/* * This file is part of wl1271 * * Copyright (C) 2008-2009 Nokia Corporation * * Contact: Luciano Coelho * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA * */ #include #include #include #include #include "wl1271.h" #include "wl12xx_80211.h" #include "wl1271_spi.h" static int wl1271_translate_reg_addr(struct wl1271 *wl, int addr) { return addr - wl->physical_reg_addr + wl->virtual_reg_addr; } static int wl1271_translate_mem_addr(struct wl1271 *wl, int addr) { return addr - wl->physical_mem_addr + wl->virtual_mem_addr; } void wl1271_spi_reset(struct wl1271 *wl) { u8 *cmd; struct spi_transfer t; struct spi_message m; cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL); if (!cmd) { wl1271_error("could not allocate cmd for spi reset"); return; } memset(&t, 0, sizeof(t)); spi_message_init(&m); memset(cmd, 0xff, WSPI_INIT_CMD_LEN); t.tx_buf = cmd; t.len = WSPI_INIT_CMD_LEN; spi_message_add_tail(&t, &m); spi_sync(wl->spi, &m); wl1271_dump(DEBUG_SPI, "spi reset -> ", cmd, WSPI_INIT_CMD_LEN); } void wl1271_spi_init(struct wl1271 *wl) { u8 crc[WSPI_INIT_CMD_CRC_LEN], *cmd; struct spi_transfer t; struct spi_message m; cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL); if (!cmd) { wl1271_error("could not allocate cmd for spi init"); return; } memset(crc, 0, sizeof(crc)); memset(&t, 0, sizeof(t)); spi_message_init(&m); /* * Set WSPI_INIT_COMMAND * the data is being send from the MSB to LSB */ cmd[2] = 0xff; cmd[3] = 0xff; cmd[1] = WSPI_INIT_CMD_START | WSPI_INIT_CMD_TX; cmd[0] = 0; cmd[7] = 0; cmd[6] |= HW_ACCESS_WSPI_INIT_CMD_MASK << 3; cmd[6] |= HW_ACCESS_WSPI_FIXED_BUSY_LEN & WSPI_INIT_CMD_FIXEDBUSY_LEN; if (HW_ACCESS_WSPI_FIXED_BUSY_LEN == 0) cmd[5] |= WSPI_INIT_CMD_DIS_FIXEDBUSY; else cmd[5] |= WSPI_INIT_CMD_EN_FIXEDBUSY; cmd[5] |= WSPI_INIT_CMD_IOD | WSPI_INIT_CMD_IP | WSPI_INIT_CMD_CS | WSPI_INIT_CMD_WSPI | WSPI_INIT_CMD_WS; crc[0] = cmd[1]; crc[1] = cmd[0]; crc[2] = cmd[7]; crc[3] = cmd[6]; crc[4] = cmd[5]; cmd[4] |= crc7(0, crc, WSPI_INIT_CMD_CRC_LEN) << 1; cmd[4] |= WSPI_INIT_CMD_END; t.tx_buf = cmd; t.len = WSPI_INIT_CMD_LEN; spi_message_add_tail(&t, &m); spi_sync(wl->spi, &m); wl1271_dump(DEBUG_SPI, "spi init -> ", cmd, WSPI_INIT_CMD_LEN); } /* Set the SPI partitions to access the chip addresses * * There are two VIRTUAL (SPI) partitions (the memory partition and the * registers partition), which are mapped to two different areas of the * PHYSICAL (hardware) memory. This function also makes other checks to * ensure that the partitions are not overlapping. In the diagram below, the * memory partition comes before the register partition, but the opposite is * also supported. * * PHYSICAL address * space * * | | * ...+----+--> mem_start * VIRTUAL address ... | | * space ... | | [PART_0] * ... | | * 0x00000000 <--+----+... ...+----+--> mem_start + mem_size * | | ... | | * |MEM | ... | | * | | ... | | * part_size <--+----+... | | {unused area) * | | ... | | * |REG | ... | | * part_size | | ... | | * + <--+----+... ...+----+--> reg_start * reg_size ... | | * ... | | [PART_1] * ... | | * ...