/* * Copyright (c) 2004-2008 Reyk Floeter * Copyright (c) 2006-2008 Nick Kossifidis * Copyright (c) 2008 Felix Fietkau * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ /*************************************\ * EEPROM access functions and helpers * \*************************************/ #include "ath5k.h" #include "reg.h" #include "debug.h" #include "base.h" /* * Read from eeprom */ static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data) { u32 status, timeout; ATH5K_TRACE(ah->ah_sc); /* * Initialize EEPROM access */ if (ah->ah_version == AR5K_AR5210) { AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE); (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset)); } else { ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE); AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD, AR5K_EEPROM_CMD_READ); } for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) { status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS); if (status & AR5K_EEPROM_STAT_RDDONE) { if (status & AR5K_EEPROM_STAT_RDERR) return -EIO; *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) & 0xffff); return 0; } udelay(15); } return -ETIMEDOUT; } /* * Translate binary channel representation in EEPROM to frequency */ static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin, unsigned int mode) { u16 val; if (bin == AR5K_EEPROM_CHANNEL_DIS) return bin; if (mode == AR5K_EEPROM_MODE_11A) { if (ee->ee_version > AR5K_EEPROM_VERSION_3_2) val = (5 * bin) + 4800; else val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 : (bin * 10) + 5100; } else { if (ee->ee_version > AR5K_EEPROM_VERSION_3_2) val = bin + 2300; else val = bin + 2400; } return val; } /* * Initialize eeprom & capabilities structs */ static int ath5k_eeprom_init_header(struct ath5k_hw *ah) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; int ret; u16 val; /* Initial TX thermal adjustment values */ ee->ee_tx_clip = 4; ee->ee_pwd_84 = ee->ee_pwd_90 = 1; ee->ee_gain_select = 1; /* * Read values from EEPROM and store them in the capability structure */ AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic); AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect); AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain); AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version); AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header); /* Return if we have an old EEPROM */ if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0) return 0; #ifdef notyet /* * Validate the checksum of the EEPROM date. There are some * devices with invalid EEPROMs. */ for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) { AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val); cksum ^= val; } if (cksum != AR5K_EEPROM_INFO_CKSUM) { ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum); return -EIO; } #endif AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version), ee_ant_gain); if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) { AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0); AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1); /* XXX: Don't know which versions include these two */ AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2); if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3); if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) { AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4); AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5); AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6); } } if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) { AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val); ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7; ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7; AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val); ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7; ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7; } return 0; } /* * Read antenna infos from eeprom */ static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset, unsigned int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; u32 o = *offset; u16 val; int ret, i = 0; AR5K_EEPROM_READ(o++, val); ee->ee_switch_settling[mode] = (val >> 8) & 0x7f; ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f; ee->ee_ant_control[mode][i] = (val << 4) & 0x3f; AR5K_EEPROM_READ(o++, val); ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf; ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f; ee->ee_ant_control[mode][i++] = val & 0x3f; AR5K_EEPROM_READ(o++, val); ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f; ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f; ee->ee_ant_control[mode][i] = (val << 2) & 