); } else { mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; REG_WRITE(ah, AR_CFG, mask); DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s Setting CFG 0x%x\n", __func__, REG_READ(ah, AR_CFG)); } } else { #ifdef __BIG_ENDIAN REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); #endif } return true; bad: if (status) *status = ecode; return false; } bool ath9k_hw_phy_disable(struct ath_hal *ah) { return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM); } bool ath9k_hw_disable(struct ath_hal *ah) { if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) return false; return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD); } bool ath9k_hw_calibrate(struct ath_hal *ah, struct ath9k_channel *chan, u8 rxchainmask, bool longcal, bool *isCalDone) { struct ath_hal_5416 *ahp = AH5416(ah); struct hal_cal_list *currCal = ahp->ah_cal_list_curr; struct ath9k_channel *ichan = ath9k_regd_check_channel(ah, chan); *isCalDone = true; if (ichan == NULL) { DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: invalid channel %u/0x%x; no mapping\n", __func__, chan->channel, chan->channelFlags); return false; } if (currCal && (currCal->calState == CAL_RUNNING || currCal->calState == CAL_WAITING)) { ath9k_hw_per_calibration(ah, ichan, rxchainmask, currCal, isCalDone); if (*isCalDone) { ahp->ah_cal_list_curr = currCal = currCal->calNext; if (currCal->calState == CAL_WAITING) { *isCalDone = false; ath9k_hw_reset_calibration(ah, currCal); } } } if (longcal) { ath9k_hw_getnf(ah, ichan); ath9k_hw_loadnf(ah, ah->ah_curchan); ath9k_hw_start_nfcal(ah); if ((ichan->channelFlags & CHANNEL_CW_INT) != 0) { chan->channelFlags |= CHANNEL_CW_INT; ichan->channelFlags &= ~CHANNEL_CW_INT; } } return true; } static void ath9k_hw_iqcal_collect(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); int i; for (i = 0; i < AR5416_MAX_CHAINS; i++) { ahp->ah_totalPowerMeasI[i] += REG_READ(ah, AR_PHY_CAL_MEAS_0(i)); ahp->ah_totalPowerMeasQ[i] += REG_READ(ah, AR_PHY_CAL_MEAS_1(i)); ahp->ah_totalIqCorrMeas[i] += (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i)); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%d: Chn %d pmi=0x%08x;pmq=0x%08x;iqcm=0x%08x;\n", ahp->ah_CalSamples, i, ahp->ah_totalPowerMeasI[i], ahp->ah_totalPowerMeasQ[i], ahp->ah_totalIqCorrMeas[i]); } } static void ath9k_hw_adc_gaincal_collect(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); int i; for (i = 0; i < AR5416_MAX_CHAINS; i++) { ahp->ah_totalAdcIOddPhase[i] += REG_READ(ah, AR_PHY_CAL_MEAS_0(i)); ahp->ah_totalAdcIEvenPhase[i] += REG_READ(ah, AR_PHY_CAL_MEAS_1(i)); ahp->ah_totalAdcQOddPhase[i] += REG_READ(ah, AR_PHY_CAL_MEAS_2(i)); ahp->ah_totalAdcQEvenPhase[i] += REG_READ(ah, AR_PHY_CAL_MEAS_3(i)); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%d: Chn %d oddi=0x%08x; eveni=0x%08x; " "oddq=0x%08x; evenq=0x%08x;\n", ahp->ah_CalSamples, i, ahp->ah_totalAdcIOddPhase[i], ahp->ah_totalAdcIEvenPhase[i], ahp->ah_totalAdcQOddPhase[i], ahp->ah_totalAdcQEvenPhase[i]); } } static void ath9k_hw_adc_dccal_collect(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); int i; for (i = 0; i < AR5416_MAX_CHAINS; i++) { ahp->ah_totalAdcDcOffsetIOddPhase[i] += (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_0(i)); ahp->ah_totalAdcDcOffsetIEvenPhase[i] += (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_1(i)); ahp->ah_totalAdcDcOffsetQOddPhase[i] += (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i)); ahp->ah_totalAdcDcOffsetQEvenPhase[i] += (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_3(i)); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%d: Chn %d oddi=0x%08x; eveni=0x%08x; " "oddq=0x%08x; evenq=0x%08x;\n", ahp->ah_CalSamples, i, ahp->ah_totalAdcDcOffsetIOddPhase[i], ahp->ah_totalAdcDcOffsetIEvenPhase[i], ahp->ah_totalAdcDcOffsetQOddPhase[i], ahp->ah_totalAdcDcOffsetQEvenPhase[i]); } } static void ath9k_hw_iqcalibrate(struct ath_hal *ah, u8 numChains) { struct ath_hal_5416 *ahp = AH5416(ah); u32 powerMeasQ, powerMeasI, iqCorrMeas; u32 qCoffDenom, iCoffDenom; int32_t qCoff, iCoff; int iqCorrNeg, i; for (i = 0; i < numChains; i++) { powerMeasI = ahp->ah_totalPowerMeasI[i]; powerMeasQ = ahp->ah_totalPowerMeasQ[i]; iqCorrMeas = ahp->ah_totalIqCorrMeas[i]; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Starting IQ Cal and Correction for Chain %d\n", i); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Orignal: Chn %diq_corr_meas = 0x%08x\n", i, ahp->ah_totalIqCorrMeas[i]); iqCorrNeg = 0; if (iqCorrMeas > 0x80000000) { iqCorrMeas = (0xffffffff - iqCorrMeas) + 1; iqCorrNeg = 1; } DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_i = 0x%08x\n", i, powerMeasI); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_q = 0x%08x\n", i, powerMeasQ); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "iqCorrNeg is 0x%08x\n", iqCorrNeg); iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128; qCoffDenom = powerMeasQ / 64; if (powerMeasQ != 0) { iCoff = iqCorrMeas / iCoffDenom; qCoff = powerMeasI / qCoffDenom - 64; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d iCoff = 0x%08x\n", i, iCoff); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d qCoff = 0x%08x\n", i, qCoff); iCoff = iCoff & 0x3f; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "New: Chn %d iCoff = 0x%08x\n", i, iCoff); if (iqCorrNeg == 0x0) iCoff = 0x40 - iCoff; if (qCoff > 15) qCoff = 15; else if (qCoff <= -16) qCoff = 16; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d : iCoff = 0x%x qCoff = 0x%x\n", i, iCoff, qCoff); REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i), AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff); REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i), AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "IQ Cal and Correction done for Chain %d\n", i); } } REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0), AR_PHY_TIMING_CTRL4_IQCORR_ENABLE); } static void ath9k_hw_adc_gaincal_calibrate(struct ath_hal *ah, u8 numChains) { struct ath_hal_5416 *ahp = AH5416(ah); u32 iOddMeasOffset, iEvenMeasOffset, qOddMeasOffset, qEvenMeasOffset; u32 qGainMismatch, iGainMismatch, val, i; for (i = 0; i < numChains; i++) { iOddMeasOffset = ahp->ah_totalAdcIOddPhase[i]; iEvenMeasOffset = ahp->ah_totalAdcIEvenPhase[i]; qOddMeasOffset = ahp->ah_totalAdcQOddPhase[i]; qEvenMeasOffset = ahp->ah_totalAdcQEvenPhase[i]; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Starting ADC Gain Cal for Chain %d\n", i); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_odd_i = 0x%08x\n", i, iOddMeasOffset); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_even_i = 0x%08x\n", i, iEvenMeasOffset); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_odd_q = 0x%08x\n", i, qOddMeasOffset); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_even_q = 0x%08x\n", i, qEvenMeasOffset); if (iOddMeasOffset != 0 && qEvenMeasOffset != 0) { iGainMismatch = ((iEvenMeasOffset * 32) / iOddMeasOffset) & 0x3f; qGainMismatch = ((qOddMeasOffset * 32) / qEvenMeasOffset) & 0x3f; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d gain_mismatch_i = 0x%08x\n", i, iGainMismatch); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d gain_mismatch_q = 0x%08x\n", i, qGainMismatch); val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i)); val &= 0xfffff000; val |= (qGainMismatch) | (iGainMismatch << 6); REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "ADC Gain Cal done for Chain %d\n", i); } } REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0), REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) | AR_PHY_NEW_ADC_GAIN_CORR_ENABLE); } static void ath9k_hw_adc_dccal_calibrate(struct ath_hal *ah, u8 numChains) { struct ath_hal_5416 *ahp = AH5416(ah); u32 iOddMeasOffset, iEvenMeasOffset, val, i; int32_t qOddMeasOffset, qEvenMeasOffset, qDcMismatch, iDcMismatch; const struct hal_percal_data *calData = ahp->ah_cal_list_curr->calData; u32 