+----+--> reg_start + reg_size * | | * */ int wl1271_set_partition(struct wl1271 *wl, u32 mem_start, u32 mem_size, u32 reg_start, u32 reg_size) { struct wl1271_partition *partition; struct spi_transfer t; struct spi_message m; size_t len, cmd_len; u32 *cmd; int addr; cmd_len = sizeof(u32) + 2 * sizeof(struct wl1271_partition); cmd = kzalloc(cmd_len, GFP_KERNEL); if (!cmd) return -ENOMEM; spi_message_init(&m); memset(&t, 0, sizeof(t)); partition = (struct wl1271_partition *) (cmd + 1); addr = HW_ACCESS_PART0_SIZE_ADDR; len = 2 * sizeof(struct wl1271_partition); *cmd |= WSPI_CMD_WRITE; *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH; *cmd |= addr & WSPI_CMD_BYTE_ADDR; wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X", mem_start, mem_size); wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X", reg_start, reg_size); /* Make sure that the two partitions together don't exceed the * address range */ if ((mem_size + reg_size) > HW_ACCESS_MEMORY_MAX_RANGE) { wl1271_debug(DEBUG_SPI, "Total size exceeds maximum virtual" " address range. Truncating partition[0]."); mem_size = HW_ACCESS_MEMORY_MAX_RANGE - reg_size; wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X", mem_start, mem_size); wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X", reg_start, reg_size); } if ((mem_start < reg_start) && ((mem_start + mem_size) > reg_start)) { /* Guarantee that the memory partition doesn't overlap the * registers partition */ wl1271_debug(DEBUG_SPI, "End of partition[0] is " "overlapping partition[1]. Adjusted."); mem_size = reg_start - mem_start; wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X", mem_start, mem_size); wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X", reg_start, reg_size); } else if ((reg_start < mem_start) && ((reg_start + reg_size) > mem_start)) { /* Guarantee that the register partition doesn't overlap the * memory partition */ wl1271_debug(DEBUG_SPI, "End of partition[1] is" " overlapping partition[0]. Adjusted."); reg_size = mem_start - reg_start; wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X", mem_start, mem_size); wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X", reg_start, reg_size); } partition[0].start = mem_start; partition[0].size = mem_size; partition[1].start = reg_start; partition[1].size = reg_size; wl->physical_mem_addr = mem_start; wl->physical_reg_addr = reg_start; wl->virtual_mem_addr = 0; wl->virtual_reg_addr = mem_size; t.tx_buf = cmd; t.len = cmd_len; spi_message_add_tail(&t, &m); spi_sync(wl->spi, &m); kfree(cmd); return 0; } #define WL1271_BUSY_WORD_TIMEOUT 1000 void wl1271_spi_read_busy(struct wl1271 *wl, void *buf, size_t len) { struct spi_transfer t[1]; struct spi_message m; u32 *busy_buf; int num_busy_bytes = 0; wl1271_info("spi read BUSY!"); /* * Look for the non-busy word in the read buffer, and if found, * read in the remaining data into the buffer. */ busy_buf = (u32 *)buf; for (; (u32)busy_buf < (u32)buf + len; busy_buf++) { num_busy_bytes += sizeof(u32); if (*busy_buf & 0x1) { spi_message_init(&m); memset(t, 0, sizeof(t)); memmove(buf, busy_buf, len - num_busy_bytes); t[0].rx_buf = buf + (len - num_busy_bytes); t[0].len = num_busy_bytes; spi_message_add_tail(&t[0], &m); spi_sync(wl->spi, &m); return; } } /* * Read further busy words from SPI until a non-busy word is * encountered, then read the data itself into the buffer. */ wl1271_info("spi read BUSY-polling needed!"); num_busy_bytes = WL1271_BUSY_WORD_TIMEOUT; busy_buf = wl->buffer_busyword; while (num_busy_bytes) { num_busy_bytes--; spi_message_init(&m); memset(t, 0, sizeof(t)); t[0].rx_buf = busy_buf; t[0].len = sizeof(u32); spi_message_add_tail(&t[0], &m); spi_sync(wl->spi, &m); if (*busy_buf & 0x1) { spi_message_init(&m); memset(t, 0, sizeof(t)); t[0].rx_buf = buf; t[0].len = len; spi_message_add_tail(&t[0], &m); spi_sync(wl->spi, &m); return; } } /* The SPI bus is unresponsive, the read failed. */ memset(buf, 0, len); wl1271_error("SPI read busy-word timeout!