/**************************************************************************** * Driver for Solarflare Solarstorm network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2005-2009 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ /* Common definitions for all Efx net driver code */ #ifndef EFX_NET_DRIVER_H #define EFX_NET_DRIVER_H #if defined(EFX_ENABLE_DEBUG) && !defined(DEBUG) #define DEBUG #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include "enum.h" #include "bitfield.h" /************************************************************************** * * Build definitions * **************************************************************************/ #define EFX_DRIVER_VERSION "3.0" #ifdef EFX_ENABLE_DEBUG #define EFX_BUG_ON_PARANOID(x) BUG_ON(x) #define EFX_WARN_ON_PARANOID(x) WARN_ON(x) #else #define EFX_BUG_ON_PARANOID(x) do {} while (0) #define EFX_WARN_ON_PARANOID(x) do {} while (0) #endif /************************************************************************** * * Efx data structures * **************************************************************************/ #define EFX_MAX_CHANNELS 32 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS /* Checksum generation is a per-queue option in hardware, so each * queue visible to the networking core is backed by two hardware TX * queues. */ #define EFX_MAX_CORE_TX_QUEUES EFX_MAX_CHANNELS #define EFX_TXQ_TYPE_OFFLOAD 1 #define EFX_TXQ_TYPES 2 #define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CORE_TX_QUEUES) /** * struct efx_special_buffer - An Efx special buffer * @addr: CPU base address of the buffer * @dma_addr: DMA base address of the buffer * @len: Buffer length, in bytes * @index: Buffer index within controller;s buffer table * @entries: Number of buffer table entries * * Special buffers are used for the event queues and the TX and RX * descriptor queues for each channel. They are *not* used for the * actual transmit and receive buffers. */ struct efx_special_buffer { void *addr; dma_addr_t dma_addr; unsigned int len; int index; int entries; }; enum efx_flush_state { FLUSH_NONE, FLUSH_PENDING, FLUSH_FAILED, FLUSH_DONE, }; /** * struct efx_tx_buffer - An Efx TX buffer * @skb: The associated socket buffer. * Set only on the final fragment of a packet; %NULL for all other * fragments. When this fragment completes, then we can free this * skb. * @tsoh: The associated TSO header structure, or %NULL if this * buffer is not a TSO header. * @dma_addr: DMA address of the fragment. * @len: Length of this fragment. * This field is zero when the queue slot is empty. * @continuation: True if this fragment is not the end of a packet. * @unmap_single: True if pci_unmap_single should be used. * @unmap_len: Length of this fragment to unmap */ struct efx_tx_buffer { const struct sk_buff *skb; struct efx_tso_header *tsoh; dma_addr_t dma_addr; unsigned short len; bool continuation; bool unmap_single; unsigned short unmap_len; }; /** * struct efx_tx_queue - An Efx TX queue * * This is a ring buffer of TX fragments. * Since the TX completion path always executes on the same * CPU and the xmit path can operate on different CPUs, * performance is increased by ensuring that the completion * path and the xmit path operate on different cache lines. * This is particularly important if the xmit path is always * executing on one CPU which is different from the completion * path. There is also a cache line for members which are * read but not written on the fast path. * * @efx: The associated Efx NIC * @queue: DMA queue number * @channel: The associated channel * @buffer: The software buffer ring * @txd: The hardware descriptor ring * @flushed: Used when handling queue flushing * @read_count: Current read pointer. * This is the number of buffers that have been removed from both rings. * @stopped: Stopped count. * Set if this TX queue is currently