/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved. */ #ifndef _ASM_IA64_SN_SHUBIO_H #define _ASM_IA64_SN_SHUBIO_H #define HUB_WIDGET_ID_MAX 0xf #define IIO_NUM_ITTES 7 #define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1) #define IIO_WID 0x00400000 /* Crosstalk Widget Identification */ /* This register is also accessible from * Crosstalk at address 0x0. */ #define IIO_WSTAT 0x00400008 /* Crosstalk Widget Status */ #define IIO_WCR 0x00400020 /* Crosstalk Widget Control Register */ #define IIO_ILAPR 0x00400100 /* IO Local Access Protection Register */ #define IIO_ILAPO 0x00400108 /* IO Local Access Protection Override */ #define IIO_IOWA 0x00400110 /* IO Outbound Widget Access */ #define IIO_IIWA 0x00400118 /* IO Inbound Widget Access */ #define IIO_IIDEM 0x00400120 /* IO Inbound Device Error Mask */ #define IIO_ILCSR 0x00400128 /* IO LLP Control and Status Register */ #define IIO_ILLR 0x00400130 /* IO LLP Log Register */ #define IIO_IIDSR 0x00400138 /* IO Interrupt Destination */ #define IIO_IGFX0 0x00400140 /* IO Graphics Node-Widget Map 0 */ #define IIO_IGFX1 0x00400148 /* IO Graphics Node-Widget Map 1 */ #define IIO_ISCR0 0x00400150 /* IO Scratch Register 0 */ #define IIO_ISCR1 0x00400158 /* IO Scratch Register 1 */ #define IIO_ITTE1 0x00400160 /* IO Translation Table Entry 1 */ #define IIO_ITTE2 0x00400168 /* IO Translation Table Entry 2 */ #define IIO_ITTE3 0x00400170 /* IO Translation Table Entry 3 */ #define IIO_ITTE4 0x00400178 /* IO Translation Table Entry 4 */ #define IIO_ITTE5 0x00400180 /* IO Translation Table Entry 5 */ #define IIO_ITTE6 0x00400188 /* IO Translation Table Entry 6 */ #define IIO_ITTE7 0x00400190 /* IO Translation Table Entry 7 */ #define IIO_IPRB0 0x00400198 /* IO PRB Entry 0 */ #define IIO_IPRB8 0x004001A0 /* IO PRB Entry 8 */ #define IIO_IPRB9 0x004001A8 /* IO PRB Entry 9 */ #define IIO_IPRBA 0x004001B0 /* IO PRB Entry A */ #define IIO_IPRBB 0x004001B8 /* IO PRB Entry B */ #define IIO_IPRBC 0x004001C0 /* IO PRB Entry C */ #define IIO_IPRBD 0x004001C8 /* IO PRB Entry D */ #define IIO_IPRBE 0x004001D0 /* IO PRB Entry E */ #define IIO_IPRBF 0x004001D8 /* IO PRB Entry F */ #define IIO_IXCC 0x004001E0 /* IO Crosstalk Credit Count Timeout */ #define IIO_IMEM 0x004001E8 /* IO Miscellaneous Error Mask */ #define IIO_IXTT 0x004001F0 /* IO Crosstalk Timeout Threshold */ #define IIO_IECLR 0x004001F8 /* IO Error Clear Register */ #define IIO_IBCR 0x00400200 /* IO BTE Control Register */ #define IIO_IXSM 0x00400208 /* IO Crosstalk Spurious Message */ #define IIO_IXSS 0x00400210 /* IO Crosstalk Spurious Sideband */ #define IIO_ILCT 0x00400218 /* IO LLP Channel Test */ #define IIO_IIEPH1 0x00400220 /* IO Incoming Error Packet Header, Part 1 */ #define IIO_IIEPH2 0x00400228 /* IO Incoming Error Packet Header, Part 2 */ #define IIO_ISLAPR 0x00400230 /* IO SXB Local Access Protection Regster */ #define IIO_ISLAPO 0x00400238 /* IO SXB Local Access Protection Override */ #define IIO_IWI 0x00400240 /* IO Wrapper Interrupt Register */ #define IIO_IWEL 0x00400248 /* IO Wrapper Error Log Register */ #define IIO_IWC 0x00400250 /* IO Wrapper Control Register */ #define IIO_IWS 0x00400258 /* IO Wrapper Status Register */ #define IIO_IWEIM 0x00400260 /* IO Wrapper Error Interrupt Masking Register */ #define IIO_IPCA 0x00400300 /* IO PRB Counter Adjust */ #define IIO_IPRTE0_A 0x00400308 /* IO PIO Read Address Table Entry 0, Part A */ #define IIO_IPRTE1_A 0x00400310 /* IO PIO Read Address Table Entry 1, Part A */ #define IIO_IPRTE2_A 0x00400318 /* IO PIO Read Address Table Entry 2, Part A */ #define IIO_IPRTE3_A 0x00400320 /* IO PIO Read Address Table Entry 3, Part A */ #define IIO_IPRTE4_A 0x00400328 /* IO PIO Read Address Table Entry 4, Part A */ #define IIO_IPRTE5_A 0x00400330 /* IO PIO Read Address Table Entry 5, Part A */ #define IIO_IPRTE6_A 0x00400338 /* IO PIO Read Address Table Entry 6, Part A */ #define IIO_IPRTE7_A 0x00400340 /* IO PIO Read Address Table Entry 7, Part A */ #define IIO_IPRTE0_B 0x00400348 /* IO PIO Read Address Table Entry 0, Part B */ #define IIO_IPRTE1_B 0x00400350 /* IO PIO Read Address Table Entry 1, Part B */ #define IIO_IPRTE2_B 0x00400358 /* IO PIO Read Address Table Entry 2, Part B */ #define IIO_IPRTE3_B 0x00400360 /* IO PIO Read Address Table Entry 3, Part B */ #define IIO_IPRTE4_B 0x00400368 /* IO PIO Read Address Table Entry 4, Part B */ #define IIO_IPRTE5_B 0x00400370 /* IO PIO Read Address Table Entry 5, Part B */ #define IIO_IPRTE6_B 0x00400378 /* IO PIO Read Address Table Entry 6, Part B */ #define IIO_IPRTE7_B 0x00400380 /* IO PIO Read Address Table Entry 7, Part B */ #define IIO_IPDR 0x00400388 /* IO PIO Deallocation Register */ #define IIO_ICDR 0x00400390 /* IO CRB Entry Deallocation Register */ #define IIO_IFDR 0x00400398 /* IO IOQ FIFO Depth Register */ #define IIO_IIAP 0x004003A0 /* IO IIQ Arbitration Parameters */ #define IIO_ICMR 0x004003A8 /* IO CRB Management Register */ #define IIO_ICCR 0x004003B0 /* IO CRB Control Register */ #define IIO_ICTO 0x004003B8 /* IO CRB Timeout */ #define IIO_ICTP 0x004003C0 /* IO CRB Timeout Prescalar */ #define IIO_ICRB0_A 0x00400400 /* IO CRB Entry 0_A */ #define IIO_ICRB0_B 0x00400408 /* IO CRB Entry 0_B */ #define IIO_ICRB0_C 0x00400410 /* IO CRB Entry 0_C */ #define IIO_ICRB0_D 0x00400418 /* IO CRB Entry 0_D */ #define IIO_ICRB0_E 0x00400420 /* IO CRB Entry 0_E */ #define IIO_ICRB1_A 0x00400430 /* IO CRB Entry 1_A */ #define IIO_ICRB1_B 0x00400438 /* IO CRB Entry 1_B */ #define IIO_ICRB1_C 0x00400440 /* IO CRB Entry 1_C */ #define IIO_ICRB1_D 0x00400448 /* IO CRB Entry 1_D */ #define IIO_ICRB1_E 0x00400450 /* IO CRB Entry 1_E */ #define IIO_ICRB2_A 0x00400460 /* IO CRB Entry 2_A */ #define IIO_ICRB2_B 0x00400468 /* IO CRB Entry 2_B */ #define IIO_ICRB2_C 0x00400470 /* IO CRB Entry 2_C */ #define IIO_ICRB2_D 0x00400478 /* IO CRB Entry 2_D */ #define IIO_ICRB2_E 0x00400480 /* IO CRB Entry 2_E */ #define IIO_ICRB3_A 0x00400490 /* IO CRB Entry 3_A */ #define IIO_ICRB3_B 0x00400498 /* IO CRB Entry 3_B */ #define IIO_ICRB3_C 0x004004a0 /* IO CRB Entry 3_C */ #define IIO_ICRB3_D 0x004004a8 /* IO CRB Entry 3_D */ #define IIO_ICRB3_E 0x004004b0 /* IO CRB Entry 3_E */ #define IIO_ICRB4_A 0x004004c0 /* IO CRB Entry 4_A */ #define IIO_ICRB4_B 0x004004c8 /* IO CRB Entry 4_B */ #define IIO_ICRB4_C 0x004004d0 /* IO CRB Entry 4_C */ #define IIO_ICRB4_D 0x004004d8 /* IO CRB Entry 4_D */ #define IIO_ICRB4_E 0x004004e0 /* IO CRB Entry 4_E */ #define IIO_ICRB5_A 0x004004f0 /* IO CRB Entry 5_A */ #define IIO_ICRB5_B 0x004004f8 /* IO CRB Entry 5_B */ #define IIO_ICRB5_C 0x00400500 /* IO CRB Entry 5_C */ #define IIO_ICRB5_D 0x00400508 /* IO CRB Entry 5_D */ #define IIO_ICRB5_E 0x00400510 /* IO CRB Entry 5_E */ #define IIO_ICRB6_A 0x00400520 /* IO CRB Entry 6_A */ #define IIO_ICRB6_B 0x00400528 /* IO CRB Entry 6_B */ #define IIO_ICRB6_C 0x00400530 /* IO CRB Entry 6_C */ #define IIO_ICRB6_D 0x00400538 /* IO CRB Entry 6_D */ #define IIO_ICRB6_E 0x00400540 /* IO CRB Entry 6_E */ #define IIO_ICRB7_A 0x00400550 /* IO CRB Entry 7_A */ #define IIO_ICRB7_B 0x00400558 /* IO CRB Entry 7_B */ #define IIO_ICRB7_C 0x00400560 /* IO CRB Entry 7_C */ #define IIO_ICRB7_D 0x00400568 /* IO CRB Entry 7_D */ #define IIO_ICRB7_E 0x00400570 /* IO CRB Entry 7_E */ #define IIO_ICRB8_A 0x00400580 /* IO CRB Entry 8_A */ #define IIO_ICRB8_B 0x00400588 /* IO CRB Entry 8_B */ #define IIO_ICRB8_C 0x00400590 /* IO CRB Entry 8_C */ #define IIO_ICRB8_D 0x00400598 /* IO CRB Entry 8_D */ #define IIO_ICRB8_E 0x004005a0 /* IO CRB Entry 8_E */ #define IIO_ICRB9_A 0x004005b0 /* IO CRB Entry 9_A */ #define IIO_ICRB9_B 0x004005b8 /* IO CRB Entry 9_B */ #define IIO_ICRB9_C 0x004005c0 /* IO CRB Entry 9_C */ #define IIO_ICRB9_D 0x004005c8 /* IO CRB Entry 9_D */ #define IIO_ICRB9_E 0x004005d0 /* IO CRB Entry 9_E */ #define IIO_ICRBA_A 0x004005e0 /* IO CRB Entry A_A */ #define IIO_ICRBA_B 0x004005e8 /* IO CRB Entry A_B */ #define IIO_ICRBA_C 0x004005f0 /* IO CRB Entry A_C */ #define IIO_ICRBA_D 0x004005f8 /* IO CRB Entry A_D */ #define IIO_ICRBA_E 0x00400600 /* IO CRB Entry A_E */ #define IIO_ICRBB_A 0x00400610 /* IO CRB Entry B_A */ #define IIO_ICRBB_B 0x00400618 /* IO CRB Entry B_B */ #define IIO_ICRBB_C 0x00400620 /* IO CRB Entry B_C */ #define IIO_ICRBB_D 0x00400628 /* IO CRB Entry B_D */ #define IIO_ICRBB_E 0x00400630 /* IO CRB Entry B_E */ #define IIO_ICRBC_A 0x00400640 /* IO CRB Entry C_A */ #define IIO_ICRBC_B 0x00400648 /* IO CRB Entry C_B */ #define IIO_ICRBC_C 0x00400650 /* IO CRB Entry C_C */ #define IIO_ICRBC_D 0x00400658 /* IO CRB Entry C_D */ #define IIO_ICRBC_E 0x00400660 /* IO CRB Entry C_E */ #define IIO_ICRBD_A 0x00400670 /* IO CRB Entry D_A */ #define IIO_ICRBD_B 0x00400678 /* IO CRB Entry D_B */ #define IIO_ICRBD_C 0x00400680 /* IO CRB Entry D_C */ #define IIO_ICRBD_D 0x00400688 /* IO CRB Entry D_D */ #define IIO_ICRBD_E 0x00400690 /* IO CRB Entry D_E */ #define IIO_ICRBE_A 0x004006a0 /* IO CRB Entry E_A */ #define IIO_ICRBE_B 0x004006a8 /* IO CRB Entry E_B */ #define IIO_ICRBE_C 0x004006b0 /* IO CRB Entry E_C */ #define IIO_ICRBE_D 0x004006b8 /* IO CRB Entry E_D */ #define IIO_ICRBE_E 0x004006c0 /* IO CRB Entry E_E */ #define IIO_ICSML 0x00400700 /* IO CRB Spurious Message Low */ #define IIO_ICSMM 0x00400708 /* IO CRB Spurious Message Middle */ #define IIO_ICSMH 0x00400710 /* IO CRB Spurious Message High */ #define IIO_IDBSS 0x00400718 /* IO Debug Submenu Select */ #define IIO_IBLS0 0x00410000 /* IO BTE Length Status 0 */ #define IIO_IBSA0 0x00410008 /* IO BTE Source Address 0 */ #define IIO_IBDA0 0x00410010 /* IO BTE Destination Address 0 */ #define IIO_IBCT0 0x00410018 /* IO BTE Control Terminate 0 */ #define IIO_IBNA0 0x00410020 /* IO BTE Notification Address 0 */ #define IIO_IBIA0 0x00410028 /* IO BTE Interrupt Address 0 */ #define IIO_IBLS1 0x00420000 /* IO BTE Length Status 1 */ #define IIO_IBSA1 0x00420008 /* IO BTE Source Address 1 */ #define IIO_IBDA1 0x00420010 /* IO BTE Destination Address 1 */ #define IIO_IBCT1 0x00420018 /* IO BTE Control Terminate 1 */ #define IIO_IBNA1 0x00420020 /* IO BTE Notification Address 1 */ #define IIO_IBIA1 0x00420028 /* IO BTE Interrupt Address 1 */ #define IIO_IPCR 0x00430000 /* IO Performance Control */ #define IIO_IPPR 0x00430008 /* IO Performance Profiling */ /************************************************************************ * * * Description: This register echoes some information from the * * LB_REV_ID register. It is available through Crosstalk as described * * above. The REV_NUM and MFG_NUM fields receive their values from * * the REVISION and MANUFACTURER fields in the LB_REV_ID register. * * The PART_NUM field's value is the Crosstalk device ID number that * * Steve Miller assigned to the SHub chip. * * * ************************************************************************/ typedef union ii_wid_u { uint64_t ii_wid_regval; struct { uint64_t w_rsvd_1 : 1; uint64_t w_mfg_num : 11; uint64_t w_part_num : 16; uint64_t w_rev_num : 4; uint64_t w_rsvd : 32; } ii_wid_fld_s; } ii_wid_u_t; /************************************************************************ * * * The fields in this register are set upon detection of an error * * and cleared by various mechanisms, as explained in the * * description. * * * ************************************************************************/ typedef union ii_wstat_u { uint64_t ii_wstat_regval; struct { uint64_t w_pending : 4; uint64_t w_xt_crd_to : 1; uint64_t w_xt_tail_to : 1; uint64_t w_rsvd_3 : 3; uint64_t w_tx_mx_rty : 1; uint64_t w_rsvd_2 : 6; uint64_t w_llp_tx_cnt : 8; uint64_t w_rsvd_1 : 8; uint64_t w_crazy : 1; uint64_t w_rsvd : 31; } ii_wstat_fld_s; } ii_wstat_u_t; /************************************************************************ * * * Description: This is a read-write enabled register. It controls * * various aspects of the Crosstalk flow control. * * * ************************************************************************/ typedef union ii_wcr_u { uint64_t ii_wcr_regval; struct { uint64_t w_wid : 4; uint64_t w_tag : 1; uint64_t w_rsvd_1 : 8; uint64_t w_dst_crd : 3; uint64_t w_f_bad_pkt : 1; uint64_t w_dir_con : 1; uint64_t w_e_thresh : 5; uint64_t w_rsvd : 41; } ii_wcr_fld_s; } ii_wcr_u_t; /************************************************************************ * * * Description: This register's value is a bit vector that guards * * access to local registers within the II as well as to external * * Crosstalk widgets. Each bit in the register corresponds to a * * particular region in the system; a region consists of one, two or * * four nodes (depending on the value of the REGION_SIZE field in the * * LB_REV_ID register, which is documented in Section 8.3.1.1). The * * protection provided by this register applies to PIO read * * operations as well as PIO write operations. The II will perform a * * PIO read or write request only if the bit for the requestor's * * region is set; otherwise, the II will not perform the requested * * operation and will return an error response. When a PIO read or * * write request targets an external Crosstalk widget, then not only * * must the bit for the requestor's region be set in the ILAPR, but * * also the target widget's bit in the IOWA register must be set in * * order for the II to perform the requested operation; otherwise, * * the II will return an error response. Hence, the protection * * provided by the IOWA register supplements the protection provided * * by the ILAPR for requests that target external Crosstalk widgets. * * This register itself can be accessed only by the nodes whose * * region ID bits are enabled in this same register. It can also be * * accessed through the IAlias space by the local processors. * * The reset value of this register allows access by all nodes. * * * ************************************************************************/ typedef union ii_ilapr_u { uint64_t ii_ilapr_regval; struct { uint64_t i_region : 64; } ii_ilapr_fld_s; } ii_ilapr_u_t; /************************************************************************ * * * Description: A write to this register of the 64-bit value * * "SGIrules" in ASCII, will cause the bit in the ILAPR register * * corresponding to the region of the requestor to be set (allow * * access). A write of any other value will be ignored. Access * * protection for this register is "SGIrules". * * This register can also be accessed through the IAlias space. * * However, this access will not change the access permissions in the * * ILAPR. * * * ************************************************************************/ typedef union ii_ilapo_u { uint64_t ii_ilapo_regval; struct { uint64_t i_io_ovrride : 64; } ii_ilapo_fld_s; } ii_ilapo_u_t; /************************************************************************ * * * This register qualifies all the PIO and Graphics writes launched * * from the SHUB towards a widget. * * * ************************************************************************/ typedef union ii_iowa_u { uint64_t ii_iowa_regval; struct { uint64_t i_w0_oac : 1; uint64_t i_rsvd_1 : 7; uint64_t