\n"); } void wl1271_spi_read(struct wl1271 *wl, int addr, void *buf, size_t len, bool fixed) { struct spi_transfer t[3]; struct spi_message m; u32 *busy_buf; u32 *cmd; cmd = &wl->buffer_cmd; busy_buf = wl->buffer_busyword; *cmd = 0; *cmd |= WSPI_CMD_READ; *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH; *cmd |= addr & WSPI_CMD_BYTE_ADDR; if (fixed) *cmd |= WSPI_CMD_FIXED; spi_message_init(&m); memset(t, 0, sizeof(t)); t[0].tx_buf = cmd; t[0].len = 4; spi_message_add_tail(&t[0], &m); /* Busy and non busy words read */ t[1].rx_buf = busy_buf; t[1].len = WL1271_BUSY_WORD_LEN; spi_message_add_tail(&t[1], &m); t[2].rx_buf = buf; t[2].len = len; spi_message_add_tail(&t[2], &m); spi_sync(wl->spi, &m); /* Check busy words */ if (!(busy_buf[WL1271_BUSY_WORD_CNT - 1] & 0x1)) wl1271_spi_read_busy(wl, buf, len); wl1271_dump(DEBUG_SPI, "spi_read cmd -> ", cmd, sizeof(*cmd)); wl1271_dump(DEBUG_SPI, "spi_read buf <- ", buf, len); } void wl1271_spi_write(struct wl1271 *wl, int addr, void *buf, size_t len, bool fixed) { struct spi_transfer t[2]; struct spi_message m; u32 *cmd; cmd = &wl->buffer_cmd; *cmd = 0; *cmd |= WSPI_CMD_WRITE; *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH; *cmd |= addr & WSPI_CMD_BYTE_ADDR; if (fixed) *cmd |= WSPI_CMD_FIXED; spi_message_init(&m); memset(t, 0, sizeof(t)); t[0].tx_buf = cmd; t[0].len = sizeof(*cmd); spi_message_add_tail(&t[0], &m); t[1].tx_buf = buf; t[1].len = len; spi_message_add_tail(&t[1], &m); spi_sync(wl->spi, &m); wl1271_dump(DEBUG_SPI, "spi_write cmd -> ", cmd, sizeof(*cmd)); wl1271_dump(DEBUG_SPI, "spi_write buf -> ", buf, len); } void wl1271_spi_mem_read(struct wl1271 *wl, int addr, void *buf, size_t len) { int physical; physical = wl1271_translate_mem_addr(wl, addr); wl1271_spi_read(wl, physical, buf, len, false); } void wl1271_spi_mem_write(struct wl1271 *wl, int addr, void *buf, size_t len) { int physical; physical = wl1271_translate_mem_addr(wl, addr); wl1271_spi_write(wl, physical, buf, len, false); } void wl1271_spi_reg_read(struct wl1271 *wl, int addr, void *buf, size_t len, bool fixed) { int physical; physical = wl1271_translate_reg_addr(wl, addr); wl1271_spi_read(wl, physical, buf, len, fixed); } void wl1271_spi_reg_write(struct wl1271 *wl, int addr, void *buf, size_t len, bool fixed) { int physical; physical = wl1271_translate_reg_addr(wl, addr); wl1271_spi_write(wl, physical, buf, len, fixed); } u32 wl1271_mem_read32(struct wl1271 *wl, int addr) { return wl1271_read32(wl, wl1271_translate_mem_addr(wl, addr)); } void wl1271_mem_write32(struct wl1271 *wl, int addr, u32 val) { wl1271_write32(wl, wl1271_translate_mem_addr(wl, addr), val); } u32 wl1271_reg_read32(struct wl1271 *wl, int addr) { return wl1271_read32(wl, wl1271_translate_reg_addr(wl, addr)); } void wl1271_reg_write32(struct wl1271 *wl, int addr, u32 val) { wl1271_write32(wl, wl1271_translate_reg_addr(wl, addr), val); }