stopping its port. * @insert_count: Current insert pointer * This is the number of buffers that have been added to the * software ring. * @write_count: Current write pointer * This is the number of buffers that have been added to the * hardware ring. * @old_read_count: The value of read_count when last checked. * This is here for performance reasons. The xmit path will * only get the up-to-date value of read_count if this * variable indicates that the queue is full. This is to * avoid cache-line ping-pong between the xmit path and the * completion path. * @tso_headers_free: A list of TSO headers allocated for this TX queue * that are not in use, and so available for new TSO sends. The list * is protected by the TX queue lock. * @tso_bursts: Number of times TSO xmit invoked by kernel * @tso_long_headers: Number of packets with headers too long for standard * blocks * @tso_packets: Number of packets via the TSO xmit path */ struct efx_tx_queue { /* Members which don't change on the fast path */ struct efx_nic *efx ____cacheline_aligned_in_smp; unsigned queue; struct efx_channel *channel; struct efx_nic *nic; struct efx_tx_buffer *buffer; struct efx_special_buffer txd; enum efx_flush_state flushed; /* Members used mainly on the completion path */ unsigned int read_count ____cacheline_aligned_in_smp; int stopped; /* Members used only on the xmit path */ unsigned int insert_count ____cacheline_aligned_in_smp; unsigned int write_count; unsigned int old_read_count; struct efx_tso_header *tso_headers_free; unsigned int tso_bursts; unsigned int tso_long_headers; unsigned int tso_packets; }; /** * struct efx_rx_buffer - An Efx RX data buffer * @dma_addr: DMA base address of the buffer * @skb: The associated socket buffer, if any. * If both this and page are %NULL, the buffer slot is currently free. * @page: The associated page buffer, if any. * If both this and skb are %NULL, the buffer slot is currently free. * @data: Pointer to ethernet header * @len: Buffer length, in bytes. */ struct efx_rx_buffer { dma_addr_t dma_addr; struct sk_buff *skb; struct page *page; char *data; unsigned int len; }; /** * struct efx_rx_page_state - Page-based rx buffer state * * Inserted at the start of every page allocated for receive buffers. * Used to facilitate sharing dma mappings between recycled rx buffers * and those passed up to the kernel. * * @refcnt: Number of struct efx_rx_buffer's referencing this page. * When refcnt falls to zero, the page is unmapped for dma * @dma_addr: The dma address of this page. */ struct efx_rx_page_state { unsigned refcnt; dma_addr_t dma_addr; unsigned int __pad[0] ____cacheline_aligned; }; /** * struct efx_rx_queue - An Efx RX queue * @efx: The associated Efx NIC * @queue: DMA queue number * @channel: The associated channel * @buffer: The software buffer ring * @rxd: The hardware descriptor ring * @added_count: Number of buffers added to the receive queue. * @notified_count: Number of buffers given to NIC (<= @added_count). * @removed_count: Number of buffers removed from the receive queue. * @max_fill: RX descriptor maximum fill level (<= ring size) * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill * (<= @max_fill) * @fast_fill_limit: The level to which a fast fill will fill * (@fast_fill_trigger <= @fast_fill_limit <= @max_fill) * @min_fill: RX descriptor minimum non-zero fill level. * This records the minimum fill level observed when a ring * refill was triggered. * @min_overfill: RX descriptor minimum overflow fill level. * This records the minimum fill level at which RX queue * overflow was observed. It should never be set. * @alloc_page_count: RX allocation strategy counter. * @alloc_skb_count: RX allocation strategy counter. * @slow_fill: Timer used to defer efx_nic_generate_fill_event(). * @flushed: Use when handling queue flushing */ struct efx_rx_queue { struct