0x3f; AR5K_EEPROM_READ(o++, val); ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3; ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f; ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f; ee->ee_ant_control[mode][i] = (val << 4) & 0x3f; AR5K_EEPROM_READ(o++, val); ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf; ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f; ee->ee_ant_control[mode][i++] = val & 0x3f; /* Get antenna modes */ ah->ah_antenna[mode][0] = (ee->ee_ant_control[mode][0] << 4); ah->ah_antenna[mode][AR5K_ANT_FIXED_A] = ee->ee_ant_control[mode][1] | (ee->ee_ant_control[mode][2] << 6) | (ee->ee_ant_control[mode][3] << 12) | (ee->ee_ant_control[mode][4] << 18) | (ee->ee_ant_control[mode][5] << 24); ah->ah_antenna[mode][AR5K_ANT_FIXED_B] = ee->ee_ant_control[mode][6] | (ee->ee_ant_control[mode][7] << 6) | (ee->ee_ant_control[mode][8] << 12) | (ee->ee_ant_control[mode][9] << 18) | (ee->ee_ant_control[mode][10] << 24); /* return new offset */ *offset = o; return 0; } /* * Read supported modes and some mode-specific calibration data * from eeprom */ static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset, unsigned int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; u32 o = *offset; u16 val; int ret; ee->ee_n_piers[mode] = 0; AR5K_EEPROM_READ(o++, val); ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff); switch(mode) { case AR5K_EEPROM_MODE_11A: ee->ee_ob[mode][3] = (val >> 5) & 0x7; ee->ee_db[mode][3] = (val >> 2) & 0x7; ee->ee_ob[mode][2] = (val << 1) & 0x7; AR5K_EEPROM_READ(o++, val); ee->ee_ob[mode][2] |= (val >> 15) & 0x1; ee->ee_db[mode][2] = (val >> 12) & 0x7; ee->ee_ob[mode][1] = (val >> 9) & 0x7; ee->ee_db[mode][1] = (val >> 6) & 0x7; ee->ee_ob[mode][0] = (val >> 3) & 0x7; ee->ee_db[mode][0] = val & 0x7; break; case AR5K_EEPROM_MODE_11G: case AR5K_EEPROM_MODE_11B: ee->ee_ob[mode][1] = (val >> 4) & 0x7; ee->ee_db[mode][1] = val & 0x7; break; } AR5K_EEPROM_READ(o++, val); ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff; ee->ee_thr_62[mode] = val & 0xff; if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28; AR5K_EEPROM_READ(o++, val); ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff; ee->ee_tx_frm2xpa_enable[mode] = val & 0xff; AR5K_EEPROM_READ(o++, val); ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff; if ((val & 0xff) & 0x80) ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1); else ee->ee_noise_floor_thr[mode] = val & 0xff; if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) ee->ee_noise_floor_thr[mode] = mode == AR5K_EEPROM_MODE_11A ? -54 : -1; AR5K_EEPROM_READ(o++, val); ee->ee_xlna_gain[mode] = (val >> 5) & 0xff; ee->ee_x_gain[mode] = (val >> 1) & 0xf; ee->ee_xpd[mode] = val & 0x1; if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) ee->ee_fixed_bias[mode] = (val >> 13) & 0x1; if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) { AR5K_EEPROM_READ(o++, val); ee->ee_false_detect[mode] = (val >> 6) & 0x7f; if (mode == AR5K_EEPROM_MODE_11A) ee->ee_xr_power[mode] = val & 0x3f; else { ee->ee_ob[mode][0] = val & 0x7; ee->ee_db[mode][0] = (val >> 3) & 0x7; } } if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) { ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN; ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA; } else { ee->ee_i_gain[mode] = (val >> 13) & 0x7; AR5K_EEPROM_READ(o++, val); ee->ee_i_gain[mode] |= (val << 3) & 0x38; if (mode == AR5K_EEPROM_MODE_11G) { ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff; if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6) ee->ee_scaled_cck_delta = (val >> 11) & 0x1f; } } if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 && mode == AR5K_EEPROM_MODE_11A) { ee->ee_i_cal[mode] = (val >> 8) & 0x3f; ee->ee_q_cal[mode] = (val >> 3) & 0x1f; } if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0) goto done; /* Note: >= v5 have bg freq piers on another location * so these freq piers are ignored for >= v5 (should be 0xff * anyway) */ switch(mode) { case AR5K_EEPROM_MODE_11A: if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1) break; AR5K_EEPROM_READ(o++, val); ee->ee_margin_tx_rx[mode] = val & 0x3f; break; case AR5K_EEPROM_MODE_11B: AR5K_EEPROM_READ(o++, val); ee->ee_pwr_cal_b[0].freq = ath5k_eeprom_bin2freq(ee, val & 0xff, mode); if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS) ee->ee_n_piers[mode]++; ee->ee_pwr_cal_b[1].freq = ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode); if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS) ee->ee_n_piers[mode]++; AR5K_EEPROM_READ(o++, val); ee->ee_pwr_cal_b[2].freq = ath5k_eeprom_bin2freq(ee, val & 