i_wx_oac : 8; uint64_t i_rsvd : 48; } ii_iowa_fld_s; } ii_iowa_u_t; /************************************************************************ * * * Description: This register qualifies all the requests launched * * from a widget towards the Shub. This register is intended to be * * used by software in case of misbehaving widgets. * * * * * ************************************************************************/ typedef union ii_iiwa_u { uint64_t ii_iiwa_regval; struct { uint64_t i_w0_iac : 1; uint64_t i_rsvd_1 : 7; uint64_t i_wx_iac : 8; uint64_t i_rsvd : 48; } ii_iiwa_fld_s; } ii_iiwa_u_t; /************************************************************************ * * * Description: This register qualifies all the operations launched * * from a widget towards the SHub. It allows individual access * * control for up to 8 devices per widget. A device refers to * * individual DMA master hosted by a widget. * * The bits in each field of this register are cleared by the Shub * * upon detection of an error which requires the device to be * * disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric * * Crosstalk). Whether or not a device has access rights to this * * Shub is determined by an AND of the device enable bit in the * * appropriate field of this register and the corresponding bit in * * the Wx_IAC field (for the widget which this device belongs to). * * The bits in this field are set by writing a 1 to them. Incoming * * replies from Crosstalk are not subject to this access control * * mechanism. * * * ************************************************************************/ typedef union ii_iidem_u { uint64_t ii_iidem_regval; struct { uint64_t i_w8_dxs : 8; uint64_t i_w9_dxs : 8; uint64_t i_wa_dxs : 8; uint64_t i_wb_dxs : 8; uint64_t i_wc_dxs : 8; uint64_t i_wd_dxs : 8; uint64_t i_we_dxs : 8; uint64_t i_wf_dxs : 8; } ii_iidem_fld_s; } ii_iidem_u_t; /************************************************************************ * * * This register contains the various programmable fields necessary * * for controlling and observing the LLP signals. * * * ************************************************************************/ typedef union ii_ilcsr_u { uint64_t ii_ilcsr_regval; struct { uint64_t i_nullto : 6; uint64_t i_rsvd_4 : 2; uint64_t i_wrmrst : 1; uint64_t i_rsvd_3 : 1; uint64_t i_llp_en : 1; uint64_t i_bm8 : 1; uint64_t i_llp_stat : 2; uint64_t i_remote_power : 1; uint64_t i_rsvd_2 : 1; uint64_t i_maxrtry : 10; uint64_t i_d_avail_sel : 2; uint64_t i_rsvd_1 : 4; uint64_t i_maxbrst : 10; uint64_t i_rsvd : 22; } ii_ilcsr_fld_s; } ii_ilcsr_u_t; /************************************************************************ * * * This is simply a status registers that monitors the LLP error * * rate. * * * ************************************************************************/ typedef union ii_illr_u { uint64_t ii_illr_regval; struct { uint64_t i_sn_cnt : 16; uint64_t i_cb_cnt : 16; uint64_t i_rsvd : 32; } ii_illr_fld_s; } ii_illr_u_t; /************************************************************************ * * * Description: All II-detected non-BTE error interrupts are * * specified via this register. * * NOTE: The PI interrupt register address is hardcoded in the II. If * * PI_ID==0, then the II sends an interrupt request (Duplonet PWRI * * packet) to address offset 0x0180_0090 within the local register * * address space of PI0 on the node specified by the NODE field. If * * PI_ID==1, then the II sends the interrupt request to address * * offset 0x01A0_0090 within the local register address space of PI1 * * on the node specified by the NODE field. * * * ************************************************************************/ typedef union ii_iidsr_u { uint64_t ii_iidsr_regval; struct { uint64_t i_level : 8; uint64_t i_pi_id : 1; uint64_t i_node : 11; uint64_t i_rsvd_3 : 4; uint64_t i_enable : 1; uint64_t i_rsvd_2 : 3; uint64_t i_int_sent : 2; uint64_t i_rsvd_1 : 2; uint64_t i_pi0_forward_int : 1; uint64_t i_pi1_forward_int : 1; uint64_t i_rsvd : 30; } ii_iidsr_fld_s; } ii_iidsr_u_t; /************************************************************************ * * * There are two instances of this register. This register is used * * for matching up the incoming responses from the graphics widget to * * the processor that initiated the graphics operation. The * * write-responses are converted to graphics credits and returned to * * the processor so that the processor interface can manage the flow * * control. * * * ************************************************************************/ typedef union ii_igfx0_u { uint64_t ii_igfx0_regval; struct { uint64_t i_w_num : 4; uint64_t i_pi_id : 1; uint64_t i_n_num : 12; uint64_t i_p_num : 1; uint64_t i_rsvd : 46; } ii_igfx0_fld_s; } ii_igfx0_u_t; /************************************************************************ * * * There are two instances of this register. This register is used * * for matching up the incoming responses from the graphics widget to * * the processor that initiated the graphics operation. The * * write-responses are converted to graphics credits and returned to * * the processor so that the processor interface can manage the flow * * control. * * * ************************************************************************/ typedef union ii_igfx1_u { uint64_t ii_igfx1_regval; struct { uint64_t i_w_num : 4; uint64_t i_pi_id : 1; uint64_t i_n_num : 12; uint64_t i_p_num : 1; uint64_t i_rsvd : 46; } ii_igfx1_fld_s; } ii_igfx1_u_t; /************************************************************************ * * * There are two instances of this registers. These registers are * * used as scratch registers for software use. * * * ************************************************************************/ typedef union ii_iscr0_u { uint64_t ii_iscr0_regval; struct { uint64_t i_scratch : 64; } ii_iscr0_fld_s; } ii_iscr0_u_t; /************************************************************************ * * * There are two instances of this registers. These registers are * * used as scratch registers for software use. * * * ************************************************************************/ typedef union ii_iscr1_u { uint64_t ii_iscr1_regval; struct { uint64_t i_scratch : 64; } ii_iscr1_fld_s; } ii_iscr1_u_t; /************************************************************************ * * * Description: There are seven instances of translation table entry * * registers. Each register maps a Shub Big Window to a 48-bit * * address on Crosstalk. * * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * * number) are used to select one of these 7 registers. The Widget * * number field is then derived from the W_NUM field for synthesizing * * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * * are padded with zeros. Although the maximum Crosstalk space * * addressable by the SHub is thus the lower 16 GBytes per widget * * (M-mode), however only 7/32nds of this * * space can be accessed. * * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * * Window number) are used to select one of these 7 registers. The * * Widget number field is then derived from the W_NUM field for * * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * * field is used as Crosstalk[47], and remainder of the Crosstalk * * address bits (Crosstalk[46:34]) are always zero. While the maximum * * Crosstalk space addressable by the Shub is thus the lower * * 8-GBytes per widget (N-mode), only 7/32nds * * of this space can be accessed. * * * ************************************************************************/ typedef union ii_itte1_u { uint64_t ii_itte1_regval; struct { uint64_t i_offset : 5; uint64_t i_rsvd_1 : 3; uint64_t i_w_num : 4; uint64_t i_iosp : 1; uint64_t i_rsvd : 51; } ii_itte1_fld_s; } ii_itte1_u_t; /************************************************************************ * * * Description: There are seven instances of translation table entry * * registers. Each register maps a Shub Big Window to a 48-bit * * address on Crosstalk. * * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * * number) are used to select one of these 7 registers. The Widget * * number field is then derived from the W_NUM field for synthesizing * * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * * are padded with zeros. Although the maximum Crosstalk space * * addressable by the Shub is thus the lower 16 GBytes per widget * * (M-mode), however only 7/32nds of this * * space can be accessed. * * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * * Window number) are used to select one of these 7 registers. The * * Widget number field is then derived from the W_NUM field for * * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * * field is used as Crosstalk[47], and remainder of the Crosstalk * * address bits (Crosstalk[46:34]) are always zero. While the maximum * * Crosstalk space addressable by the Shub is thus the lower * * 8-GBytes per widget (N-mode), only 7/32nds * * of this space can be accessed. * * * ************************************************************************/ typedef union ii_itte2_u { uint64_t ii_itte2_regval; struct { uint64_t i_offset : 5; uint64_t i_rsvd_1 : 3; uint64_t i_w_num : 4; uint64_t i_iosp : 1; uint64_t i_rsvd : 51; } ii_itte2_fld_s; } ii_itte2_u_t; /************************************************************************ * * * Description: There are seven instances of translation table entry * * registers. Each register maps a Shub Big Window to a 48-bit * * address on Crosstalk. * * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * * number) are used to select one of these 7 registers. The Widget * * number field is then derived from the W_NUM field for synthesizing * * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * * are padded with zeros. Although the maximum Crosstalk space * * addressable by the Shub is thus the lower 16 GBytes per widget * * (M-mode), however only 7/32nds of this * * space can be accessed. * * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * * Window number) are used to select one of these 7 registers. The * * Widget number field is then derived from the W_NUM field for * * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * * field is used as Crosstalk[47], and remainder of the Crosstalk * * address bits (Crosstalk[46:34]) are always zero. While the maximum * * Crosstalk space addressable by the SHub is thus the lower * * 8-GBytes per widget (N-mode), only 7/32nds * * of this space can be accessed. * * * ************************************************************************/ typedef union ii_itte3_u { uint64_t ii_itte3_regval; struct { uint64_t i_offset : 5; uint64_t i_rsvd_1 : 3; uint64_t i_w_num : 4; uint64_t i_iosp : 1; uint64_t i_rsvd : 51; } ii_itte3_fld_s; } ii_itte3_u_t; /************************************************************************ * * * Description: There are seven instances of translation table entry * * registers. Each register maps a SHub Big Window to a 48-bit * * address on Crosstalk. * * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * * number) are used to select one of these 7 registers. The Widget * * number field is then derived from the W_NUM field for synthesizing * * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * * are padded with zeros. Although the maximum Crosstalk space * * addressable by the SHub is thus the lower 16 GBytes per widget * * (M-mode), however only 7/32nds of this * * space can be accessed. * * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * * Window number) are used to select one of these 7 registers. The * * Widget number field is then derived from the W_NUM field for * * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * * field is used as Crosstalk[47], and remainder of the Crosstalk * * address bits (Crosstalk[46:34]) are always zero. While the maximum * * Crosstalk space addressable by the SHub is thus the lower * * 8-GBytes per widget (N-mode), only 7/32nds * * of this space can be accessed. * * * ************************************************************************/ typedef union ii_itte4_u { uint64_t ii_itte4_regval; struct { uint64_t i_offset : 5; uint64_t i_rsvd_1 : 3; uint64_t i_w_num : 4; uint64_t i_iosp : 1; uint64_t i_rsvd : 51; } ii_itte4_fld_s; } ii_itte4_u_t; /************************************************************************ * * * Description: There are seven instances of translation table entry * * registers. Each register maps a SHub Big Window to a 48-bit * * address on Crosstalk. * * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * * number) are used to select one of these 7 registers. The Widget * * number field is then derived from the W_NUM field for synthesizing * * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * * are padded with zeros. Although the maximum Crosstalk space * * addressable by the Shub is thus the lower 16 GBytes per widget * * (M-mode), however only 7/32nds of this * * space can be accessed. * * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * * Window number) are used to select one of these 7 registers. The * * Widget number field is then derived from the W_NUM field for * * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * * field is used as Crosstalk[47], and remainder of the Crosstalk * * address bits (Crosstalk[46:34]) are always zero. While the maximum * * Crosstalk space addressable by the Shub is thus the lower * * 8-GBytes per widget (N-mode), only 7/32nds * * of this space can be accessed. * * * ************************************************************************/ typedef union ii_itte5_u { uint64_t ii_itte5_regval; struct { uint64_t i_offset : 5; uint64_t i_rsvd_1 : 3; uint64_t i_w_num : 4; uint64_t i_iosp : 1; uint64_t i_rsvd : 51; } ii_itte5_fld_s; } ii_itte5_u_t; /************************************************************************ * * * Description: There are seven instances of translation table entry * * registers. Each register maps a Shub Big Window to a 48-bit * * address on Crosstalk. * * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * * number) are used to select one of these 7 registers. The Widget * * number field is then derived from the W_NUM field for synthesizing * * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * * are padded with zeros. Although the maximum Crosstalk space * * addressable by the Shub is thus the lower 16 GBytes per widget * * (M-mode), however only 7/32nds of this * * space can be accessed. * * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * * Window number) are used to select one of these 7 registers. The * * Widget number field is then derived from the W_NUM field for * * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * * field is used as Crosstalk[47], and remainder of the Crosstalk * * address bits (Crosstalk[46:34]) are always zero. While the maximum * * Crosstalk space addressable by the Shub is thus the lower * * 8-GBytes per widget (N-mode), only 7/32nds * * of this space can be accessed. * * * ************************************************************************/ typedef union ii_itte6_u { uint64_t ii_itte6_regval; struct { uint64_t i_offset : 5; uint64_t i_rsvd_1 : 3; uint64_t i_w_num : 4; uint64_t i_iosp : 1; uint64_t i_rsvd : 51; } ii_itte6_fld_s; } ii_itte6_u_t; /************************************************************************ * * * Description: There are seven instances of translation table entry * * registers. Each register maps a Shub Big Window to a 48-bit * * address on Crosstalk. * * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window * * number) are used to select one of these 7 registers. The Widget * * number field is then derived from the W_NUM field for synthesizing * * a Crosstalk packet. The 5 bits of OFFSET are concatenated with * * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] * * are padded with zeros. Although the maximum Crosstalk space * * addressable by the Shub is thus the lower 16 GBytes per widget * * (M-mode), however only 7/32nds of this * * space can be accessed. * * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big * * Window number) are used to select one of these 7 registers. The * * Widget number field is then derived from the W_NUM field for * * synthesizing a Crosstalk packet. The 5 bits of OFFSET are * * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP * * field is used as Crosstalk[47], and remainder of the Crosstalk * * address bits (Crosstalk[46:34]) are always zero. While the maximum * * Crosstalk space addressable by the SHub is thus the lower * * 8-GBytes per widget (N-mode), only 7/32nds * * of this space can be accessed. * * * ************************************************************************/ typedef union ii_itte7_u { uint64_t ii_itte7_regval; struct { uint64_t i_offset : 5; uint64_t i_rsvd_1 : 3; uint64_t i_w_num : 4; uint64_t i_iosp : 1; uint64_t i_rsvd : 51; } ii_itte7_fld_s; } ii_itte7_u_t; /************************************************************************ * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of SHub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * * refers to Crossbow's internal space. * * This register contains the state elements per widget that are * * necessary to manage the PIO flow control on Crosstalk and on the * * Router Network. See the PIO Flow Control chapter for a complete * * description of this register * * The SPUR_WR bit requires some explanation. When this register is * * written, the new value of the C field is captured in an internal * * register so the hardware can remember what the programmer wrote * * into the credit counter. The SPUR_WR bit sets whenever the C field * * increments above this stored value, which indicates that there * * have been more responses received than requests sent. The SPUR_WR * * bit cannot be cleared until a value is written to the IPRBx * * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * * . * * * ************************************************************************/ typedef union ii_iprb0_u { uint64_t ii_iprb0_regval; struct { uint64_t i_c : 8; uint64_t i_na : 14; uint64_t i_rsvd_2 : 2; uint64_t i_nb : 14; uint64_t i_rsvd_1 : 2; uint64_t i_m : 2; uint64_t i_f : 1; uint64_t i_of_cnt : 5; uint64_t i_error : 1; uint64_t i_rd_to : 1; uint64_t i_spur_wr : 1; uint64_t i_spur_rd : 1; uint64_t i_rsvd : 11; uint64_t i_mult_err : 1; } ii_iprb0_fld_s; } ii_iprb0_u_t; /************************************************************************ * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of SHub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * * refers to Crossbow's internal space. * * This register contains the state elements per widget that are * * necessary to manage the PIO flow control on Crosstalk and on the * * Router Network. See the PIO Flow Control chapter for a complete * * description of this register * * The SPUR_WR bit requires some explanation. When this register is * * written, the new value of the C field is captured in an internal * * register so the hardware can remember what the programmer wrote * * into the credit counter. The SPUR_WR bit sets whenever the C field * * increments above this stored value, which indicates that there * * have been more responses received than requests sent. The SPUR_WR * * bit cannot be cleared until a value is written to the IPRBx * * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * * . * * * ************************************************************************/ typedef union ii_iprb8_u { uint64_t ii_iprb8_regval; struct { uint64_t i_c : 8; uint64_t i_na : 14; uint64_t i_rsvd_2 : 2; uint64_t i_nb : 14; uint64_t i_rsvd_1 : 2; uint64_t i_m : 2; uint64_t i_f : 1; uint64_t i_of_cnt : 5; uint64_t i_error : 1; uint64_t i_rd_to : 1; uint64_t i_spur_wr : 1; uint64_t i_spur_rd : 1; uint64_t i_rsvd : 11; uint64_t i_mult_err : 1; } ii_iprb8_fld_s; } ii_iprb8_u_t; /************************************************************************ * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of SHub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * * refers to Crossbow's internal space. * * This register contains the state elements per widget that are * * necessary to manage the PIO flow control on Crosstalk and on the * * Router Network. See the PIO Flow Control chapter for a complete * * description of this register * * The SPUR_WR bit requires some explanation. When this register is * * written, the new value of the C field is captured in an internal * * register so the hardware can remember what the programmer wrote * * into the credit counter. The SPUR_WR bit sets whenever the C field * * increments above this stored value, which indicates that there * * have been more responses received than requests sent. The SPUR_WR * * bit cannot be cleared until a value is written to the IPRBx * * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * * . * * * ************************************************************************/ typedef union ii_iprb9_u { uint64_t ii_iprb9_regval; struct { uint64_t i_c : 8; uint64_t i_na : 14; uint64_t i_rsvd_2 : 2; uint64_t i_nb : 14; uint64_t i_rsvd_1 : 2; uint64_t i_m : 2; uint64_t i_f : 1; uint64_t i_of_cnt : 5; uint64_t i_error : 1; uint64_t i_rd_to : 1; uint64_t i_spur_wr : 1; uint64_t i_spur_rd : 1; uint64_t i_rsvd : 11; uint64_t i_mult_err : 1; } ii_iprb9_fld_s; } ii_iprb9_u_t; /************************************************************************ * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of SHub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * * refers to Crossbow's internal space. * * This register contains the state elements per widget that are * * necessary to manage the PIO flow control on Crosstalk and on the * * Router Network. See the PIO Flow Control chapter for a complete * * description of this register * * The SPUR_WR bit requires some explanation. When this register is * * written, the new value of the C field is captured in an internal * * register so the hardware can remember what the programmer wrote * * into the credit counter. The SPUR_WR bit sets whenever the C field * * increments above this stored value, which indicates that there * * have been more responses received than requests sent. The SPUR_WR * * bit cannot be cleared until a value is written to the IPRBx * * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * * * * * ************************************************************************/ typedef union ii_iprba_u { uint64_t ii_iprba_regval; struct { uint64_t i_c : 8; uint64_t i_na : 14; uint64_t i_rsvd_2 : 2; uint64_t