efx_nic *efx; int queue; struct efx_channel *channel; struct efx_rx_buffer *buffer; struct efx_special_buffer rxd; int added_count; int notified_count; int removed_count; unsigned int max_fill; unsigned int fast_fill_trigger; unsigned int fast_fill_limit; unsigned int min_fill; unsigned int min_overfill; unsigned int alloc_page_count; unsigned int alloc_skb_count; struct timer_list slow_fill; unsigned int slow_fill_count; enum efx_flush_state flushed; }; /** * struct efx_buffer - An Efx general-purpose buffer * @addr: host base address of the buffer * @dma_addr: DMA base address of the buffer * @len: Buffer length, in bytes * * The NIC uses these buffers for its interrupt status registers and * MAC stats dumps. */ struct efx_buffer { void *addr; dma_addr_t dma_addr; unsigned int len; }; enum efx_rx_alloc_method { RX_ALLOC_METHOD_AUTO = 0, RX_ALLOC_METHOD_SKB = 1, RX_ALLOC_METHOD_PAGE = 2, }; /** * struct efx_channel - An Efx channel * * A channel comprises an event queue, at least one TX queue, at least * one RX queue, and an associated tasklet for processing the event * queue. * * @efx: Associated Efx NIC * @channel: Channel instance number * @name: Name for channel and IRQ * @enabled: Channel enabled indicator * @irq: IRQ number (MSI and MSI-X only) * @irq_moderation: IRQ moderation value (in hardware ticks) * @napi_dev: Net device used with NAPI * @napi_str: NAPI control structure * @reset_work: Scheduled reset work thread * @work_pending: Is work pending via NAPI? * @eventq: Event queue buffer * @eventq_read_ptr: Event queue read pointer * @last_eventq_read_ptr: Last event queue read pointer value. * @magic_count: Event queue test event count * @irq_count: Number of IRQs since last adaptive moderation decision * @irq_mod_score: IRQ moderation score * @rx_alloc_level: Watermark based heuristic counter for pushing descriptors * and diagnostic counters * @rx_alloc_push_pages: RX allocation method currently in use for pushing * descriptors * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors * @n_rx_mcast_mismatch: Count of unmatched multicast frames * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors * @n_rx_overlength: Count of RX_OVERLENGTH errors * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun * @tx_queue: Pointer to first TX queue, or %NULL if not used for TX * @tx_stop_count: Core TX queue stop count * @tx_stop_lock: Core TX queue stop lock */ struct efx_channel { struct efx_nic *efx; int channel; char name[IFNAMSIZ + 6]; bool enabled; int irq; unsigned int irq_moderation; struct net_device *napi_dev; struct napi_struct napi_str; bool work_pending; struct efx_special_buffer eventq; unsigned int eventq_read_ptr; unsigned int last_eventq_read_ptr; unsigned int magic_count; unsigned int irq_count; unsigned int irq_mod_score; int rx_alloc_level; int rx_alloc_push_pages; unsigned n_rx_tobe_disc; unsigned n_rx_ip_hdr_chksum_err; unsigned n_rx_tcp_udp_chksum_err; unsigned n_rx_mcast_mismatch; unsigned n_rx_frm_trunc; unsigned n_rx_overlength; unsigned n_skbuff_leaks; /* Used to pipeline received packets in order to optimise memory * access with prefetches. */ struct efx_rx_buffer *rx_pkt; bool rx_pkt_csummed; struct efx_tx_queue *tx_queue; atomic_t tx_stop_count; spinlock_t tx_stop_lock; }; enum efx_led_mode { EFX_LED_OFF = 0, EFX_LED_ON = 1, EFX_LED_DEFAULT = 2 }; #define STRING_TABLE_LOOKUP(val, member) \ ((val) < member ## _max) ? member ## _names[val] : "(invalid)" extern const char *efx_loopback_mode_names[]; extern const unsigned int efx_loopback_mode_max; #define LOOPBACK_MODE(efx) \ STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode) extern const char *efx_interrupt_mode_names[]; extern const unsigned int efx_interrupt_mode_max; #define INT_MODE(efx) \ STRING_TABLE_LOOKUP(efx->interrupt_mode, efx_interrupt_mode) extern const char *efx_reset_type_names[]; extern