numSamples = (1 << (calData->calCountMax + 5)) * calData->calNumSamples; for (i = 0; i < numChains; i++) { iOddMeasOffset = ahp->ah_totalAdcDcOffsetIOddPhase[i]; iEvenMeasOffset = ahp->ah_totalAdcDcOffsetIEvenPhase[i]; qOddMeasOffset = ahp->ah_totalAdcDcOffsetQOddPhase[i]; qEvenMeasOffset = ahp->ah_totalAdcDcOffsetQEvenPhase[i]; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Starting ADC DC Offset Cal for Chain %d\n", i); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_odd_i = %d\n", i, iOddMeasOffset); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_even_i = %d\n", i, iEvenMeasOffset); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_odd_q = %d\n", i, qOddMeasOffset); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d pwr_meas_even_q = %d\n", i, qEvenMeasOffset); iDcMismatch = (((iEvenMeasOffset - iOddMeasOffset) * 2) / numSamples) & 0x1ff; qDcMismatch = (((qOddMeasOffset - qEvenMeasOffset) * 2) / numSamples) & 0x1ff; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d dc_offset_mismatch_i = 0x%08x\n", i, iDcMismatch); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "Chn %d dc_offset_mismatch_q = 0x%08x\n", i, qDcMismatch); val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i)); val &= 0xc0000fff; val |= (qDcMismatch << 12) | (iDcMismatch << 21); REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val); DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "ADC DC Offset Cal done for Chain %d\n", i); } REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0), REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) | AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE); } bool ath9k_hw_set_txpowerlimit(struct ath_hal *ah, u32 limit) { struct ath_hal_5416 *ahp = AH5416(ah); struct ath9k_channel *chan = ah->ah_curchan; ah->ah_powerLimit = min(limit, (u32) MAX_RATE_POWER); if (ath9k_hw_set_txpower(ah, &ahp->ah_eeprom, chan, ath9k_regd_get_ctl(ah, chan), ath9k_regd_get_antenna_allowed(ah, chan), chan->maxRegTxPower * 2, min((u32) MAX_RATE_POWER, (u32) ah->ah_powerLimit)) != 0) return false; return true; } void ath9k_hw_get_channel_centers(struct ath_hal *ah, struct ath9k_channel *chan, struct chan_centers *centers) { int8_t extoff; struct ath_hal_5416 *ahp = AH5416(ah); if (!IS_CHAN_HT40(chan)) { centers->ctl_center = centers->ext_center = centers->synth_center = chan->channel; return; } if ((chan->chanmode == CHANNEL_A_HT40PLUS) || (chan->chanmode == CHANNEL_G_HT40PLUS)) { centers->synth_center = chan->channel + HT40_CHANNEL_CENTER_SHIFT; extoff = 1; } else { centers->synth_center = chan->channel - HT40_CHANNEL_CENTER_SHIFT; extoff = -1; } centers->ctl_center = centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); centers->ext_center = centers->synth_center + (extoff * ((ahp-> ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ? HT40_CHANNEL_CENTER_SHIFT : 15)); } void ath9k_hw_reset_calvalid(struct ath_hal *ah, struct ath9k_channel *chan, bool *isCalDone) { struct ath_hal_5416 *ahp = AH5416(ah); struct ath9k_channel *ichan = ath9k_regd_check_channel(ah, chan); struct hal_cal_list *currCal = ahp->ah_cal_list_curr; *isCalDone = true; if (!AR_SREV_9100(ah) && !AR_SREV_9160_10_OR_LATER(ah)) return; if (currCal == NULL) return; if (ichan == NULL) { DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%s: invalid channel %u/0x%x; no mapping\n", __func__, chan->channel, chan->channelFlags); return; } if (currCal->calState != CAL_DONE) { DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%s: Calibration state incorrect, %d\n", __func__, currCal->calState); return; } if (!ath9k_hw_iscal_supported(ah, chan, currCal->calData->calType)) return; DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "%s: Resetting Cal %d state for channel %u/0x%x\n", __func__, currCal->calData->calType, chan->channel, chan->channelFlags); ichan->CalValid &= ~currCal->calData->calType; currCal->calState = CAL_WAITING; *isCalDone = false; } void ath9k_hw_getmac(struct ath_hal *ah, u8 *mac) { struct ath_hal_5416 *ahp = AH5416(ah); memcpy(mac, ahp->ah_macaddr, ETH_ALEN); } bool ath9k_hw_setmac(struct ath_hal *ah, const u8 *mac) { struct ath_hal_5416 *ahp = AH5416(ah); memcpy(ahp->ah_macaddr, mac, ETH_ALEN); return true; } void ath9k_hw_getbssidmask(struct ath_hal *ah, u8 *mask) { struct ath_hal_5416 *ahp = AH5416(ah); memcpy(mask, ahp->ah_bssidmask, ETH_ALEN); } bool ath9k_hw_setbssidmask(struct ath_hal *ah, const u8 *mask) { struct ath_hal_5416 *ahp = AH5416(ah); memcpy(ahp->ah_bssidmask, mask, ETH_ALEN); REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask)); REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4)); return true; } void ath9k_hw_write_associd(struct ath_hal *ah, const u8 *bssid, u16 assocId) { struct ath_hal_5416 *ahp = AH5416(ah); memcpy(ahp->ah_bssid, bssid, ETH_ALEN); ahp->ah_assocId = assocId; REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid)); REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) | ((assocId & 0x3fff) << AR_BSS_ID1_AID_S)); } u64 ath9k_hw_gettsf64(struct ath_hal *ah) { u64 tsf; tsf = REG_READ(ah, AR_TSF_U32); tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32); return tsf; } void ath9k_hw_reset_tsf(struct ath_hal *ah) { int count; count = 0; while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) { count++; if (count > 10) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__); break; } udelay(10); } REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); } u32 ath9k_hw_getdefantenna(struct ath_hal *ah) { return REG_READ(ah, AR_DEF_ANTENNA) & 0x7; } void ath9k_hw_setantenna(struct ath_hal *ah, u32 antenna) { REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); } bool ath9k_hw_setantennaswitch(struct ath_hal *ah, enum ath9k_ant_setting settings, struct ath9k_channel *chan, u8 *tx_chainmask, u8 *rx_chainmask, u8 *antenna_cfgd) { struct ath_hal_5416 *ahp = AH5416(ah); static u8 tx_chainmask_cfg, rx_chainmask_cfg; if (AR_SREV_9280(ah)) { if (!tx_chainmask_cfg) { tx_chainmask_cfg = *tx_chainmask; rx_chainmask_cfg = *rx_chainmask; } switch (settings) { case ATH9K_ANT_FIXED_A: *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK; *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK; *antenna_cfgd = true; break; case ATH9K_ANT_FIXED_B: if (ah->ah_caps.tx_chainmask > ATH9K_ANTENNA1_CHAINMASK) { *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK; } *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK; *antenna_cfgd = true; break; case ATH9K_ANT_VARIABLE: *tx_chainmask = tx_chainmask_cfg; *rx_chainmask = rx_chainmask_cfg; *antenna_cfgd = true; break; default: break; } } else { ahp->ah_diversityControl = settings; } return true; } void ath9k_hw_setopmode(struct ath_hal *ah) { ath9k_hw_set_operating_mode(ah, ah->ah_opmode); } bool ath9k_hw_getcapability(struct ath_hal *ah, enum ath9k_capability_type type, u32 capability, u32 *result) { struct ath_hal_5416 *ahp = AH5416(ah); const struct ath9k_hw_capabilities *pCap = &ah->ah_caps; switch (type) { case ATH9K_CAP_CIPHER: switch (capability) { case ATH9K_CIPHER_AES_CCM: case ATH9K_CIPHER_AES_OCB: case ATH9K_CIPHER_TKIP: case ATH9K_CIPHER_WEP: case ATH9K_CIPHER_MIC: case ATH9K_CIPHER_CLR: return true; default: return false; } case ATH9K_CAP_TKIP_MIC: switch (capability) { case 0: return true; case 1: return (ahp->ah_staId1Defaults & AR_STA_ID1_CRPT_MIC_ENABLE) ? true : false; } case ATH9K_CAP_TKIP_SPLIT: return (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) ? false : true; case ATH9K_CAP_WME_TKIPMIC: return 0; case ATH9K_CAP_PHYCOUNTERS: return ahp->ah_hasHwPhyCounters ? 