i_nb : 14; uint64_t i_rsvd_1 : 2; uint64_t i_m : 2; uint64_t i_f : 1; uint64_t i_of_cnt : 5; uint64_t i_error : 1; uint64_t i_rd_to : 1; uint64_t i_spur_wr : 1; uint64_t i_spur_rd : 1; uint64_t i_rsvd : 11; uint64_t i_mult_err : 1; } ii_iprba_fld_s; } ii_iprba_u_t; /************************************************************************ * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of SHub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * * refers to Crossbow's internal space. * * This register contains the state elements per widget that are * * necessary to manage the PIO flow control on Crosstalk and on the * * Router Network. See the PIO Flow Control chapter for a complete * * description of this register * * The SPUR_WR bit requires some explanation. When this register is * * written, the new value of the C field is captured in an internal * * register so the hardware can remember what the programmer wrote * * into the credit counter. The SPUR_WR bit sets whenever the C field * * increments above this stored value, which indicates that there * * have been more responses received than requests sent. The SPUR_WR * * bit cannot be cleared until a value is written to the IPRBx * * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * * . * * * ************************************************************************/ typedef union ii_iprbb_u { uint64_t ii_iprbb_regval; struct { uint64_t i_c : 8; uint64_t i_na : 14; uint64_t i_rsvd_2 : 2; uint64_t i_nb : 14; uint64_t i_rsvd_1 : 2; uint64_t i_m : 2; uint64_t i_f : 1; uint64_t i_of_cnt : 5; uint64_t i_error : 1; uint64_t i_rd_to : 1; uint64_t i_spur_wr : 1; uint64_t i_spur_rd : 1; uint64_t i_rsvd : 11; uint64_t i_mult_err : 1; } ii_iprbb_fld_s; } ii_iprbb_u_t; /************************************************************************ * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of SHub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * * refers to Crossbow's internal space. * * This register contains the state elements per widget that are * * necessary to manage the PIO flow control on Crosstalk and on the * * Router Network. See the PIO Flow Control chapter for a complete * * description of this register * * The SPUR_WR bit requires some explanation. When this register is * * written, the new value of the C field is captured in an internal * * register so the hardware can remember what the programmer wrote * * into the credit counter. The SPUR_WR bit sets whenever the C field * * increments above this stored value, which indicates that there * * have been more responses received than requests sent. The SPUR_WR * * bit cannot be cleared until a value is written to the IPRBx * * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * * . * * * ************************************************************************/ typedef union ii_iprbc_u { uint64_t ii_iprbc_regval; struct { uint64_t i_c : 8; uint64_t i_na : 14; uint64_t i_rsvd_2 : 2; uint64_t i_nb : 14; uint64_t i_rsvd_1 : 2; uint64_t i_m : 2; uint64_t i_f : 1; uint64_t i_of_cnt : 5; uint64_t i_error : 1; uint64_t i_rd_to : 1; uint64_t i_spur_wr : 1; uint64_t i_spur_rd : 1; uint64_t i_rsvd : 11; uint64_t i_mult_err : 1; } ii_iprbc_fld_s; } ii_iprbc_u_t; /************************************************************************ * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of SHub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * * refers to Crossbow's internal space. * * This register contains the state elements per widget that are * * necessary to manage the PIO flow control on Crosstalk and on the * * Router Network. See the PIO Flow Control chapter for a complete * * description of this register * * The SPUR_WR bit requires some explanation. When this register is * * written, the new value of the C field is captured in an internal * * register so the hardware can remember what the programmer wrote * * into the credit counter. The SPUR_WR bit sets whenever the C field * * increments above this stored value, which indicates that there * * have been more responses received than requests sent. The SPUR_WR * * bit cannot be cleared until a value is written to the IPRBx * * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * * . * * * ************************************************************************/ typedef union ii_iprbd_u { uint64_t ii_iprbd_regval; struct { uint64_t i_c : 8; uint64_t i_na : 14; uint64_t i_rsvd_2 : 2; uint64_t i_nb : 14; uint64_t i_rsvd_1 : 2; uint64_t i_m : 2; uint64_t i_f : 1; uint64_t i_of_cnt : 5; uint64_t i_error : 1; uint64_t i_rd_to : 1; uint64_t i_spur_wr : 1; uint64_t i_spur_rd : 1; uint64_t i_rsvd : 11; uint64_t i_mult_err : 1; } ii_iprbd_fld_s; } ii_iprbd_u_t; /************************************************************************ * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of SHub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * * refers to Crossbow's internal space. * * This register contains the state elements per widget that are * * necessary to manage the PIO flow control on Crosstalk and on the * * Router Network. See the PIO Flow Control chapter for a complete * * description of this register * * The SPUR_WR bit requires some explanation. When this register is * * written, the new value of the C field is captured in an internal * * register so the hardware can remember what the programmer wrote * * into the credit counter. The SPUR_WR bit sets whenever the C field * * increments above this stored value, which indicates that there * * have been more responses received than requests sent. The SPUR_WR * * bit cannot be cleared until a value is written to the IPRBx * * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * * . * * * ************************************************************************/ typedef union ii_iprbe_u { uint64_t ii_iprbe_regval; struct { uint64_t i_c : 8; uint64_t i_na : 14; uint64_t i_rsvd_2 : 2; uint64_t i_nb : 14; uint64_t i_rsvd_1 : 2; uint64_t i_m : 2; uint64_t i_f : 1; uint64_t i_of_cnt : 5; uint64_t i_error : 1; uint64_t i_rd_to : 1; uint64_t i_spur_wr : 1; uint64_t i_spur_rd : 1; uint64_t i_rsvd : 11; uint64_t i_mult_err : 1; } ii_iprbe_fld_s; } ii_iprbe_u_t; /************************************************************************ * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of Shub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * * refers to Crossbow's internal space. * * This register contains the state elements per widget that are * * necessary to manage the PIO flow control on Crosstalk and on the * * Router Network. See the PIO Flow Control chapter for a complete * * description of this register * * The SPUR_WR bit requires some explanation. When this register is * * written, the new value of the C field is captured in an internal * * register so the hardware can remember what the programmer wrote * * into the credit counter. The SPUR_WR bit sets whenever the C field * * increments above this stored value, which indicates that there * * have been more responses received than requests sent. The SPUR_WR * * bit cannot be cleared until a value is written to the IPRBx * * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * * . * * * ************************************************************************/ typedef union ii_iprbf_u { uint64_t ii_iprbf_regval; struct { uint64_t i_c : 8; uint64_t i_na : 14; uint64_t i_rsvd_2 : 2; uint64_t i_nb : 14; uint64_t i_rsvd_1 : 2; uint64_t i_m : 2; uint64_t i_f : 1; uint64_t i_of_cnt : 5; uint64_t i_error : 