const unsigned int efx_reset_type_max; #define RESET_TYPE(type) \ STRING_TABLE_LOOKUP(type, efx_reset_type) enum efx_int_mode { /* Be careful if altering to correct macro below */ EFX_INT_MODE_MSIX = 0, EFX_INT_MODE_MSI = 1, EFX_INT_MODE_LEGACY = 2, EFX_INT_MODE_MAX /* Insert any new items before this */ }; #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI) #define EFX_IS10G(efx) ((efx)->link_state.speed == 10000) enum nic_state { STATE_INIT = 0, STATE_RUNNING = 1, STATE_FINI = 2, STATE_DISABLED = 3, STATE_MAX, }; /* * Alignment of page-allocated RX buffers * * Controls the number of bytes inserted at the start of an RX buffer. * This is the equivalent of NET_IP_ALIGN [which controls the alignment * of the skb->head for hardware DMA]. */ #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS #define EFX_PAGE_IP_ALIGN 0 #else #define EFX_PAGE_IP_ALIGN NET_IP_ALIGN #endif /* * Alignment of the skb->head which wraps a page-allocated RX buffer * * The skb allocated to wrap an rx_buffer can have this alignment. Since * the data is memcpy'd from the rx_buf, it does not need to be equal to * EFX_PAGE_IP_ALIGN. */ #define EFX_PAGE_SKB_ALIGN 2 /* Forward declaration */ struct efx_nic; /* Pseudo bit-mask flow control field */ enum efx_fc_type { EFX_FC_RX = FLOW_CTRL_RX, EFX_FC_TX = FLOW_CTRL_TX, EFX_FC_AUTO = 4, }; /** * struct efx_link_state - Current state of the link * @up: Link is up * @fd: Link is full-duplex * @fc: Actual flow control flags * @speed: Link speed (Mbps) */ struct efx_link_state { bool up; bool fd; enum efx_fc_type fc; unsigned int speed; }; static inline bool efx_link_state_equal(const struct efx_link_state *left, const struct efx_link_state *right) { return left->up == right->up && left->fd == right->fd && left->fc == right->fc && left->speed == right->speed; } /** * struct efx_mac_operations - Efx MAC operations table * @reconfigure: Reconfigure MAC. Serialised by the mac_lock * @update_stats: Update statistics * @check_fault: Check fault state. True if fault present. */ struct efx_mac_operations { int (*reconfigure) (struct efx_nic *efx); void (*update_stats) (struct efx_nic *efx); bool (*check_fault)(struct efx_nic *efx); }; /** * struct efx_phy_operations - Efx PHY operations table * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds, * efx->loopback_modes. * @init: Initialise PHY * @fini: Shut down PHY * @reconfigure: Reconfigure PHY (e.g. for new link parameters) * @poll: Update @link_state and report whether it changed. * Serialised by the mac_lock. * @get_settings: Get ethtool settings. Serialised by the mac_lock. * @set_settings: Set ethtool settings. Serialised by the mac_lock. * @set_npage_adv: Set abilities advertised in (Extended) Next Page * (only needed where AN bit is set in mmds) * @test_alive: Test that PHY is 'alive' (online) * @test_name: Get the name of a PHY-specific test/result * @run_tests: Run tests and record results as appropriate (offline). * Flags are the ethtool tests flags. */ struct efx_phy_operations { int (*probe) (struct efx_nic *efx); int (*init) (struct efx_nic *efx); void (*fini) (struct efx_nic *efx); void (*remove) (struct efx_nic *efx); int (*reconfigure) (struct efx_nic *efx); bool (*poll) (struct efx_nic *efx); void (*get_settings) (struct efx_nic *efx, struct ethtool_cmd *ecmd); int (*set_settings) (struct efx_nic *efx, struct ethtool_cmd *ecmd); void (*set_npage_adv) (struct efx_nic *efx, u32); int (*test_alive) (struct efx_nic *efx); const char *(*test_name) (struct efx_nic *efx, unsigned int index); int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags); }; /** * @enum efx_phy_mode - PHY operating mode flags * @PHY_MODE_NORMAL: on and should pass traffic * @PHY_MODE_TX_DISABLED: on with TX disabled * @PHY_MODE_LOW_POWER: set to low power through MDIO * @PHY_MODE_OFF: switched off through external control * @PHY_MODE_SPECIAL: on but will not pass traffic */ enum efx_phy_mode { PHY_MODE_NORMAL = 0, PHY_MODE_TX_DISABLED = 1, PHY_MODE_LOW_POWER = 2, PHY_MODE_OFF = 4, PHY_MODE_SPECIAL = 8, }; static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode) { return !!