0 : -ENXIO; case ATH9K_CAP_DIVERSITY: return (REG_READ(ah, AR_PHY_CCK_DETECT) & AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ? true : false; case ATH9K_CAP_PHYDIAG: return true; case ATH9K_CAP_MCAST_KEYSRCH: switch (capability) { case 0: return true; case 1: if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) { return false; } else { return (ahp->ah_staId1Defaults & AR_STA_ID1_MCAST_KSRCH) ? true : false; } } return false; case ATH9K_CAP_TSF_ADJUST: return (ahp->ah_miscMode & AR_PCU_TX_ADD_TSF) ? true : false; case ATH9K_CAP_RFSILENT: if (capability == 3) return false; case ATH9K_CAP_ANT_CFG_2GHZ: *result = pCap->num_antcfg_2ghz; return true; case ATH9K_CAP_ANT_CFG_5GHZ: *result = pCap->num_antcfg_5ghz; return true; case ATH9K_CAP_TXPOW: switch (capability) { case 0: return 0; case 1: *result = ah->ah_powerLimit; return 0; case 2: *result = ah->ah_maxPowerLevel; return 0; case 3: *result = ah->ah_tpScale; return 0; } return false; default: return false; } } int ath9k_hw_select_antconfig(struct ath_hal *ah, u32 cfg) { struct ath_hal_5416 *ahp = AH5416(ah); struct ath9k_channel *chan = ah->ah_curchan; const struct ath9k_hw_capabilities *pCap = &ah->ah_caps; u16 ant_config; u32 halNumAntConfig; halNumAntConfig = IS_CHAN_2GHZ(chan) ? pCap->num_antcfg_2ghz : pCap-> num_antcfg_5ghz; if (cfg < halNumAntConfig) { if (!ath9k_hw_get_eeprom_antenna_cfg(ahp, chan, cfg, &ant_config)) { REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config); return 0; } } return -EINVAL; } bool ath9k_hw_intrpend(struct ath_hal *ah) { u32 host_isr; if (AR_SREV_9100(ah)) return true; host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE); if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS)) return true; host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE); if ((host_isr & AR_INTR_SYNC_DEFAULT) && (host_isr != AR_INTR_SPURIOUS)) return true; return false; } bool ath9k_hw_getisr(struct ath_hal *ah, enum ath9k_int *masked) { u32 isr = 0; u32 mask2 = 0; struct ath9k_hw_capabilities *pCap = &ah->ah_caps; u32 sync_cause = 0; bool fatal_int = false; if (!AR_SREV_9100(ah)) { if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) { if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON) { isr = REG_READ(ah, AR_ISR); } } sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) & AR_INTR_SYNC_DEFAULT; *masked = 0; if (!isr && !sync_cause) return false; } else { *masked = 0; isr = REG_READ(ah, AR_ISR); } if (isr) { struct ath_hal_5416 *ahp = AH5416(ah); if (isr & AR_ISR_BCNMISC) { u32 isr2; isr2 = REG_READ(ah, AR_ISR_S2); if (isr2 & AR_ISR_S2_TIM) mask2 |= ATH9K_INT_TIM; if (isr2 & AR_ISR_S2_DTIM) mask2 |= ATH9K_INT_DTIM; if (isr2 & AR_ISR_S2_DTIMSYNC) mask2 |= ATH9K_INT_DTIMSYNC; if (isr2 & (AR_ISR_S2_CABEND)) mask2 |= ATH9K_INT_CABEND; if (isr2 & AR_ISR_S2_GTT) mask2 |= ATH9K_INT_GTT; if (isr2 & AR_ISR_S2_CST) mask2 |= ATH9K_INT_CST; } isr = REG_READ(ah, AR_ISR_RAC); if (isr == 0xffffffff) { *masked = 0; return false; } *masked = isr & ATH9K_INT_COMMON; if (ahp->ah_intrMitigation) { if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM)) *masked |= ATH9K_INT_RX; } if (isr & (AR_ISR_RXOK | AR_ISR_RXERR)) *masked |= ATH9K_INT_RX; if (isr & (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR | AR_ISR_TXEOL)) { u32 s0_s, s1_s; *masked |= ATH9K_INT_TX; s0_s = REG_READ(ah, AR_ISR_S0_S); ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK); ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC); s1_s = REG_READ(ah, AR_ISR_S1_S); ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR); ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL); } if (isr & AR_ISR_RXORN) { DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: receive FIFO overrun interrupt\n", __func__); } if (!AR_SREV_9100(ah)) { if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { u32 isr5 = REG_READ(ah, AR_ISR_S5_S); if (isr5 & AR_ISR_S5_TIM_TIMER) *masked |= ATH9K_INT_TIM_TIMER; } } *masked |= mask2; } if (AR_SREV_9100(ah)) return true; if (sync_cause) { fatal_int = (sync_cause & (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) ? true : false; if (fatal_int) { if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) { DPRINTF(ah->ah_sc, ATH_DBG_ANY, "%s: received PCI FATAL interrupt\n", __func__); } if (sync_cause & AR_INTR_SYNC_HOST1_PERR) { DPRINTF(ah->ah_sc, ATH_DBG_ANY, "%s: received PCI PERR interrupt\n", __func__); } } if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) { DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: AR_INTR_SYNC_RADM_CPL_TIMEOUT\n", __func__); REG_WRITE(ah, AR_RC, AR_RC_HOSTIF); REG_WRITE(ah, AR_RC, 0); *masked |= ATH9K_INT_FATAL; } if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) { DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: AR_INTR_SYNC_LOCAL_TIMEOUT\n", __func__); } REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause); (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR); } return true; } enum ath9k_int ath9k_hw_intrget(struct ath_hal *ah) { return AH5416(ah)->ah_maskReg; } enum ath9k_int ath9k_hw_set_interrupts(struct ath_hal *ah, enum ath9k_int ints) { struct ath_hal_5416 *ahp = AH5416(ah); u32 omask = ahp->ah_maskReg; u32 mask, mask2; struct ath9k_hw_capabilities *pCap = &ah->ah_caps; DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: 0x%x => 0x%x\n", __func__, omask, ints); if (omask & ATH9K_INT_GLOBAL) { DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: disable IER\n", __func__); REG_WRITE(ah, AR_IER, AR_IER_DISABLE); (void) REG_READ(ah, AR_IER); if (!AR_SREV_9100(ah)) { REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0); (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE); REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); (void) REG_READ(ah, AR_INTR_SYNC_ENABLE); } } mask = ints & ATH9K_INT_COMMON; mask2 = 0; if (ints & ATH9K_INT_TX) { if (ahp->ah_txOkInterruptMask) mask |= AR_IMR_TXOK; if (ahp->ah_txDescInterruptMask) mask |= AR_IMR_TXDESC; if (ahp->ah_txErrInterruptMask) mask |= AR_IMR_TXERR; if (ahp->ah_txEolInterruptMask) mask |= AR_IMR_TXEOL; } if (ints & ATH9K_INT_RX) { mask |= AR_IMR_RXERR; if (ahp->ah_intrMitigation) mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM; else mask |= AR_IMR_RXOK | AR_IMR_RXDESC; if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) mask |= AR_IMR_GENTMR; } if (ints & (ATH9K_INT_BMISC)) { mask |= AR_IMR_BCNMISC; if (ints & ATH9K_INT_TIM) mask2 |= AR_IMR_S2_TIM; if (ints & ATH9K_INT_DTIM) mask2 |= AR_IMR_S2_DTIM; if (ints & ATH9K_INT_DTIMSYNC) mask2 |= AR_IMR_S2_DTIMSYNC; if (ints & ATH9K_INT_CABEND) mask2 |= (AR_IMR_S2_CABEND); } if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) { mask |= AR_IMR_BCNMISC; if (ints & ATH9K_INT_GTT) mask2 |= AR_IMR_S2_GTT; if (ints & ATH9K_INT_CST) mask2 |= AR_IMR_S2_CST; } DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: new IMR 0x%x\n", __func__, mask); REG_WRITE(ah, AR_IMR, mask); mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST); REG_WRITE(ah, AR_IMR_S2, mask | mask2); ahp->ah_maskReg = ints; if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { if (ints & ATH9K_INT_TIM_TIMER) REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER); else REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER); } if (ints & ATH9K_INT_GLOBAL) { DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: enable IER\n", __func__); REG_WRITE(ah, AR_IER, AR_IER_ENABLE); if (!AR_SREV_9100(ah)) { REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ); REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ); REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); REG_WRITE(ah, AR_INTR_SYNC_MASK, AR_INTR_SYNC_DEFAULT); } DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n", REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER)); } return omask; } void ath9k_hw_beaconinit(struct ath_hal *ah, u32 next_beacon, u32 beacon_period) { struct ath_hal_5416 *ahp = AH5416(ah); int flags = 0; ahp->ah_beaconInterval = beacon_period; switch (ah->ah_opmode) { case ATH9K_M_STA: case ATH9K_M_MONITOR: REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon)); REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff); REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff); flags |= AR_TBTT_TIMER_EN; break; case ATH9K_M_IBSS: REG_SET_BIT(ah, AR_TXCFG, AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); REG_WRITE(ah, AR_NEXT_NDP_TIMER, TU_TO_USEC(next_beacon + (ahp->ah_atimWindow ? ahp-> ah_atimWindow : 1))); flags |= AR_NDP_TIMER_EN; case ATH9K_M_HOSTAP: REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon)); REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, TU_TO_USEC(next_beacon - ah->ah_config. dma_beacon_response_time)); REG_WRITE(ah, AR_NEXT_SWBA, TU_TO_USEC(next_beacon - ah->ah_config. sw_beacon_response_time)); flags |= AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; break; } REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period)); REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period)); REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period)); REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period)); beacon_period &= ~ATH9K_BEACON_ENA; if (beacon_period & ATH9K_BEACON_RESET_TSF) { beacon_period &= ~ATH9K_BEACON_RESET_TSF; ath9k_hw_reset_tsf(ah); } REG_SET_BIT(ah, AR_TIMER_MODE, flags); } void ath9k_hw_set_sta_beacon_timers(struct ath_hal *ah, const struct ath9k_beacon_state *bs) { u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; struct ath9k_hw_capabilities *pCap = &ah->ah_caps; REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt)); REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD; if (bs->bs_sleepduration > beaconintval) beaconintval = bs->bs_sleepduration; dtimperiod = bs->bs_dtimperiod; if (bs->bs_sleepduration > dtimperiod) dtimperiod = bs->bs_sleepduration; if (beaconintval == dtimperiod) nextTbtt = bs->bs_nextdtim; else nextTbtt = bs->bs_nexttbtt; DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: next DTIM %d\n", __func__, bs->bs_nextdtim); DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: next beacon %d\n", __func__, nextTbtt); DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: beacon period %d\n", __func__, beaconintval); DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: DTIM period %d\n", __func__, dtimperiod); REG_WRITE(ah, AR_NEXT_DTIM, TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP)); REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP)); REG_WRITE(ah, AR_SLEEP1, SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) | AR_SLEEP1_ASSUME_DTIM); if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) beacontimeout = (BEACON_TIMEOUT_VAL << 3); else beacontimeout = MIN_BEACON_TIMEOUT_VAL; REG_WRITE(ah, AR_SLEEP2, SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval)); REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod)); REG_SET_BIT(ah, AR_TIMER_MODE, AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN); } bool ath9k_hw_keyisvalid(struct ath_hal *ah, u16 entry) { if (entry < ah->ah_caps.keycache_size) { u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry)); if (val & AR_KEYTABLE_VALID) return true; } return false; } bool ath9k_hw_keyreset(struct ath_hal *ah, u16 entry) { u32 keyType; if (entry >= ah->ah_caps.keycache_size) { DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE, "%s: entry %u out of range\n", __func__, entry); return false; } keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry)); REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0); REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR); REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0); REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0); if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) { u16 micentry = entry + 64; REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0); } if (ah->ah_curchan == NULL) return true; return true; } bool ath9k_hw_keysetmac(struct ath_hal *ah, u16 entry, const u8 *mac) { u32 macHi, macLo; if (entry >= ah->ah_caps.keycache_size) { DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE, "%s: entry %u out of range\n", __func__, entry); return false; } if (mac != NULL) { macHi = (mac[5] << 8) | mac[4]; macLo = (mac[3] << 24) | (mac[2] << 16) | (mac[1] << 8) | mac[0]; macLo >>= 1; macLo |= (macHi & 1) << 31; macHi >>= 1; } else { macLo = macHi = 0; } REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo); REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID); return true; } bool ath9k_hw_set_keycache_entry(struct ath_hal *ah, u16 entry, const struct ath9k_keyval *k, const u8 *mac, int xorKey) { const struct ath9k_hw_capabilities *pCap = &ah->ah_caps; u32 key0, key1, key2, key3, key4; u32 keyType; u32 xorMask = xorKey ? (ATH9K_KEY_XOR << 24 | ATH9K_KEY_XOR << 16 | ATH9K_KEY_XOR << 8 | ATH9K_KEY_XOR) : 0; struct ath_hal_5416 *ahp = AH5416(ah); if (entry >= pCap->keycache_size) { DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE, "%s: entry %u out of range\n", __func__, entry); return false; } switch (k->kv_type) { case ATH9K_CIPHER_AES_OCB: keyType = AR_KEYTABLE_TYPE_AES; break; case ATH9K_CIPHER_AES_CCM: if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) { DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE, "%s: AES-CCM not supported by " "mac rev 0x%x\n", __func__, ah->ah_macRev); return false; } keyType = AR_KEYTABLE_TYPE_CCM; break; case ATH9K_CIPHER_TKIP: keyType = AR_KEYTABLE_TYPE_TKIP; if (ATH9K_IS_MIC_ENABLED(ah) && entry + 64 >= pCap->keycache_size) { DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE, "%s: entry %u inappropriate for TKIP\n", __func__, entry); return false; } break; case ATH9K_CIPHER_WEP: if (k->kv_len < LEN_WEP40) { DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE, "%s: WEP key length %u too small\n", __func__, k->kv_len); return false; } if (k->kv_len <= LEN_WEP40) keyType = AR_KEYTABLE_TYPE_40; else if (k->kv_len <= LEN_WEP104) keyType = AR_KEYTABLE_TYPE_104; else keyType = AR_KEYTABLE_TYPE_128; break; case ATH9K_CIPHER_CLR: keyType = AR_KEYTABLE_TYPE_CLR; break; default: DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE, "%s: cipher %u not supported\n", __func__, k->kv_type); return false; } key0 = get_unaligned_le32(k->kv_val + 0) ^ xorMask; key1 = (get_unaligned_le16(k->kv_val + 4) ^ xorMask) & 0xffff; key2 = get_unaligned_le32(k->kv_val + 6) ^ xorMask; key3 = (get_unaligned_le16(k->kv_val + 10) ^ xorMask) & 0xffff; key4 = get_unaligned_le32(k->kv_val + 12) ^ xorMask; if (k->kv_len <= LEN_WEP104) key4 &= 0xff; if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) { u16 micentry = entry + 64; REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0); REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1); REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2); REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3); REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4); REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType); (void) ath9k_hw_keysetmac(ah, entry, mac); if (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) { u32 mic0, mic1, mic2, mic3, mic4; mic0 = get_unaligned_le32(k->kv_mic + 0); mic2 = get_unaligned_le32(k->kv_mic + 4); mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff; mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff; mic4 = get_unaligned_le32(k->kv_txmic + 4); REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0); REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1); REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2); REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3); REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4); REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR); } else { u32 mic0, mic2; mic0 = get_unaligned_le32(k->kv_mic + 0); mic2 = get_unaligned_le32(k->kv_mic + 4); REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0); REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2); REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR); } REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0); REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1); } else { REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0); REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1); REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2); REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3); REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4); REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType); (void) ath9k_hw_keysetmac(ah, entry, mac); } if (ah->ah_curchan == NULL) return true; return true; } bool ath9k_hw_updatetxtriglevel(struct ath_hal *ah, bool bIncTrigLevel) { struct ath_hal_5416 *ahp = AH5416(ah); u32 txcfg, curLevel, newLevel; enum ath9k_int omask; if (ah->ah_txTrigLevel >= MAX_TX_FIFO_THRESHOLD) return false; omask = ath9k_hw_set_interrupts(ah, ahp->ah_maskReg & ~ATH9K_INT_GLOBAL); txcfg = REG_READ(ah, AR_TXCFG); curLevel = MS(txcfg, AR_FTRIG); newLevel = curLevel; if (bIncTrigLevel) { if (curLevel < MAX_TX_FIFO_THRESHOLD) newLevel++; } else if (curLevel > MIN_TX_FIFO_THRESHOLD) newLevel--; if (newLevel != curLevel) REG_WRITE(ah, AR_TXCFG, (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG)); ath9k_hw_set_interrupts(ah, omask); ah->ah_txTrigLevel = newLevel; return newLevel != curLevel; } bool ath9k_hw_set_txq_props(struct ath_hal *ah, int q, const struct ath9k_tx_queue_info *qinfo) { u32 cw; struct ath_hal_5416 *ahp = AH5416(ah); struct ath9k_hw_capabilities *pCap = &ah->ah_caps; struct ath9k_tx_queue_info *qi; if (q >= pCap->total_queues) { DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n", __func__, q); return false; } qi = &ahp->ah_txq[q]; if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) { DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue\n", __func__); return false; } DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %p\n", __func__, qi); qi->tqi_ver = qinfo->tqi_ver; qi->tqi_subtype = qinfo->tqi_subtype; qi->tqi_qflags = qinfo->tqi_qflags; qi->tqi_priority = qinfo->tqi_priority; if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT) qi->tqi_aifs = min(qinfo->tqi_aifs, 255U); else qi->tqi_aifs = INIT_AIFS; if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) { cw = min(qinfo->tqi_cwmin, 1024U); qi->tqi_cwmin = 1; while (qi->tqi_cwmin < cw) qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1; } else qi->tqi_cwmin = qinfo->tqi_cwmin; if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) { cw = min(qinfo->tqi_cwmax, 1024U); qi->tqi_cwmax = 1; while (qi->tqi_cwmax < cw) qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1; } else qi->tqi_cwmax = INIT_CWMAX; if (qinfo->tqi_shretry != 0) qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U); else qi->tqi_shretry = INIT_SH_RETRY; if (qinfo->tqi_lgretry != 0) qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U); else qi->tqi_lgretry = INIT_LG_RETRY; qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod; qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit; qi->tqi_burstTime = qinfo->tqi_burstTime; qi->tqi_readyTime = qinfo->tqi_readyTime; switch (qinfo->tqi_subtype) { case ATH9K_WME_UPSD: if (qi->tqi_type == ATH9K_TX_QUEUE_DATA) qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS; break; default: break; } return true; } bool ath9k_hw_get_txq_props(struct ath_hal *ah, int q, struct ath9k_tx_queue_info *qinfo) { struct ath_hal_5416 *ahp = AH5416(ah); struct ath9k_hw_capabilities *pCap = &ah->ah_caps; struct ath9k_tx_queue_info *qi; if (q >= pCap->total_queues) { DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n", __func__, q); return false; } qi = &ahp->ah_txq[q]; if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) { DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue\n", __func__); return false; } qinfo->tqi_qflags = qi->tqi_qflags; qinfo->tqi_ver = qi->tqi_ver; qinfo->tqi_subtype = qi->tqi_subtype; qinfo->tqi_qflags = qi->tqi_qflags; qinfo->tqi_priority = qi->tqi_priority; qinfo->tqi_aifs = qi->tqi_aifs; qinfo->tqi_cwmin = qi->tqi_cwmin; qinfo->tqi_cwmax = qi->tqi_cwmax; qinfo->tqi_shretry = qi->tqi_shretry; qinfo->tqi_lgretry = qi->tqi_lgretry; qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod; qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit; qinfo->tqi_burstTime = qi->tqi_burstTime; qinfo->tqi_readyTime = qi->tqi_readyTime; return true; } int ath9k_hw_setuptxqueue(struct ath_hal *ah, enum ath9k_tx_queue type, const struct ath9k_tx_queue_info *qinfo) { struct ath_hal_5416 *ahp = AH5416(ah); struct ath9k_tx_queue_info *qi; struct ath9k_hw_capabilities *pCap = &ah->ah_caps; int q; switch (type) { case ATH9K_TX_QUEUE_BEACON: q = pCap->total_queues - 1; break; case ATH9K_TX_QUEUE_CAB: q = pCap->total_queues - 2; break; case ATH9K_TX_QUEUE_PSPOLL: q = 1; break; case ATH9K_TX_QUEUE_UAPSD: q = pCap->total_queues - 3; break; case ATH9K_TX_QUEUE_DATA: for (q = 0; q < pCap->total_queues; q++) if (ahp->ah_txq[q].tqi_type == ATH9K_TX_QUEUE_INACTIVE) break; if (q == pCap->total_queues) { DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: no available tx queue\n", __func__); return -1; } break; default: DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: bad tx queue type %u\n", __func__, type); return -1; } DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %u\n", __func__, q); qi = &ahp->ah_txq[q]; if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) { DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: tx queue %u already active\n", __func__, q); return -1; } memset(qi, 0, sizeof(struct ath9k_tx_queue_info)); qi->tqi_type = type; if (qinfo == NULL) { qi->tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE | TXQ_FLAG_TXERRINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE | TXQ_FLAG_TXURNINT_ENABLE; qi->tqi_aifs = INIT_AIFS; qi->tqi_cwmin = ATH9K_TXQ_USEDEFAULT; qi->tqi_cwmax = INIT_CWMAX; qi->tqi_shretry = INIT_SH_RETRY; qi->tqi_lgretry = INIT_LG_RETRY; qi->tqi_physCompBuf = 0; } else { qi->tqi_physCompBuf = qinfo->tqi_physCompBuf; (void) ath9k_hw_set_txq_props(ah, q, qinfo); } return q; } static void ath9k_hw_set_txq_interrupts(struct ath_hal *ah, struct ath9k_tx_queue_info *qi) { struct ath_hal_5416 *ahp = AH5416(ah); DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", __func__, ahp->ah_txOkInterruptMask, ahp->ah_txErrInterruptMask, ahp->ah_txDescInterruptMask, ahp->ah_txEolInterruptMask, ahp->ah_txUrnInterruptMask); REG_WRITE(ah, AR_IMR_S0, SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK) | SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC)); REG_WRITE(ah, AR_IMR_S1, SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR) | SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL)); REG_RMW_FIELD(ah, AR_IMR_S2, AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask); } bool ath9k_hw_releasetxqueue(struct ath_hal *ah, u32 q) { struct ath_hal_5416 *ahp = AH5416(ah); struct ath9k_hw_capabilities *pCap = &ah->ah_caps; struct ath9k_tx_queue_info *qi; if (q >= pCap->total_queues) { DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n", __func__, q); return false; } qi = &ahp->ah_txq[q]; if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) { DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue %u\n", __func__, q); return false; } DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: release queue %u\n", __func__, q); qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE; ahp->ah_txOkInterruptMask &= ~(1 << q); ahp->ah_txErrInterruptMask &= ~(1 << q); ahp->ah_txDescInterruptMask &= ~(1 << q); ahp->ah_txEolInterruptMask &= ~(1 << q); ahp->ah_txUrnInterruptMask &= ~(1 << q); ath9k_hw_set_txq_interrupts(ah, qi); return true; } bool ath9k_hw_resettxqueue(struct ath_hal *ah, u32 q) { struct ath_hal_5416 *ahp = AH5416(ah); struct ath9k_hw_capabilities *pCap = &ah->ah_caps; struct ath9k_channel *chan = ah->ah_curchan; struct ath9k_tx_queue_info *qi; u32 cwMin, chanCwMin, value; if (q >= pCap->total_queues) { DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n", __func__, q); return false; } qi = &ahp->ah_txq[q]; if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) { DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue %u\n", __func__, q); return true; } DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: reset queue %u\n", __func__, q); if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) { if (chan && IS_CHAN_B(chan)) chanCwMin = INIT_CWMIN_11B; else chanCwMin = INIT_CWMIN; for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1); } else cwMin = qi->tqi_cwmin; REG_WRITE(ah, AR_DLCL_IFS(q), SM(cwMin, AR_D_LCL_IFS_CWMIN) | SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS)); REG_WRITE(ah, AR_DRETRY_LIMIT(q), SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)); REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ); REG_WRITE(ah, AR_DMISC(q), AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2); if (qi->tqi_cbrPeriod) { REG_WRITE(ah, AR_QCBRCFG(q), SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) | SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH)); REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_FSP_CBR | (qi-> tqi_cbrOverflowLimit ? AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0)); } if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) { REG_WRITE(ah, AR_QRDYTIMECFG(q), SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) | AR_Q_RDYTIMECFG_EN); } REG_WRITE(ah, AR_DCHNTIME(q), SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) | (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0)); if (qi->tqi_burstTime && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)) { REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_RDYTIME_EXP_POLICY); } if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE) { REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q)) | AR_D_MISC_POST_FR_BKOFF_DIS); } if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE) { REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q)) | AR_D_MISC_FRAG_BKOFF_EN); } switch (qi->tqi_type) { case ATH9K_TX_QUEUE_BEACON: REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE | AR_Q_MISC_CBR_INCR_DIS1); REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q)) | (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL << AR_D_MISC_ARB_LOCKOUT_CNTRL_S) | AR_D_MISC_BEACON_USE | AR_D_MISC_POST_FR_BKOFF_DIS); break; case ATH9K_TX_QUEUE_CAB: REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 | AR_Q_MISC_CBR_INCR_DIS0); value = (qi->tqi_readyTime - (ah->ah_config.sw_beacon_response_time - ah->ah_config.dma_beacon_response_time) - ah->ah_config.additional_swba_backoff) * 1024; REG_WRITE(ah, AR_QRDYTIMECFG(q), value | AR_Q_RDYTIMECFG_EN); REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q)) | (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL << AR_D_MISC_ARB_LOCKOUT_CNTRL_S)); break; case ATH9K_TX_QUEUE_PSPOLL: REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_CBR_INCR_DIS1); break; case ATH9K_TX_QUEUE_UAPSD: REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q)) | AR_D_MISC_POST_FR_BKOFF_DIS); break; default: break; } if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) { REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q)) | SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, AR_D_MISC_ARB_LOCKOUT_CNTRL) | AR_D_MISC_POST_FR_BKOFF_DIS); } if (qi->tqi_qflags & TXQ_FLAG_TXOKINT_ENABLE) ahp->ah_txOkInterruptMask |= 1 << q; else ahp->ah_txOkInterruptMask &= ~(1 << q); if (qi->tqi_qflags & TXQ_FLAG_TXERRINT_ENABLE) ahp->ah_txErrInterruptMask |= 1 << q; else ahp->ah_txErrInterruptMask &= ~(1 << q); if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE) ahp->ah_txDescInterruptMask |= 1 << q; else ahp->ah_txDescInterruptMask &= ~(1 << q); if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE) ahp->ah_txEolInterruptMask |= 1 << q; else ahp->ah_txEolInterruptMask &= ~(1 << q); if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE) ahp->ah_txUrnInterruptMask |= 1 << q; else ahp->ah_txUrnInterruptMask &= ~(1 << q); ath9k_hw_set_txq_interrupts(ah, qi); return true; } void ath9k_hw_gettxintrtxqs(struct ath_hal *ah, u32 *txqs) { struct ath_hal_5416 *ahp = AH5416(ah); *txqs &= ahp->ah_intrTxqs; ahp->ah_intrTxqs &= ~(*txqs); } bool ath9k_hw_filltxdesc(struct ath_hal *ah, struct ath_desc *ds, u32 segLen, bool firstSeg, bool lastSeg, const struct ath_desc *ds0) { struct ar5416_desc *ads = AR5416DESC(ds); if (firstSeg) { ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore); } else if (lastSeg) { ads->ds_ctl0 = 0; ads->ds_ctl1 = segLen; ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2; ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3; } else { ads->ds_ctl0 = 0; ads->ds_ctl1 = segLen | AR_TxMore; ads->ds_ctl2 = 0; ads->ds_ctl3 = 0; } ads->ds_txstatus0 = ads->ds_txstatus1 = 0; ads->ds_txstatus2 = ads->ds_txstatus3 = 0; ads->ds_txstatus4 = ads->ds_txstatus5 = 0; ads->ds_txstatus6 = ads->ds_txstatus7 = 0; ads->ds_txstatus8 = ads->ds_txstatus9 = 0; return true; } void ath9k_hw_cleartxdesc(struct ath_hal *ah, struct ath_desc *ds) { struct ar5416_desc *ads = AR5416DESC(ds); ads->ds_txstatus0 = ads->ds_txstatus1 = 0; ads->ds_txstatus2 = ads->ds_txstatus3 = 0; ads->ds_txstatus4 = ads->ds_txstatus5 = 0; ads->ds_txstatus6 = ads->ds_txstatus7 = 0; ads->ds_txstatus8 = ads->ds_txstatus9 = 0; } int ath9k_hw_txprocdesc(struct ath_hal *ah, struct ath_desc *ds) { struct ar5416_desc *ads = AR5416DESC(ds); if ((ads->ds_txstatus9 & AR_TxDone) == 0) return -EINPROGRESS; ds->ds_txstat.ts_seqnum = MS(ads->ds_txstatus9, AR_SeqNum); ds->ds_txstat.ts_tstamp = ads->AR_SendTimestamp; ds->ds_txstat.ts_status = 0; ds->ds_txstat.ts_flags = 0; if (ads->ds_txstatus1 & AR_ExcessiveRetries) ds->ds_txstat.ts_status |= ATH9K_TXERR_XRETRY; if (ads->ds_txstatus1 & AR_Filtered) ds->ds_txstat.ts_status |= ATH9K_TXERR_FILT; if (ads->ds_txstatus1 & AR_FIFOUnderrun) ds->ds_txstat.ts_status |= ATH9K_TXERR_FIFO; if (ads->ds_txstatus9 & AR_TxOpExceeded) ds->ds_txstat.ts_status |= ATH9K_TXERR_XTXOP; if (ads->ds_txstatus1 & AR_TxTimerExpired) ds->ds_txstat.ts_status |= ATH9K_TXERR_TIMER_EXPIRED; if (ads->ds_txstatus1 & AR_DescCfgErr) ds->ds_txstat.ts_flags |= ATH9K_TX_DESC_CFG_ERR; if (ads->ds_txstatus1 & AR_TxDataUnderrun) { ds->ds_txstat.ts_flags |= ATH9K_TX_DATA_UNDERRUN; ath9k_hw_updatetxtriglevel(ah, true); } if (ads->ds_txstatus1 & AR_TxDelimUnderrun) { ds->ds_txstat.ts_flags |= ATH9K_TX_DELIM_UNDERRUN; ath9k_hw_updatetxtriglevel(ah, true); } if (ads->ds_txstatus0 & AR_TxBaStatus) { ds->ds_txstat.ts_flags |= ATH9K_TX_BA; ds->ds_txstat.ba_low = ads->AR_BaBitmapLow; ds->ds_txstat.ba_high = ads->AR_BaBitmapHigh; } ds->ds_txstat.ts_rateindex = MS(ads->ds_txstatus9, AR_FinalTxIdx); switch (ds->ds_txstat.ts_rateindex) { case 0: ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate0); break; case 1: ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate1); break; case 2: ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate2); break; case 3: ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate3); break; } ds->ds_txstat.ts_rssi = MS(ads->ds_txstatus5, AR_TxRSSICombined); ds->ds_txstat.ts_rssi_ctl0 = MS(ads->ds_txstatus0, AR_TxRSSIAnt00); ds->ds_txstat.ts_rssi_ctl1 = MS(ads->ds_txstatus0, AR_TxRSSIAnt01); ds->ds_txstat.ts_rssi_ctl2 = MS(ads->ds_txstatus0, AR_TxRSSIAnt02); ds->ds_txstat.ts_rssi_ext0 = MS(ads->ds_txstatus5, AR_TxRSSIAnt10); ds->ds_txstat.ts_rssi_ext1 = MS(ads->ds_txstatus5, AR_TxRSSIAnt11); ds->ds_txstat.ts_rssi_ext2 = MS(ads->ds_txstatus5, AR_TxRSSIAnt12); ds->ds_txstat.evm0 = ads->AR_TxEVM0; ds->ds_txstat.evm1 = ads->AR_TxEVM1; ds->ds_txstat.evm2 = ads->AR_TxEVM2; ds->ds_txstat.ts_shortretry = MS(ads->ds_txstatus1, AR_RTSFailCnt); ds->ds_txstat.ts_longretry = MS(ads->ds_txstatus1, AR_DataFailCnt); ds->ds_txstat.ts_virtcol = MS(ads->ds_txstatus1, AR_VirtRetryCnt); ds->ds_txstat.ts_antenna = 1; return 0; } void ath9k_hw_set11n_txdesc(struct ath_hal *ah, struct ath_desc *ds, u32 pktLen, enum ath9k_pkt_type type, u32 txPower, u32 keyIx, enum ath9k_key_type keyType, u32 flags) { struct ar5416_desc *ads = AR5416DESC(ds); struct ath_hal_5416 *ahp = AH5416(ah); txPower += ahp->ah_txPowerIndexOffset; if (txPower > 63) txPower = 63; ads->ds_ctl0 = (pktLen & AR_FrameLen) | (flags & ATH9K_TXDESC_VMF ? AR_VirtMoreFrag : 0) | SM(txPower, AR_XmitPower) | (flags & ATH9K_TXDESC_VEOL ? AR_VEOL : 0) | (flags & ATH9K_TXDESC_CLRDMASK ? AR_ClrDestMask : 0) | (flags & ATH9K_TXDESC_INTREQ ? AR_TxIntrReq : 0) | (keyIx != ATH9K_TXKEYIX_INVALID ? AR_DestIdxValid : 0); ads->ds_ctl1 = (keyIx != ATH9K_TXKEYIX_INVALID ? SM(keyIx, AR_DestIdx) : 0) | SM(type, AR_FrameType) | (flags & ATH9K_TXDESC_NOACK ? AR_NoAck : 0) | (flags & ATH9K_TXDESC_EXT_ONLY ? AR_ExtOnly : 0) | (flags & ATH9K_TXDESC_EXT_AND_CTL ? AR_ExtAndCtl : 0); ads->ds_ctl6 = SM(keyType, AR_EncrType); if (AR_SREV_9285(ah)) { ads->ds_ctl8 = 0; ads->ds_ctl9 = 0; ads->ds_ctl10 = 0; ads->ds_ctl11 = 0; } } void ath9k_hw_set11n_ratescenario(struct ath_hal *ah, struct ath_desc *ds, struct ath_desc *lastds, u32 durUpdateEn, u32 rtsctsRate, u32 rtsctsDuration, struct ath9k_11n_rate_series series[], u32 nseries, u32 flags) { struct ar5416_desc *ads = AR5416DESC(ds); struct ar5416_desc *last_ads = AR5416DESC(lastds); u32 ds_ctl0; (void) nseries; (void) rtsctsDuration; if (flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA)) { ds_ctl0 = ads->ds_ctl0; if (flags & ATH9K_TXDESC_RTSENA) { ds_ctl0 &= ~AR_CTSEnable; ds_ctl0 |= AR_RTSEnable; } else { ds_ctl0 &= ~AR_RTSEnable; ds_ctl0 |= AR_CTSEnable; } ads->ds_ctl0 = ds_ctl0; } else { ads->ds_ctl0 = (ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable)); } ads->ds_ctl2 = set11nTries(series, 0) | set11nTries(series, 1) | set11nTries(series, 2) | set11nTries(series, 3) | (durUpdateEn ? AR_DurUpdateEna : 0) | SM(0, AR_BurstDur); ads->ds_ctl3 = set11nRate(series, 0) | set11nRate(series, 1) | set11nRate(series, 2) | set11nRate(series, 3); ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0) | set11nPktDurRTSCTS(series, 1); ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2) | set11nPktDurRTSCTS(series, 3); ads->ds_ctl7 = set11nRateFlags(series, 0) | set11nRateFlags(series, 1) | set11nRateFlags(series, 2) | set11nRateFlags(series, 3) | SM(rtsctsRate, AR_RTSCTSRate); last_ads->ds_ctl2 = ads->ds_ctl2; last_ads->ds_ctl3 = ads->ds_ctl3; } void ath9k_hw_set11n_aggr_first(struct ath_hal *ah, struct ath_desc *ds, u32 aggrLen) { struct ar5416_desc *ads = AR5416DESC(ds); ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr); ads->ds_ctl6 &= ~AR_AggrLen; ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen); } void ath9k_hw_set11n_aggr_middle(struct ath_hal *ah, struct ath_desc *ds, u32 numDelims) { struct ar5416_desc *ads = AR5416DESC(ds); unsigned int ctl6; ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr); ctl6 = ads->ds_ctl6; ctl6 &= ~AR_PadDelim; ctl6 |= SM(numDelims, AR_PadDelim); ads->ds_ctl6 = ctl6; } void ath9k_hw_set11n_aggr_last(struct ath_hal *ah, struct ath_desc *ds) { struct ar5416_desc *ads = AR5416DESC(ds); ads->ds_ctl1 |= AR_IsAggr; ads->ds_ctl1 &= ~AR_MoreAggr; ads->ds_ctl6 &= ~AR_PadDelim; } void ath9k_hw_clr11n_aggr(struct ath_hal *ah, struct ath_desc *ds) { struct ar5416_desc *ads = AR5416DESC(ds); ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr); } void ath9k_hw_set11n_burstduration(struct ath_hal *ah, struct ath_desc *ds, u32 burstDuration) { struct ar5416_desc *ads = AR5416DESC(ds); ads->ds_ctl2 &= ~AR_BurstDur; ads->ds_ctl2 |= SM(burstDuration, AR_BurstDur); } void ath9k_hw_set11n_virtualmorefrag(struct ath_hal *ah, struct ath_desc *ds, u32 vmf) { struct ar5416_desc *ads = AR5416DESC(ds); if (vmf) ads->ds_ctl0 |= AR_VirtMoreFrag; else ads->ds_ctl0 &= ~AR_VirtMoreFrag; } void ath9k_hw_putrxbuf(struct ath_hal *ah, u32 rxdp) { REG_WRITE(ah, AR_RXDP, rxdp); } void ath9k_hw_rxena(struct ath_hal *ah) { REG_WRITE(ah, AR_CR, AR_CR_RXE); } bool ath9k_hw_setrxabort(struct ath_hal *ah, bool set) { if (set) { REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); if (!ath9k_hw_wait (ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE, 0)) { u32 reg; REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); reg = REG_READ(ah, AR_OBS_BUS_1); DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "%s: rx failed to go idle in 10 ms RXSM=0x%x\n", __func__, reg); return false; } } else { REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); } return true; } void ath9k_hw_setmcastfilter(struct ath_hal *ah, u32 filter0, u32 filter1) { REG_WRITE(ah, AR_MCAST_FIL0, filter0); REG_WRITE(ah, AR_MCAST_FIL1, filter1); } bool ath9k_hw_setuprxdesc(struct ath_hal *ah, struct ath_desc *ds, u32 size, u32 flags) { struct ar5416_desc *ads = AR5416DESC(ds); struct ath9k_hw_capabilities *pCap = &ah->ah_caps; ads->ds_ctl1 = size & AR_BufLen; if (flags & ATH9K_RXDESC_INTREQ) ads->ds_ctl1 |= AR_RxIntrReq; ads->ds_rxstatus8 &= ~AR_RxDone; if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) memset(&(ads->u), 0, sizeof(ads->u)); return true; } int ath9k_hw_rxprocdesc(struct ath_hal *ah, struct ath_desc *ds, u32 pa, struct ath_desc *nds, u64 tsf) { struct ar5416_desc ads; struct ar5416_desc *adsp = AR5416DESC(ds); if ((adsp->ds_rxstatus8 & AR_RxDone) == 0) return -EINPROGRESS; ads.u.rx = adsp->u.rx; ds->ds_rxstat.rs_status = 0; ds->ds_rxstat.rs_flags = 0; ds->ds_rxstat.rs_datalen = ads.ds_rxstatus1 & AR_DataLen; ds->ds_rxstat.rs_tstamp = ads.AR_RcvTimestamp; ds->ds_rxstat.rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined); ds->ds_rxstat.rs_rssi_ctl0 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt00); ds->ds_rxstat.rs_rssi_ctl1 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt01); ds->ds_rxstat.rs_rssi_ctl2 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt02); ds->ds_rxstat.rs_rssi_ext0 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt10); ds->ds_rxstat.rs_rssi_ext1 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt11); ds->ds_rxstat.rs_rssi_ext2 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt12); if (ads.ds_rxstatus8 & AR_RxKeyIdxValid) ds->ds_rxstat.rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx); else ds->ds_rxstat.rs_keyix = ATH9K_RXKEYIX_INVALID; ds->ds_rxstat.rs_rate = RXSTATUS_RATE(ah, (&ads)); ds->ds_rxstat.rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0; ds->ds_rxstat.rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0; ds->ds_rxstat.rs_moreaggr = (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0; ds->ds_rxstat.rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna); ds->ds_rxstat.rs_flags = (ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0; ds->ds_rxstat.rs_flags |= (ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0; if (ads.ds_rxstatus8 & AR_PreDelimCRCErr) ds->ds_rxstat.rs_flags |= ATH9K_RX_DELIM_CRC_PRE; if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) ds->ds_rxstat.rs_flags |= ATH9K_RX_DELIM_CRC_POST; if (ads.ds_rxstatus8 & AR_DecryptBusyErr) ds->ds_rxstat.rs_flags |= ATH9K_RX_DECRYPT_BUSY; if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) { if (ads.ds_rxstatus8 & AR_CRCErr) ds->ds_rxstat.rs_status |= ATH9K_RXERR_CRC; else if (ads.ds_rxstatus8 & AR_PHYErr) { u32 phyerr; ds->ds_rxstat.rs_status |= ATH9K_RXERR_PHY; phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode); ds->ds_rxstat.rs_phyerr = phyerr; } else if (ads.ds_rxstatus8 & AR_DecryptCRCErr) ds->ds_rxstat.rs_status |= ATH9K_RXERR_DECRYPT; else if (ads.ds_rxstatus8 & AR_MichaelErr) ds->ds_rxstat.rs_status |= ATH9K_RXERR_MIC; } return 0; } static void ath9k_hw_setup_rate_table(struct ath_hal *ah, struct ath9k_rate_table *rt) { int i; if (rt->rateCodeToIndex[0] != 0) return; for (i = 0; i < 256; i++) rt->rateCodeToIndex[i] = (u8) -1; for (i = 0; i < rt->rateCount; i++) { u8 