1; uint64_t i_rd_to : 1; uint64_t i_spur_wr : 1; uint64_t i_spur_rd : 1; uint64_t i_rsvd : 11; uint64_t i_mult_err : 1; } ii_iprbe_fld_s; } ii_iprbf_u_t; /************************************************************************ * * * This register specifies the timeout value to use for monitoring * * Crosstalk credits which are used outbound to Crosstalk. An * * internal counter called the Crosstalk Credit Timeout Counter * * increments every 128 II clocks. The counter starts counting * * anytime the credit count drops below a threshold, and resets to * * zero (stops counting) anytime the credit count is at or above the * * threshold. The threshold is 1 credit in direct connect mode and 2 * * in Crossbow connect mode. When the internal Crosstalk Credit * * Timeout Counter reaches the value programmed in this register, a * * Crosstalk Credit Timeout has occurred. The internal counter is not * * readable from software, and stops counting at its maximum value, * * so it cannot cause more than one interrupt. * * * ************************************************************************/ typedef union ii_ixcc_u { uint64_t ii_ixcc_regval; struct { uint64_t i_time_out : 26; uint64_t i_rsvd : 38; } ii_ixcc_fld_s; } ii_ixcc_u_t; /************************************************************************ * * * Description: This register qualifies all the PIO and DMA * * operations launched from widget 0 towards the SHub. In * * addition, it also qualifies accesses by the BTE streams. * * The bits in each field of this register are cleared by the SHub * * upon detection of an error which requires widget 0 or the BTE * * streams to be terminated. Whether or not widget x has access * * rights to this SHub is determined by an AND of the device * * enable bit in the appropriate field of this register and bit 0 in * * the Wx_IAC field. The bits in this field are set by writing a 1 to * * them. Incoming replies from Crosstalk are not subject to this * * access control mechanism. * * * ************************************************************************/ typedef union ii_imem_u { uint64_t ii_imem_regval; struct { uint64_t i_w0_esd : 1; uint64_t i_rsvd_3 : 3; uint64_t i_b0_esd : 1; uint64_t i_rsvd_2 : 3; uint64_t i_b1_esd : 1; uint64_t i_rsvd_1 : 3; uint64_t i_clr_precise : 1; uint64_t i_rsvd : 51; } ii_imem_fld_s; } ii_imem_u_t; /************************************************************************ * * * Description: This register specifies the timeout value to use for * * monitoring Crosstalk tail flits coming into the Shub in the * * TAIL_TO field. An internal counter associated with this register * * is incremented every 128 II internal clocks (7 bits). The counter * * starts counting anytime a header micropacket is received and stops * * counting (and resets to zero) any time a micropacket with a Tail * * bit is received. Once the counter reaches the threshold value * * programmed in this register, it generates an interrupt to the * * processor that is programmed into the IIDSR. The counter saturates * * (does not roll over) at its maximum value, so it cannot cause * * another interrupt until after it is cleared. * * The register also contains the Read Response Timeout values. The * * Prescalar is 23 bits, and counts II clocks. An internal counter * * increments on every II clock and when it reaches the value in the * * Prescalar field, all IPRTE registers with their valid bits set * * have their Read Response timers bumped. Whenever any of them match * * the value in the RRSP_TO field, a Read Response Timeout has * * occurred, and error handling occurs as described in the Error * * Handling section of this document. * * * ************************************************************************/ typedef union ii_ixtt_u { uint64_t ii_ixtt_regval; struct { uint64_t i_tail_to : 26; uint64_t i_rsvd_1 : 6; uint64_t i_rrsp_ps : 23; uint64_t i_rrsp_to : 5; uint64_t i_rsvd : 4; } ii_ixtt_fld_s; } ii_ixtt_u_t; /************************************************************************ * * * Writing a 1 to the fields of this register clears the appropriate * * error bits in other areas of SHub. Note that when the * * E_PRB_x bits are used to clear error bits in PRB registers, * * SPUR_RD and SPUR_WR may persist, because they require additional * * action to clear them. See the IPRBx and IXSS Register * * specifications. * * * ************************************************************************/ typedef union ii_ieclr_u { uint64_t ii_ieclr_regval; struct { uint64_t i_e_prb_0 : 1; uint64_t i_rsvd : 7; uint64_t i_e_prb_8 : 1; uint64_t i_e_prb_9 : 1; uint64_t i_e_prb_a : 1; uint64_t i_e_prb_b : 1; uint64_t i_e_prb_c : 1; uint64_t i_e_prb_d : 1; uint64_t i_e_prb_e : 1; uint64_t i_e_prb_f : 1; uint64_t i_e_crazy : 1; uint64_t i_e_bte_0 : 1; uint64_t i_e_bte_1 : 1; uint64_t i_reserved_1 : 10; uint64_t i_spur_rd_hdr : 1; uint64_t i_cam_intr_to : 1; uint64_t i_cam_overflow : 1; uint64_t i_cam_read_miss : 1; uint64_t i_ioq_rep_underflow : 1; uint64_t i_ioq_req_underflow : 1; uint64_t i_ioq_rep_overflow : 1; uint64_t i_ioq_req_overflow : 1; uint64_t i_iiq_rep_overflow : 1; uint64_t i_iiq_req_overflow : 1; uint64_t i_ii_xn_rep_cred_overflow : 1; uint64_t i_ii_xn_req_cred_overflow : 1; uint64_t i_ii_xn_invalid_cmd : 1; uint64_t i_xn_ii_invalid_cmd : 1; uint64_t i_reserved_2 : 21; } ii_ieclr_fld_s; } ii_ieclr_u_t; /************************************************************************ * * * This register controls both BTEs. SOFT_RESET is intended for * * recovery after an error. COUNT controls the total number of CRBs * * that both BTEs (combined) can use, which affects total BTE * * bandwidth. * * * ************************************************************************/ typedef union ii_ibcr_u { uint64_t ii_ibcr_regval; struct { uint64_t i_count : 4; uint64_t i_rsvd_1 : 4; uint64_t i_soft_reset : 1; uint64_t i_rsvd : 55; } ii_ibcr_fld_s; } ii_ibcr_u_t; /************************************************************************ * * * This register contains the header of a spurious read response * * received from Crosstalk. A spurious read response is defined as a * * read response received by II from a widget for which (1) the SIDN * * has a value between 1 and 7, inclusive (II never sends requests to * * these widgets (2) there is no valid IPRTE register which * * corresponds to the TNUM, or (3) the widget indicated in SIDN is * * not the same as the widget recorded in the IPRTE register * * referenced by the TNUM. If this condition is true, and if the * * IXSS[VALID] bit is clear, then the header of the spurious read * * response is capture in IXSM and IXSS, and IXSS[VALID] is set. The * * errant header is thereby captured, and no further spurious read * * respones are captured until IXSS[VALID] is cleared by setting the * * appropriate bit in IECLR.Everytime a spurious read response is * * detected, the SPUR_RD bit of the PRB corresponding to the incoming * * message's SIDN field is set. This always happens, regarless of * * whether a header is captured. The programmer should check * * IXSM[SIDN] to determine which widget sent the spurious response, * * because there may be more than one SPUR_RD bit set in the PRB * * registers. The widget indicated by IXSM[SIDN] was the first * * spurious read response to be received since the last time * * IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB * * will be set. Any SPUR_RD bits in any other PRB registers indicate * * spurious messages from other widets which