(mode & ~PHY_MODE_TX_DISABLED); } /* * Efx extended statistics * * Not all statistics are provided by all supported MACs. The purpose * is this structure is to contain the raw statistics provided by each * MAC. */ struct efx_mac_stats { u64 tx_bytes; u64 tx_good_bytes; u64 tx_bad_bytes; unsigned long tx_packets; unsigned long tx_bad; unsigned long tx_pause; unsigned long tx_control; unsigned long tx_unicast; unsigned long tx_multicast; unsigned long tx_broadcast; unsigned long tx_lt64; unsigned long tx_64; unsigned long tx_65_to_127; unsigned long tx_128_to_255; unsigned long tx_256_to_511; unsigned long tx_512_to_1023; unsigned long tx_1024_to_15xx; unsigned long tx_15xx_to_jumbo; unsigned long tx_gtjumbo; unsigned long tx_collision; unsigned long tx_single_collision; unsigned long tx_multiple_collision; unsigned long tx_excessive_collision; unsigned long tx_deferred; unsigned long tx_late_collision; unsigned long tx_excessive_deferred; unsigned long tx_non_tcpudp; unsigned long tx_mac_src_error; unsigned long tx_ip_src_error; u64 rx_bytes; u64 rx_good_bytes; u64 rx_bad_bytes; unsigned long rx_packets; unsigned long rx_good; unsigned long rx_bad; unsigned long rx_pause; unsigned long rx_control; unsigned long rx_unicast; unsigned long rx_multicast; unsigned long rx_broadcast; unsigned long rx_lt64; unsigned long rx_64; unsigned long rx_65_to_127; unsigned long rx_128_to_255; unsigned long rx_256_to_511; unsigned long rx_512_to_1023; unsigned long rx_1024_to_15xx; unsigned long rx_15xx_to_jumbo; unsigned long rx_gtjumbo; unsigned long rx_bad_lt64; unsigned long rx_bad_64_to_15xx; unsigned long rx_bad_15xx_to_jumbo; unsigned long rx_bad_gtjumbo; unsigned long rx_overflow; unsigned long rx_missed; unsigned long rx_false_carrier; unsigned long rx_symbol_error; unsigned long rx_align_error; unsigned long rx_length_error; unsigned long rx_internal_error; unsigned long rx_good_lt64; }; /* Number of bits used in a multicast filter hash address */ #define EFX_MCAST_HASH_BITS 8 /* Number of (single-bit) entries in a multicast filter hash */ #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS) /* An Efx multicast filter hash */ union efx_multicast_hash { u8 byte[EFX_MCAST_HASH_ENTRIES / 8]; efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8]; }; /** * struct efx_nic - an Efx NIC * @name: Device name (net device name or bus id before net device registered) * @pci_dev: The PCI device * @port_num: Index of this host port within the controller * @type: Controller type attributes * @legacy_irq: IRQ number * @workqueue: Workqueue for port reconfigures and the HW monitor. * Work items do not hold and must not acquire RTNL. * @workqueue_name: Name of workqueue * @reset_work: Scheduled reset workitem * @monitor_work: Hardware monitor workitem * @membase_phys: Memory BAR value as physical address * @membase: Memory BAR value * @biu_lock: BIU (bus interface unit) lock * @interrupt_mode: Interrupt mode * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues * @irq_rx_moderation: IRQ moderation time for RX event queues * @msg_enable: Log message enable flags * @state: Device state flag. Serialised by the rtnl_lock. * @reset_pending: Pending reset method (normally RESET_TYPE_NONE) * @tx_queue: TX DMA queues * @rx_queue: RX DMA queues * @channel: Channels * @next_buffer_table: First available buffer table id * @n_channels: Number of channels in use * @n_rx_channels: Number of channels used for RX (= number of RX queues) * @n_tx_channels: Number of channels used for TX * @rx_buffer_len: RX buffer length * @rx_buffer_order: Order (log2) of number of pages for