code = rt->info[i].rateCode; u8 cix = rt->info[i].controlRate; rt->rateCodeToIndex[code] = i; rt->rateCodeToIndex[code | rt->info[i].shortPreamble] = i; rt->info[i].lpAckDuration = ath9k_hw_computetxtime(ah, rt, WLAN_CTRL_FRAME_SIZE, cix, false); rt->info[i].spAckDuration = ath9k_hw_computetxtime(ah, rt, WLAN_CTRL_FRAME_SIZE, cix, true); } } const struct ath9k_rate_table *ath9k_hw_getratetable(struct ath_hal *ah, u32 mode) { struct ath9k_rate_table *rt; switch (mode) { case ATH9K_MODE_11A: rt = &ar5416_11a_table; break; case ATH9K_MODE_11B: rt = &ar5416_11b_table; break; case ATH9K_MODE_11G: rt = &ar5416_11g_table; break; case ATH9K_MODE_11NG_HT20: case ATH9K_MODE_11NG_HT40PLUS: case ATH9K_MODE_11NG_HT40MINUS: rt = &ar5416_11ng_table; break; case ATH9K_MODE_11NA_HT20: case ATH9K_MODE_11NA_HT40PLUS: case ATH9K_MODE_11NA_HT40MINUS: rt = &ar5416_11na_table; break; default: DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: invalid mode 0x%x\n", __func__, mode); return NULL; } ath9k_hw_setup_rate_table(ah, rt); return rt; } static const char *ath9k_hw_devname(u16 devid) { switch (devid) { case AR5416_DEVID_PCI: case AR5416_DEVID_PCIE: return "Atheros 5416"; case AR9160_DEVID_PCI: return "Atheros 9160"; case AR9280_DEVID_PCI: case AR9280_DEVID_PCIE: return "Atheros 9280"; } return NULL; } const char *ath9k_hw_probe(u16 vendorid, u16 devid) { return vendorid == ATHEROS_VENDOR_ID ? ath9k_hw_devname(devid) : NULL; } struct ath_hal *ath9k_hw_attach(u16 devid, struct ath_softc *sc, void __iomem *mem, int *error) { struct ath_hal *ah = NULL; switch (devid) { case AR5416_DEVID_PCI: case AR5416_DEVID_PCIE: case AR9160_DEVID_PCI: case AR9280_DEVID_PCI: case AR9280_DEVID_PCIE: ah = ath9k_hw_do_attach(devid, sc, mem, error); break; default: DPRINTF(ah->ah_sc, ATH_DBG_ANY, "devid=0x%x not supported.\n", devid); ah = NULL; *error = -ENXIO; break; } return ah; } u16 ath9k_hw_computetxtime(struct ath_hal *ah, const struct ath9k_rate_table *rates, u32 frameLen, u16 rateix, bool shortPreamble) { u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; u32 kbps; kbps = rates->info[rateix].rateKbps; if (kbps == 0) return 0; switch (rates->info[rateix].phy) { case PHY_CCK: phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; if (shortPreamble && rates->info[rateix].shortPreamble) phyTime >>= 1; numBits = frameLen << 3; txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); break; case PHY_OFDM: if (ah->ah_curchan && IS_CHAN_QUARTER_RATE(ah->ah_curchan)) { bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000; numBits = OFDM_PLCP_BITS + (frameLen << 3); numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); txTime = OFDM_SIFS_TIME_QUARTER + OFDM_PREAMBLE_TIME_QUARTER + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); } else if (ah->ah_curchan && IS_CHAN_HALF_RATE(ah->ah_curchan)) { bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000; numBits = OFDM_PLCP_BITS + (frameLen << 3); numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); txTime = OFDM_SIFS_TIME_HALF + OFDM_PREAMBLE_TIME_HALF + (numSymbols * OFDM_SYMBOL_TIME_HALF); } else { bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; numBits = OFDM_PLCP_BITS + (frameLen << 3); numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME + (numSymbols * OFDM_SYMBOL_TIME); } break; default: DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO, "%s: unknown phy %u (rate ix %u)\n", __func__, rates->info[rateix].phy, rateix); txTime = 0; break; } return txTime; } u32 ath9k_hw_mhz2ieee(struct ath_hal *ah, u32 freq, u32 flags) { if (flags & CHANNEL_2GHZ) { if (freq == 2484) return 14; if (freq < 2484) return (freq - 2407) / 5; else return 15 + ((freq - 2512) / 20); } else if (flags & CHANNEL_5GHZ) { if (ath9k_regd_is_public_safety_sku(ah) && IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) { return ((freq * 10) + (((freq % 5) == 2) ? 5 : 0) - 49400) / 5; } else if ((flags & CHANNEL_A) && (freq <= 5000)) { return (freq - 4000) / 5; } else { return (freq - 5000) / 5; } } else { if (freq == 2484) return 14; if (freq < 2484) return (freq - 2407) / 5; if (freq < 5000) { if (ath9k_regd_is_public_safety_sku(ah) && IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) { return ((freq * 10) + (((freq % 5) == 2) ? 5 : 0) - 49400) / 5; } else if (freq > 4900) { return (freq - 4000) / 5; } else { return 15 + ((freq - 2512) / 20); } } return (freq - 5000) / 5; } } /* We can tune this as we go by monitoring really low values */ #define ATH9K_NF_TOO_LOW -60 /* AR5416 may return very high value (like -31 dBm), in those cases the nf * is incorrect and we should use the static NF value. Later we can try to * find out why they are reporting these values */ static bool ath9k_hw_nf_in_range(struct ath_hal *ah, s16 nf) { if (nf > ATH9K_NF_TOO_LOW) { DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL, "%s: noise floor value detected (%d) is " "lower than what we think is a " "reasonable value (%d)\n", __func__, nf, ATH9K_NF_TOO_LOW); return false; } return true; } s16 ath9k_hw_getchan_noise(struct ath_hal *ah, struct ath9k_channel *chan) { struct ath9k_channel *ichan; s16 nf; ichan = ath9k_regd_check_channel(ah, chan); if (ichan == NULL) { DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL, "%s: invalid channel %u/0x%x; no mapping\n", __func__, chan->channel, chan->channelFlags); return ATH_DEFAULT_NOISE_FLOOR; } if (ichan->rawNoiseFloor == 0) { enum wireless_mode mode = ath9k_hw_chan2wmode(ah, chan); nf = NOISE_FLOOR[mode]; } else nf = ichan->rawNoiseFloor; if (!ath9k_hw_nf_in_range(ah, nf)) nf = ATH_DEFAULT_NOISE_FLOOR; return nf; } bool ath9k_hw_set_tsfadjust(struct ath_hal *ah, u32 setting) { struct ath_hal_5416 *ahp = AH5416(ah); if (setting) ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF; else ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF; return true; } bool ath9k_hw_phycounters(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); return ahp->ah_hasHwPhyCounters ? true : false; } u32 ath9k_hw_gettxbuf(struct ath_hal *ah, u32 q) { return REG_READ(ah, AR_QTXDP(q)); } bool ath9k_hw_puttxbuf(struct ath_hal *ah, u32 q, u32 txdp) { REG_WRITE(ah, AR_QTXDP(q), txdp); return true; } bool ath9k_hw_txstart(struct ath_hal *ah, u32 q) { DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %u\n", __func__, q); REG_WRITE(ah, AR_Q_TXE, 1 << q); return true; } u32 ath9k_hw_numtxpending(struct ath_hal *ah, u32 q) { u32 npend; npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT; if (npend == 0) { if (REG_READ(ah, AR_Q_TXE) & (1 << q)) npend = 1; } return npend; } bool ath9k_hw_stoptxdma(struct ath_hal *ah, u32 q) { u32 wait; REG_WRITE(ah, AR_Q_TXD, 1 << q); for (wait = 1000; wait != 0; wait--) { if (ath9k_hw_numtxpending(ah, q) == 0) break; udelay(100); } if (ath9k_hw_numtxpending(ah, q)) { u32 tsfLow, j; DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: Num of pending TX Frames %d on Q %d\n", __func__, ath9k_hw_numtxpending(ah, q), q); for (j = 0; j < 2; j++) { tsfLow = REG_READ(ah, AR_TSF_L32); REG_WRITE(ah, AR_QUIET2, SM(10, AR_QUIET2_QUIET_DUR)); REG_WRITE(ah, AR_QUIET_PERIOD, 100); REG_WRITE(ah, AR_NEXT_QUIET_TIMER, tsfLow >> 10); REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN); if ((REG_READ(ah, AR_TSF_L32) >> 10) == (tsfLow >> 10)) { break; } DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: TSF have moved while trying to set " "quiet time TSF: 0x%08x\n", __func__, tsfLow); } REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH); udelay(200); REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN); wait = 1000; while (ath9k_hw_numtxpending(ah, q)) { if ((--wait) == 0) { DPRINTF(ah->ah_sc, ATH_DBG_XMIT, "%s: Failed to stop Tx DMA in 100 " "msec after killing last frame\n", __func__); break; } udelay(100); } REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH); } REG_WRITE(ah, AR_Q_TXD, 0); return wait != 0; }