0xff, mode); if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS) ee->ee_n_piers[mode]++; if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f; break; case AR5K_EEPROM_MODE_11G: AR5K_EEPROM_READ(o++, val); ee->ee_pwr_cal_g[0].freq = ath5k_eeprom_bin2freq(ee, val & 0xff, mode); if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS) ee->ee_n_piers[mode]++; ee->ee_pwr_cal_g[1].freq = ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode); if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS) ee->ee_n_piers[mode]++; AR5K_EEPROM_READ(o++, val); ee->ee_turbo_max_power[mode] = val & 0x7f; ee->ee_xr_power[mode] = (val >> 7) & 0x3f; AR5K_EEPROM_READ(o++, val); ee->ee_pwr_cal_g[2].freq = ath5k_eeprom_bin2freq(ee, val & 0xff, mode); if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS) ee->ee_n_piers[mode]++; if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f; AR5K_EEPROM_READ(o++, val); ee->ee_i_cal[mode] = (val >> 8) & 0x3f; ee->ee_q_cal[mode] = (val >> 3) & 0x1f; if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) { AR5K_EEPROM_READ(o++, val); ee->ee_cck_ofdm_gain_delta = val & 0xff; } break; } done: /* return new offset */ *offset = o; return 0; } /* * Read turbo mode information on newer EEPROM versions */ static int ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah, u32 *offset, unsigned int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; u32 o = *offset; u16 val; int ret; if (ee->ee_version < AR5K_EEPROM_VERSION_5_0) return 0; switch (mode){ case AR5K_EEPROM_MODE_11A: ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f; ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7; AR5K_EEPROM_READ(o++, val); ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3; ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f; ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f; AR5K_EEPROM_READ(o++, val); ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7; ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff; if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2) ee->ee_pd_gain_overlap = (val >> 9) & 0xf; break; case AR5K_EEPROM_MODE_11G: ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f; ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7; AR5K_EEPROM_READ(o++, val); ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1; ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f; ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f; AR5K_EEPROM_READ(o++, val); ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5; ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff; break; } /* return new offset */ *offset = o; return 0; } /* Read mode-specific data (except power calibration data) */ static int ath5k_eeprom_init_modes(struct ath5k_hw *ah) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; u32 mode_offset[3]; unsigned int mode; u32 offset; int ret; /* * Get values for all modes */ mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version); mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version); mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version); ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header); for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) { offset = mode_offset[mode]; ret = ath5k_eeprom_read_ants(ah, &offset, mode); if (ret) return ret; ret = ath5k_eeprom_read_modes(ah, &offset, mode); if (ret) return ret; ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode); if (ret) return ret; } /* override for older eeprom versions for better performance */ if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) { ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15; ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28; ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28; } return 0; } /* Used to match PCDAC steps with power values on RF5111 chips * (eeprom versions < 4). For RF5111 we have 10 pre-defined PCDAC * steps that match with the power values we read from eeprom. On * older eeprom versions (< 3.2) these steps are equaly spaced at * 10% of the pcdac curve -until the curve reaches it's maximum- * (10 steps from 0 to 100%) but on newer eeprom versions (>= 3.2) * these 10 steps are spaced in a different way. This function returns * the pcdac steps based on eeprom version and curve min/max so that we * can have pcdac/pwr points. */ static inline void ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp) { const static u16 intercepts3[] = { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 }; const static u16 intercepts3_2[] = { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 }; const u16 *ip; int i; if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2) ip = intercepts3_2; else ip = intercepts3; for (i = 0; i < ARRAY_SIZE(intercepts3); i++) *vp++ = (ip[i] * max + (100 - ip[i]) * min) / 100; } /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff * frequency mask) */ static inline int ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max, struct ath5k_chan_pcal_info *pc, unsigned int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; int o = *offset; int i = 0; u8 freq1, freq2; int ret; u16 val; while(i < max) { AR5K_EEPROM_READ(o++, val); freq1 = (val >> 8) & 0xff; freq2 = val & 0xff; if (freq1) { pc[i++].freq = ath5k_eeprom_bin2freq(ee, freq1, mode); ee->ee_n_piers[mode]++; } if (freq2) { pc[i++].freq = ath5k_eeprom_bin2freq(ee, freq2, mode); ee->ee_n_piers[mode]++; } if (!freq1 || !freq2) break; } /* return new offset */ *offset = o; return 0; } /* Read frequency piers for 802.11a */ static int ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a; int i, ret; u16 val; u8 mask; if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) { ath5k_eeprom_read_freq_list(ah, &offset, AR5K_EEPROM_N_5GHZ_CHAN, pcal, AR5K_EEPROM_MODE_11A); } else { mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version); AR5K_EEPROM_READ(offset++, val); pcal[0].freq = (val >> 9) & mask; pcal[1].freq = (val >> 2) & mask; pcal[2].freq = (val << 5) & mask; AR5K_EEPROM_READ(offset++, val); pcal[2].freq |= (val >> 11) & 0x1f; pcal[3].freq = (val >> 4) & mask; pcal[4].freq = (val << 3) & mask; AR5K_EEPROM_READ(offset++, val); pcal[4].freq |= (val >> 13) & 0x7; pcal[5].freq = (val >> 6) & mask; pcal[6].freq = (val << 1) & mask; AR5K_EEPROM_READ(offset++, val); pcal[6].freq |= (val >> 15) & 0x1; pcal[7].freq = (val >> 8) & mask; pcal[8].freq = (val >> 1) & mask; pcal[9].freq = (val << 6) & mask; AR5K_EEPROM_READ(offset++, val); pcal[9].freq |= (val >> 10) & 0x3f; /* Fixed number of piers */ ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10; for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) { pcal[i].freq = ath5k_eeprom_bin2freq(ee, pcal[i].freq, AR5K_EEPROM_MODE_11A); } } return 0; } /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */ static inline int ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_chan_pcal_info *pcal; switch(mode) { case AR5K_EEPROM_MODE_11B: pcal = ee->ee_pwr_cal_b; break; case AR5K_EEPROM_MODE_11G: pcal = ee->ee_pwr_cal_g; break; default: return -EINVAL; } ath5k_eeprom_read_freq_list(ah, &offset, AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal, mode); return 0; } /* Read power calibration for RF5111 chips * For RF5111 we have an XPD -eXternal Power Detector- curve * for each calibrated channel. Each curve has PCDAC steps on * x axis and power on y axis and looks like a logarithmic * function. To recreate the curve and pass the power values * on the pcdac table, we read 10 points here and interpolate later. */ static int ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_chan_pcal_info *pcal; int offset, ret; int i; u16 val; offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); switch(mode) { case AR5K_EEPROM_MODE_11A: if (!AR5K_EEPROM_HDR_11A(ee->ee_header)) return 0; ret = ath5k_eeprom_init_11a_pcal_freq(ah, offset + AR5K_EEPROM_GROUP1_OFFSET); if (ret < 0) return ret; offset += AR5K_EEPROM_GROUP2_OFFSET; pcal = ee->ee_pwr_cal_a; break; case AR5K_EEPROM_MODE_11B: if (!AR5K_EEPROM_HDR_11B(ee->ee_header) && !AR5K_EEPROM_HDR_11G(ee->ee_header)) return 0; pcal = ee->ee_pwr_cal_b; offset += AR5K_EEPROM_GROUP3_OFFSET; /* fixed piers */ pcal[0].freq = 2412; pcal[1].freq = 2447; pcal[2].freq = 2484; ee->ee_n_piers[mode] = 3; break; case AR5K_EEPROM_MODE_11G: if (!AR5K_EEPROM_HDR_11G(ee->ee_header)) return 0; pcal = ee->ee_pwr_cal_g; offset += AR5K_EEPROM_GROUP4_OFFSET; /* fixed piers */ pcal[0].freq = 2312; pcal[1].freq = 2412; pcal[2].freq = 2484; ee->ee_n_piers[mode] = 3; break; default: return -EINVAL; } for (i = 0; i < ee->ee_n_piers[mode]; i++) { struct ath5k_chan_pcal_info_rf5111 *cdata = &pcal[i].rf5111_info; AR5K_EEPROM_READ(offset++, val); cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M); cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M); cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M); AR5K_EEPROM_READ(offset++, val); cdata->pwr[0] |= ((val >> 14) & 0x3); cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M); cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M); cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M); AR5K_EEPROM_READ(offset++, val); cdata->pwr[3] |= ((val >> 12) & 0xf); cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M); cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M); AR5K_EEPROM_READ(offset++, val); cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M); cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M); cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M); AR5K_EEPROM_READ(offset++, val); cdata->pwr[8] |= ((val >> 14) & 0x3); cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M); cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M); ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min, cdata->pcdac_max, cdata->pcdac); } return 0; } /* Read power calibration for RF5112 chips * For RF5112 we have 4 XPD -eXternal Power Detector- curves * for each calibrated channel on 0, -6, -12 and -18dbm but we only * use the higher (3) and the lower (0) curves. Each curve has PCDAC * steps on x axis and power on y axis and looks like a linear * function. To recreate the curve and pass the power values * on the pcdac table, we read 4 points for xpd 0 and 3 points * for xpd 3 here and interpolate later. * * Note: Many vendors just use xpd 0 so xpd 3 is zeroed. */ static int ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info; struct ath5k_chan_pcal_info *gen_chan_info; u32 offset; unsigned int i, c; u16 val; int ret; switch (mode) { case AR5K_EEPROM_MODE_11A: /* * Read 5GHz EEPROM channels */ offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); ath5k_eeprom_init_11a_pcal_freq(ah, offset); offset += AR5K_EEPROM_GROUP2_OFFSET; gen_chan_info = ee->ee_pwr_cal_a; break; case AR5K_EEPROM_MODE_11B: offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); if (AR5K_EEPROM_HDR_11A(ee->ee_header)) offset += AR5K_EEPROM_GROUP3_OFFSET; /* NB: frequency piers parsed during mode init */ gen_chan_info = ee->ee_pwr_cal_b; break; case AR5K_EEPROM_MODE_11G: offset = AR5K_EEPROM_GROUPS_START(ee->ee_version); if (AR5K_EEPROM_HDR_11A(ee->ee_header)) offset += AR5K_EEPROM_GROUP4_OFFSET; else if (AR5K_EEPROM_HDR_11B(ee->ee_header)) offset += AR5K_EEPROM_GROUP2_OFFSET; /* NB: frequency piers parsed during mode init */ gen_chan_info = ee->ee_pwr_cal_g; break; default: return -EINVAL; } for (i = 0; i < ee->ee_n_piers[mode]; i++) { chan_pcal_info = &gen_chan_info[i].rf5112_info; /* Power values in dBm * 4 * for the lower xpd gain curve * (0 dBm -> higher output power) */ for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) { AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pwr_x0[c] = (val & 0xff); chan_pcal_info->pwr_x0[++c] = ((val >> 8) & 0xff); } /* PCDAC steps * corresponding to the above power * measurements */ AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pcdac_x0[1] = (val & 0x1f); chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f); chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f); /* Power values in dBm * 4 * for the higher xpd gain curve * (18 dBm -> lower output power) */ AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pwr_x3[0] = (val & 0xff); chan_pcal_info->pwr_x3[1] = ((val >> 8) & 0xff); AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pwr_x3[2] = (val & 0xff); /* PCDAC steps * corresponding to the above power * measurements (fixed) */ chan_pcal_info->pcdac_x3[0] = 20; chan_pcal_info->pcdac_x3[1] = 35; chan_pcal_info->pcdac_x3[2] = 63; if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) { chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0xff); /* Last xpd0 power level is also channel maximum */ gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3]; } else { chan_pcal_info->pcdac_x0[0] = 1; gen_chan_info[i].max_pwr = ((val >> 8) & 0xff); } /* Recreate pcdac_x0 table for this channel using pcdac steps */ chan_pcal_info->pcdac_x0[1] += chan_pcal_info->pcdac_x0[0]; chan_pcal_info->pcdac_x0[2] += chan_pcal_info->pcdac_x0[1]; chan_pcal_info->pcdac_x0[3] += chan_pcal_info->pcdac_x0[2]; } return 0; } /* For RF2413 power calibration data doesn't start on a fixed location and * if a mode is not supported, it's section is missing -not zeroed-. * So we need to calculate the starting offset for each section by using * these two functions */ /* Return the size of each section based on the mode and the number of pd * gains available (maximum 4). */ static inline unsigned int ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode) { static const unsigned int pdgains_size[] = { 4, 6, 9, 12 }; unsigned int sz; sz = pdgains_size[ee->ee_pd_gains[mode] - 1]; sz *= ee->ee_n_piers[mode]; return sz; } /* Return the starting offset for a section based on the modes supported * and each section's size. */ static unsigned int ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode) { u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4); switch(mode) { case AR5K_EEPROM_MODE_11G: if (AR5K_EEPROM_HDR_11B(ee->ee_header)) offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11B) + AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; /* fall