each RX buffer * @int_error_count: Number of internal errors seen recently * @int_error_expire: Time at which error count will be expired * @irq_status: Interrupt status buffer * @last_irq_cpu: Last CPU to handle interrupt. * This register is written with the SMP processor ID whenever an * interrupt is handled. It is used by efx_nic_test_interrupt() * to verify that an interrupt has occurred. * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0 * @fatal_irq_level: IRQ level (bit number) used for serious errors * @spi_flash: SPI flash device * This field will be %NULL if no flash device is present (or for Siena). * @spi_eeprom: SPI EEPROM device * This field will be %NULL if no EEPROM device is present (or for Siena). * @spi_lock: SPI bus lock * @mtd_list: List of MTDs attached to the NIC * @n_rx_nodesc_drop_cnt: RX no descriptor drop count * @nic_data: Hardware dependant state * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode, * @port_inhibited, efx_monitor() and efx_reconfigure_port() * @port_enabled: Port enabled indicator. * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and * efx_mac_work() with kernel interfaces. Safe to read under any * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must * be held to modify it. * @port_inhibited: If set, the netif_carrier is always off. Hold the mac_lock * @port_initialized: Port initialized? * @net_dev: Operating system network device. Consider holding the rtnl lock * @rx_checksum_enabled: RX checksumming enabled * @mac_stats: MAC statistics. These include all statistics the MACs * can provide. Generic code converts these into a standard * &struct net_device_stats. * @stats_buffer: DMA buffer for statistics * @stats_lock: Statistics update lock. Serialises statistics fetches * @mac_op: MAC interface * @mac_address: Permanent MAC address * @phy_type: PHY type * @mdio_lock: MDIO lock * @phy_op: PHY interface * @phy_data: PHY private data (including PHY-specific stats) * @mdio: PHY MDIO interface * @mdio_bus: PHY MDIO bus ID (only used by Siena) * @phy_mode: PHY operating mode. Serialised by @mac_lock. * @xmac_poll_required: XMAC link state needs polling * @link_advertising: Autonegotiation advertising flags * @link_state: Current state of the link * @n_link_state_changes: Number of times the link has changed state * @promiscuous: Promiscuous flag. Protected by netif_tx_lock. * @multicast_hash: Multicast hash table * @wanted_fc: Wanted flow control flags * @mac_work: Work item for changing MAC promiscuity and multicast hash * @loopback_mode: Loopback status * @loopback_modes: Supported loopback mode bitmask * @loopback_selftest: Offline self-test private state * * This is stored in the private area of the &struct net_device. */ struct efx_nic { char name[IFNAMSIZ]; struct pci_dev *pci_dev; unsigned port_num; const struct efx_nic_type *type; int legacy_irq; struct workqueue_struct *workqueue; char workqueue_name[16]; struct work_struct reset_work; struct delayed_work monitor_work; resource_size_t membase_phys; void __iomem *membase; spinlock_t biu_lock; enum efx_int_mode interrupt_mode; bool irq_rx_adaptive; unsigned int irq_rx_moderation; u32 msg_enable; enum nic_state state; enum reset_type reset_pending; struct efx_tx_queue tx_queue[EFX_MAX_TX_QUEUES]; struct efx_rx_queue rx_queue[EFX_MAX_RX_QUEUES]; struct efx_channel channel[EFX_MAX_CHANNELS]; unsigned next_buffer_table; unsigned n_channels; unsigned n_rx_channels; unsigned n_tx_channels; unsigned int rx_buffer_len; unsigned int rx_buffer_order; unsigned int_error_count; unsigned long int_error_expire; struct efx_buffer irq_status; volatile signed int last_irq_cpu; unsigned irq_zero_count; unsigned fatal_irq_level; struct efx_spi_device *spi_flash; struct efx_spi_device *spi_eeprom; struct mutex spi_lock; #ifdef CONFIG_SFC_MTD struct list_head mtd_list; #endif unsigned n_rx_nodesc_drop_cnt; void *nic_data; struct mutex mac_lock; struct work_struct mac_work; bool port_enabled; bool port_inhibited; bool port_initialized; struct net_device *net_dev; bool rx_checksum_enabled; struct efx_mac_stats mac_stats; struct efx_buffer stats_buffer; spinlock_t stats_lock; struct efx_mac_operations *mac_op; unsigned char mac_address[ETH_ALEN]; unsigned int phy_type; struct mutex mdio_lock; struct efx_phy_operations *phy_op; void *phy_data; struct mdio_if_info mdio; unsigned int mdio_bus; enum efx_phy_mode phy_mode; bool xmac_poll_required; u32 link_advertising; struct efx_link_state link_state; unsigned int n_link_state_changes; bool promiscuous; union efx_multicast_hash multicast_hash; enum efx_fc_type wanted_fc; atomic_t rx_reset; enum efx_loopback_mode loopback_mode; u64 loopback_modes; void *loopback_selftest; }; static inline int efx_dev_registered(struct efx_nic *efx) { return efx->net_dev->reg_state == NETREG_REGISTERED; } /* Net device name, for inclusion in log messages if it has been registered. * Use efx->name not efx->net_dev->name so that races with (un)registration * are harmless. */ static inline const char *efx_dev_name(struct efx_nic *efx) { return efx_dev_registered(efx) ? efx->name : ""; } static inline unsigned int efx_port_num(struct efx_nic *efx) { return efx->net_dev->dev_id; } /** * struct efx_nic_type - Efx device type definition * @probe: Probe the controller * @remove: Free resources allocated by probe() * @init: Initialise the controller * @fini: Shut down the controller * @monitor: Periodic function for polling link state and hardware monitor * @reset: Reset the controller hardware and possibly the PHY. This will * be called while the controller is uninitialised. * @probe_port: Probe the MAC and PHY * @remove_port: Free resources allocated by probe_port() * @prepare_flush: Prepare the hardware for flushing the DMA queues * @update_stats: Update statistics not provided by event handling * @start_stats: Start the regular fetching of statistics * @stop_stats: Stop the regular fetching of statistics * @set_id_led: Set state of identifying LED or revert to automatic function * @push_irq_moderation: Apply interrupt moderation value * @push_multicast_hash: Apply multicast hash table * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY * @get_wol: Get WoL configuration from driver state * @set_wol: Push WoL configuration to the NIC * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume) * @test_registers: Test read/write functionality of control registers * @test_nvram: Test validity of NVRAM contents * @default_mac_ops: efx_mac_operations to set at startup * @revision: Hardware architecture revision * @mem_map_size: Memory BAR mapped size * @txd_ptr_tbl_base: TX descriptor ring base address * @rxd_ptr_tbl_base: RX descriptor ring base address * @buf_tbl_base: Buffer table base address * @evq_ptr_tbl_base: Event queue pointer table base address * @evq_rptr_tbl_base: Event queue read-pointer table base address * @max_dma_mask: Maximum possible DMA mask * @rx_buffer_hash_size: Size of hash at start of RX buffer * @rx_buffer_padding: Size of padding at end of RX buffer * @max_interrupt_mode: Highest capability interrupt mode supported * from &enum efx_init_mode. * @phys_addr_channels: Number of channels with physically addressed * descriptors * @tx_dc_base: Base address in SRAM of TX queue descriptor caches * @rx_dc_base: Base address in SRAM of RX queue descriptor caches * @offload_features: net_device feature flags for protocol offload * features implemented in hardware * @reset_world_flags: Flags for additional components covered by * reset method RESET_TYPE_WORLD */ struct efx_nic_type { int (*probe)(struct efx_nic *efx); void (*remove)(struct efx_nic *efx); int (*init)(struct efx_nic *efx); void (*fini)(struct efx_nic *efx); void (*monitor)(struct efx_nic *efx); int (*reset)(struct efx_nic *efx, enum reset_type method); int (*probe_port)(struct efx_nic *efx); void (*remove_port)(struct efx_nic *efx); void (*prepare_flush)(struct efx_nic *efx); void (*update_stats)(struct efx_nic *efx); void (*start_stats)(struct efx_nic *efx); void (*stop_stats)(struct efx_nic *efx); void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode); void (*push_irq_moderation)(struct efx_channel *channel); void (*push_multicast_hash)(struct efx_nic *efx); int (*reconfigure_port)(struct efx_nic *efx); void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol); int (*set_wol)(struct efx_nic *efx, u32 type); void (*resume_wol)(struct efx_nic *efx); int (*test_registers)(struct efx_nic *efx); int (*test_nvram)(struct efx_nic *efx); struct efx_mac_operations *default_mac_ops; int revision; unsigned int mem_map_size; unsigned int txd_ptr_tbl_base; unsigned int rxd_ptr_tbl_base; unsigned int buf_tbl_base; unsigned int evq_ptr_tbl_base; unsigned int evq_rptr_tbl_base; u64 max_dma_mask; unsigned int rx_buffer_hash_size; unsigned int rx_buffer_padding; unsigned int max_interrupt_mode; unsigned int phys_addr_channels; unsigned int tx_dc_base; unsigned int rx_dc_base; unsigned long offload_features; u32 reset_world_flags; }; /************************************************************************** * * Prototypes and inline functions * *************************************************************************/ /* Iterate over all used channels */ #define efx_for_each_channel(_channel, _efx) \ for (_channel = &((_efx)->channel[0]); \ _channel < &((_efx)->channel[(efx)->n_channels]); \ _channel++) /* Iterate over all used TX queues */ #define efx_for_each_tx_queue(_tx_queue, _efx) \ for (_tx_queue = &((_efx)->tx_queue[0]); \ _tx_queue < &((_efx)->tx_queue[EFX_TXQ_TYPES * \ (_efx)->n_tx_channels]); \ _tx_queue++) /* Iterate over all TX queues belonging to a channel */ #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \ for (_tx_queue = (_channel)->tx_queue; \ _tx_queue && _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES; \ _tx_queue++) /* Iterate over all used RX queues */ #define efx_for_each_rx_queue(_rx_queue, _efx) \ for (_rx_queue = &((_efx)->rx_queue[0]); \ _rx_queue < &((_efx)->rx_queue[(_efx)->n_rx_channels]); \ _rx_queue++) /* Iterate over all RX queues belonging to a channel */ #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \ for (_rx_queue = &((_channel)->efx->rx_queue[(_channel)->channel]); \ _rx_queue; \ _rx_queue = NULL) \ if (_rx_queue->channel != (_channel)) \ continue; \ else /* Returns a pointer to the specified receive buffer in the RX * descriptor queue. */ static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue, unsigned int index) { return (&rx_queue->buffer[index]); } /* Set bit in a little-endian bitfield */ static inline void set_bit_le(unsigned nr, unsigned char *addr) { addr[nr / 8] |= (1 << (nr % 8)); } /* Clear bit in a little-endian bitfield */ static inline void clear_bit_le(unsigned nr, unsigned char *addr) { addr[nr / 8] &= ~(1 << (nr % 8)); } /** * EFX_MAX_FRAME_LEN - calculate maximum frame length * * This calculates the maximum frame length that will be used for a * given MTU. The frame length will be equal to the MTU plus a * constant amount of header space and padding. This is the quantity * that the net driver will program into the MAC as the maximum frame * length. * * The 10G MAC requires 8-byte alignment on the frame * length, so we round up to the nearest 8. * * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an * XGMII cycle). If the frame length reaches the maximum value in the * same cycle, the XMAC can miss the IPG altogether. We work around * this by adding a further 16 bytes. */ #define EFX_MAX_FRAME_LEN(mtu) \ ((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16) #endif /* EFX_NET_DRIVER_H */