through */ case AR5K_EEPROM_MODE_11B: if (AR5K_EEPROM_HDR_11A(ee->ee_header)) offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11A) + AR5K_EEPROM_N_5GHZ_CHAN / 2; /* fall through */ case AR5K_EEPROM_MODE_11A: break; default: break; } return offset; } /* Read power calibration for RF2413 chips * For RF2413 we have a PDDAC table (Power Detector) instead * of a PCDAC and 4 pd gain curves for each calibrated channel. * Each curve has PDDAC steps on x axis and power on y axis and * looks like an exponential function. To recreate the curves * we read here the points and interpolate later. Note that * in most cases only higher and lower curves are used (like * RF5112) but vendors have the oportunity to include all 4 * curves on eeprom. The final curve (higher power) has an extra * point for better accuracy like RF5112. */ static int ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_chan_pcal_info_rf2413 *chan_pcal_info; struct ath5k_chan_pcal_info *gen_chan_info; unsigned int i, c; u32 offset; int ret; u16 val; u8 pd_gains = 0; if (ee->ee_x_gain[mode] & 0x1) pd_gains++; if ((ee->ee_x_gain[mode] >> 1) & 0x1) pd_gains++; if ((ee->ee_x_gain[mode] >> 2) & 0x1) pd_gains++; if ((ee->ee_x_gain[mode] >> 3) & 0x1) pd_gains++; ee->ee_pd_gains[mode] = pd_gains; offset = ath5k_cal_data_offset_2413(ee, mode); ee->ee_n_piers[mode] = 0; switch (mode) { case AR5K_EEPROM_MODE_11A: if (!AR5K_EEPROM_HDR_11A(ee->ee_header)) return 0; ath5k_eeprom_init_11a_pcal_freq(ah, offset); offset += AR5K_EEPROM_N_5GHZ_CHAN / 2; gen_chan_info = ee->ee_pwr_cal_a; break; case AR5K_EEPROM_MODE_11B: if (!AR5K_EEPROM_HDR_11B(ee->ee_header)) return 0; ath5k_eeprom_init_11bg_2413(ah, mode, offset); offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; gen_chan_info = ee->ee_pwr_cal_b; break; case AR5K_EEPROM_MODE_11G: if (!AR5K_EEPROM_HDR_11G(ee->ee_header)) return 0; ath5k_eeprom_init_11bg_2413(ah, mode, offset); offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; gen_chan_info = ee->ee_pwr_cal_g; break; default: return -EINVAL; } if (pd_gains == 0) return 0; for (i = 0; i < ee->ee_n_piers[mode]; i++) { chan_pcal_info = &gen_chan_info[i].rf2413_info; /* * Read pwr_i, pddac_i and the first * 2 pd points (pwr, pddac) */ AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pwr_i[0] = val & 0x1f; chan_pcal_info->pddac_i[0] = (val >> 5) & 0x7f; chan_pcal_info->pwr[0][0] = (val >> 12) & 0xf; AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pddac[0][0] = val & 0x3f; chan_pcal_info->pwr[0][1] = (val >> 6) & 0xf; chan_pcal_info->pddac[0][1] = (val >> 10) & 0x3f; AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pwr[0][2] = val & 0xf; chan_pcal_info->pddac[0][2] = (val >> 4) & 0x3f; chan_pcal_info->pwr[0][3] = 0; chan_pcal_info->pddac[0][3] = 0; if (pd_gains > 1) { /* * Pd gain 0 is not the last pd gain * so it only has 2 pd points. * Continue wih pd gain 1. */ chan_pcal_info->pwr_i[1] = (val >> 10) & 0x1f; chan_pcal_info->pddac_i[1] = (val >> 15) & 0x1; AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pddac_i[1] |= (val & 0x3F) << 1; chan_pcal_info->pwr[1][0] = (val >> 6) & 0xf; chan_pcal_info->pddac[1][0] = (val >> 10) & 0x3f; AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pwr[1][1] = val & 0xf; chan_pcal_info->pddac[1][1] = (val >> 4) & 0x3f; chan_pcal_info->pwr[1][2] = (val >> 10) & 0xf; chan_pcal_info->pddac[1][2] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pddac[1][2] |= (val & 0xF) << 2; chan_pcal_info->pwr[1][3] = 0; chan_pcal_info->pddac[1][3] = 0; } else if (pd_gains == 1) { /* * Pd gain 0 is the last one so * read the extra point. */ chan_pcal_info->pwr[0][3] = (val >> 10) & 0xf; chan_pcal_info->pddac[0][3] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pddac[0][3] |= (val & 0xF) << 2; } /* * Proceed with the other pd_gains * as above. */ if (pd_gains > 2) { chan_pcal_info->pwr_i[2] = (val >> 4) & 0x1f; chan_pcal_info->pddac_i[2] = (val >> 9) & 0x7f; AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pwr[2][0] = (val >> 0) & 0xf; chan_pcal_info->pddac[2][0] = (val >> 4) & 0x3f; chan_pcal_info->pwr[2][1] = (val >> 10) & 0xf; chan_pcal_info->pddac[2][1] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pddac[2][1] |= (val & 0xF) << 2; chan_pcal_info->pwr[2][2] = (val >> 4) & 0xf; chan_pcal_info->pddac[2][2] = (val >> 8) & 0x3f; chan_pcal_info->pwr[2][3] = 0; chan_pcal_info->pddac[2][3] = 0; } else if (pd_gains == 2) { chan_pcal_info->pwr[1][3] = (val >> 4) & 0xf; chan_pcal_info->pddac[1][3] = (val >> 8) & 0x3f; } if (pd_gains > 3) { chan_pcal_info->pwr_i[3] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pwr_i[3] |= ((val >> 0) & 0x7) << 2; chan_pcal_info->pddac_i[3] = (val >> 3) & 0x7f; chan_pcal_info->pwr[3][0] = (val >> 10) & 0xf; chan_pcal_info->pddac[3][0] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pddac[3][0] |= (val & 0xF) << 2; chan_pcal_info->pwr[3][1] = (val >> 4) & 0xf; chan_pcal_info->pddac[3][1] = (val >> 8) & 0x3f; chan_pcal_info->pwr[3][2] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pwr[3][2] |= ((val >> 0) & 0x3) << 2; chan_pcal_info->pddac[3][2] = (val >> 2) & 0x3f; chan_pcal_info->pwr[3][3] = (val >> 8) & 0xf; chan_pcal_info->pddac[3][3] = (val >> 12) & 0xF; AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pddac[3][3] |= ((val >> 0) & 0x3) << 4; } else if (pd_gains == 3) { chan_pcal_info->pwr[2][3] = (val >> 14) & 0x3; AR5K_EEPROM_READ(offset++, val); chan_pcal_info->pwr[2][3] |= ((val >> 0) & 0x3) << 2; chan_pcal_info->pddac[2][3] = (val >> 2) & 0x3f; } for (c = 0; c < pd_gains; c++) { /* Recreate pwr table for this channel using pwr steps */ chan_pcal_info->pwr[c][0] += chan_pcal_info->pwr_i[c] * 2; chan_pcal_info->pwr[c][1] += chan_pcal_info->pwr[c][0]; chan_pcal_info->pwr[c][2] += chan_pcal_info->pwr[c][1]; chan_pcal_info->pwr[c][3] += chan_pcal_info->pwr[c][2]; if (chan_pcal_info->pwr[c][3] == chan_pcal_info->pwr[c][2]) chan_pcal_info->pwr[c][3] = 0; /* Recreate pddac table for this channel using pddac steps */ chan_pcal_info->pddac[c][0] += chan_pcal_info->pddac_i[c]; chan_pcal_info->pddac[c][1] += chan_pcal_info->pddac[c][0]; chan_pcal_info->pddac[c][2] += chan_pcal_info->pddac[c][1]; chan_pcal_info->pddac[c][3] += chan_pcal_info->pddac[c][2]; if (chan_pcal_info->pddac[c][3] == chan_pcal_info->pddac[c][2]) chan_pcal_info->pddac[c][3] = 0; } } return 0; } /* * Read per rate target power (this is the maximum tx power * supported by the card). This info is used when setting * tx power, no matter the channel. * * This also works for v5 EEPROMs. */ static int ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_rate_pcal_info *rate_pcal_info; u16 *rate_target_pwr_num; u32 offset; u16 val; int ret, i; offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1); rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode]; switch (mode) { case AR5K_EEPROM_MODE_11A: offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version); rate_pcal_info = ee->ee_rate_tpwr_a; ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN; break; case AR5K_EEPROM_MODE_11B: offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version); rate_pcal_info = ee->ee_rate_tpwr_b; ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */ break; case AR5K_EEPROM_MODE_11G: offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version); rate_pcal_info = ee->ee_rate_tpwr_g; ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN; break; default: return -EINVAL; } /* Different freq mask for older eeproms (<= v3.2) */ if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) { for (i = 0; i < (*rate_target_pwr_num); i++) { AR5K_EEPROM_READ(offset++, val); rate_pcal_info[i].freq = ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode); rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f); rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f; AR5K_EEPROM_READ(offset++, val); if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS || val == 0) { (*rate_target_pwr_num) = i; break; } rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7); rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f); rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f); } } else { for (i = 0; i < (*rate_target_pwr_num); i++) { AR5K_EEPROM_READ(offset++, val); rate_pcal_info[i].freq = ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode); rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f); rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f; AR5K_EEPROM_READ(offset++, val); if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS || val == 0) { (*rate_target_pwr_num) = i; break; } rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf; rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f); rate_pcal_info[i].target_power_54 = (val & 0x3f); } } return 0; } /* * Read per channel calibration info from EEPROM * * This info is used to calibrate the baseband power table. Imagine * that for each channel there is a power curve that's hw specific * (depends on amplifier etc) and we try to "correct" this curve using * offests we pass on to phy chip (baseband -> before amplifier) so that * it can use accurate power values when setting tx power (takes amplifier's * performance on each channel into account). * * EEPROM provides us with the offsets for some pre-calibrated channels * and we have to interpolate to create the full table for these channels and * also the table for any channel. */ static int ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; int (*read_pcal)(struct ath5k_hw *hw, int mode); int mode; int err; if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) && (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1)) read_pcal = ath5k_eeprom_read_pcal_info_5112; else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) && (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2)) read_pcal = ath5k_eeprom_read_pcal_info_2413; else read_pcal = ath5k_eeprom_read_pcal_info_5111; for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) { err = read_pcal(ah, mode); if (err) return err; err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode); if (err < 0) return err; } return 0; } /* Read conformance test limits used for regulatory control */ static int ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_edge_power *rep; unsigned int fmask, pmask; unsigned int ctl_mode; int ret, i, j; u32 offset; u16 val; pmask = AR5K_EEPROM_POWER_M; fmask = AR5K_EEPROM_FREQ_M(ee->ee_version); offset = AR5K_EEPROM_CTL(ee->ee_version); ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version); for (i = 0; i < ee->ee_ctls; i += 2) { AR5K_EEPROM_READ(offset++, val); ee->ee_ctl[i] = (val >> 8) & 0xff; ee->ee_ctl[i + 1] = val & 0xff; } offset = AR5K_EEPROM_GROUP8_OFFSET; if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0) offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) - AR5K_EEPROM_GROUP5_OFFSET; else offset += AR5K_EEPROM_GROUPS_START(ee->ee_version); rep = ee->ee_ctl_pwr; for(i = 0; i < ee->ee_ctls; i++) { switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) { case AR5K_CTL_11A: case AR5K_CTL_TURBO: ctl_mode = AR5K_EEPROM_MODE_11A; break; default: ctl_mode = AR5K_EEPROM_MODE_11G; break; } if (ee->ee_ctl[i] == 0) { if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) offset += 8; else offset += 7; rep += AR5K_EEPROM_N_EDGES; continue; } if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) { for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) { AR5K_EEPROM_READ(offset++, val); rep[j].freq = (val >> 8) & fmask; rep[j + 1].freq = val & fmask; } for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) { AR5K_EEPROM_READ(offset++, val); rep[j].edge = (val >> 8) & pmask; rep[j].flag = (val >> 14) & 1; rep[j + 1].edge = val & pmask; rep[j + 1].flag = (val >> 6) & 1; } } else { AR5K_EEPROM_READ(offset++, val); rep[0].freq = (val >> 9) & fmask; rep[1].freq = (val >> 2) & fmask; rep[2].freq = (val << 5) & fmask; AR5K_EEPROM_READ(offset++, val); rep[2].freq |= (val >> 11) & 0x1f; rep[3].freq = (val >> 4) & fmask; rep[4].freq = (val << 3) & fmask; AR5K_EEPROM_READ(offset++, val); rep[4].freq |= (val >> 13) & 0x7; rep[5].freq = (val >> 6) & fmask; rep[6].freq = (val << 1) & fmask; AR5K_EEPROM_READ(offset++, val); rep[6].freq |= (val >> 15) & 0x1; rep[7].freq = (val >> 8) & fmask; rep[0].edge = (val >> 2) & pmask; rep[1].edge = (val << 4) & pmask; AR5K_EEPROM_READ(offset++, val); rep[1].edge |= (val >> 12) & 0xf; rep[2].edge = (val >> 6) & pmask; rep[3].edge = val & pmask; AR5K_EEPROM_READ(offset++, val); rep[4].edge = (val >> 10) & pmask; rep[5].edge = (val >> 4) & pmask; rep[6].edge = (val << 2) & pmask; AR5K_EEPROM_READ(offset++, val); rep[6].edge |= (val >> 14) & 0x3; rep[7].edge = (val >> 8) & pmask; } for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) { rep[j].freq = ath5k_eeprom_bin2freq(ee, rep[j].freq, ctl_mode); } rep += AR5K_EEPROM_N_EDGES; } return 0; } /* * Initialize eeprom power tables */ int ath5k_eeprom_init(struct ath5k_hw *ah) { int err; err = ath5k_eeprom_init_header(ah); if (err < 0) return err; err = ath5k_eeprom_init_modes(ah); if (err < 0) return err; err = ath5k_eeprom_read_pcal_info(ah); if (err < 0) return err; err = ath5k_eeprom_read_ctl_info(ah); if (err < 0) return err; return 0; } /* * Read the MAC address from eeprom */ int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac) { u8 mac_d[ETH_ALEN]; u32 total, offset; u16 data; int octet, ret; memset(mac, 0, ETH_ALEN); memset(mac_d, 0, ETH_ALEN); ret = ath5k_hw_eeprom_read(ah, 0x20, &data); if (ret) return ret; for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) { ret = ath5k_hw_eeprom_read(ah, offset, &data); if (ret) return ret; total += data; mac_d[octet + 1] = data & 0xff; mac_d[octet] = data >> 8; octet += 2; } memcpy(mac, mac_d, ETH_ALEN); if (!total || total == 3 * 0xffff) return -EINVAL; return 0; } bool ath5k_eeprom_is_hb63(struct ath5k_hw *ah) { u16 data; ath5k_hw_eeprom_read(ah, AR5K_EEPROM_IS_HB63, &data); if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && data) return true; else return false; }