were detected after the * * header was captured.. * * * ************************************************************************/ typedef union ii_ixsm_u { uint64_t ii_ixsm_regval; struct { uint64_t i_byte_en : 32; uint64_t i_reserved : 1; uint64_t i_tag : 3; uint64_t i_alt_pactyp : 4; uint64_t i_bo : 1; uint64_t i_error : 1; uint64_t i_vbpm : 1; uint64_t i_gbr : 1; uint64_t i_ds : 2; uint64_t i_ct : 1; uint64_t i_tnum : 5; uint64_t i_pactyp : 4; uint64_t i_sidn : 4; uint64_t i_didn : 4; } ii_ixsm_fld_s; } ii_ixsm_u_t; /************************************************************************ * * * This register contains the sideband bits of a spurious read * * response received from Crosstalk. * * * ************************************************************************/ typedef union ii_ixss_u { uint64_t ii_ixss_regval; struct { uint64_t i_sideband : 8; uint64_t i_rsvd : 55; uint64_t i_valid : 1; } ii_ixss_fld_s; } ii_ixss_u_t; /************************************************************************ * * * This register enables software to access the II LLP's test port. * * Refer to the LLP 2.5 documentation for an explanation of the test * * port. Software can write to this register to program the values * * for the control fields (TestErrCapture, TestClear, TestFlit, * * TestMask and TestSeed). Similarly, software can read from this * * register to obtain the values of the test port's status outputs * * (TestCBerr, TestValid and TestData). * * * ************************************************************************/ typedef union ii_ilct_u { uint64_t ii_ilct_regval; struct { uint64_t i_test_seed : 20; uint64_t i_test_mask : 8; uint64_t i_test_data : 20; uint64_t i_test_valid : 1; uint64_t i_test_cberr : 1; uint64_t i_test_flit : 3; uint64_t i_test_clear : 1; uint64_t i_test_err_capture : 1; uint64_t i_rsvd : 9; } ii_ilct_fld_s; } ii_ilct_u_t; /************************************************************************ * * * If the II detects an illegal incoming Duplonet packet (request or * * reply) when VALID==0 in the IIEPH1 register, then it saves the * * contents of the packet's header flit in the IIEPH1 and IIEPH2 * * registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit, * * and assigns a value to the ERR_TYPE field which indicates the * * specific nature of the error. The II recognizes four different * * types of errors: short request packets (ERR_TYPE==2), short reply * * packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long * * reply packets (ERR_TYPE==5). The encodings for these types of * * errors were chosen to be consistent with the same types of errors * * indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in * * the LB unit). If the II detects an illegal incoming Duplonet * * packet when VALID==1 in the IIEPH1 register, then it merely sets * * the OVERRUN bit to indicate that a subsequent error has happened, * * and does nothing further. * * * ************************************************************************/ typedef union ii_iieph1_u { uint64_t ii_iieph1_regval; struct { uint64_t i_command : 7; uint64_t i_rsvd_5 : 1; uint64_t i_suppl : 14; uint64_t i_rsvd_4 : 1; uint64_t i_source : 14; uint64_t i_rsvd_3 : 1; uint64_t i_err_type : 4; uint64_t i_rsvd_2 : 4; uint64_t i_overrun : 1; uint64_t i_rsvd_1 : 3; uint64_t i_valid : 1; uint64_t i_rsvd : 13; } ii_iieph1_fld_s; } ii_iieph1_u_t; /************************************************************************ * * * This register holds the Address field from the header flit of an * * incoming erroneous Duplonet packet, along with the tail bit which * * accompanied this header flit. This register is essentially an * * extension of IIEPH1. Two registers were necessary because the 64 * * bits available in only a single register were insufficient to * * capture the entire header flit of an erroneous packet. * * * ************************************************************************/ typedef union ii_iieph2_u { uint64_t ii_iieph2_regval; struct { uint64_t i_rsvd_0 : 3; uint64_t i_address : 47; uint64_t i_rsvd_1 : 10; uint64_t i_tail : 1; uint64_t i_rsvd : 3; } ii_iieph2_fld_s; } ii_iieph2_u_t; /******************************/ /************************************************************************ * * * This register's value is a bit vector that guards access from SXBs * * to local registers within the II as well as to external Crosstalk * * widgets * * * ************************************************************************/ typedef union ii_islapr_u { uint64_t ii_islapr_regval; struct { uint64_t i_region : 64; } ii_islapr_fld_s; } ii_islapr_u_t; /************************************************************************ * * * A write to this register of the 56-bit value "Pup+Bun" will cause * * the bit in the ISLAPR register corresponding to the region of the * * requestor to be set (access allowed). ( * * ************************************************************************/ typedef union ii_islapo_u { uint64_t ii_islapo_regval; struct { uint64_t i_io_sbx_ovrride : 56; uint64_t i_rsvd : 8; } ii_islapo_fld_s; } ii_islapo_u_t; /************************************************************************ * * * Determines how long the wrapper will wait aftr an interrupt is * * initially issued from the II before it times out the outstanding * * interrupt and drops it from the interrupt queue. * * * ************************************************************************/ typedef union ii_iwi_u { uint64_t ii_iwi_regval; struct { uint64_t i_prescale : 24; uint64_t i_rsvd : 8; uint64_t i_timeout : 8; uint64_t i_rsvd1 : 8; uint64_t i_intrpt_retry_period : 8; uint64_t i_rsvd2 : 8; } ii_iwi_fld_s; } ii_iwi_u_t; /************************************************************************ * * * Log errors which have occurred in the II wrapper. The errors are * * cleared by writing to the IECLR register. * * * ************************************************************************/ typedef union ii_iwel_u { uint64_t ii_iwel_regval; struct { uint64_t i_intr_timed_out : 1; uint64_t i_rsvd : 7; uint64_t i_cam_overflow : 1; uint64_t i_cam_read_miss : 1; uint64_t i_rsvd1 : 2; uint64_t i_ioq_rep_underflow : 1; uint64_t i_ioq_req_underflow : 1; uint64_t i_ioq_rep_overflow : 1; uint64_t i_ioq_req_overflow : 1; uint64_t i_iiq_rep_overflow : 1; uint64_t i_iiq_req_overflow : 1; uint64_t i_rsvd2 : 6; uint64_t i_ii_xn_rep_cred_over_under: 1; uint64_t i_ii_xn_req_cred_over_under: 1; uint64_t i_rsvd3 : 6; uint64_t i_ii_xn_invalid_cmd : 1; uint64_t i_xn_ii_invalid_cmd : 1; uint64_t i_rsvd4 : 30; } ii_iwel_fld_s; } ii_iwel_u_t; /************************************************************************ * * * Controls the II wrapper. * * * ************************************************************************/ typedef union ii_iwc_u { uint64_t ii_iwc_regval; struct { uint64_t i_dma_byte_swap : 1; uint64_t i_rsvd : 3; uint64_t i_cam_read_lines_reset : 1; uint64_t i_rsvd1 : 3; uint64_t i_ii_xn_cred_over_under_log: 1; uint64_t i_rsvd2 : 19; uint64_t i_xn_rep_iq_depth : 5; uint64_t i_rsvd3 : 3; uint64_t i_xn_req_iq_depth : 5; uint64_t i_rsvd4 : 3; uint64_t i_iiq_depth : 6; uint64_t i_rsvd5 : 12; uint64_t i_force_rep_cred : 1; uint64_t i_force_req_cred : 1; } ii_iwc_fld_s; } ii_iwc_u_t; /************************************************************************ * * * Status in the II wrapper. * * * ************************************************************************/ typedef union ii_iws_u { uint64_t ii_iws_regval; struct { uint64_t i_xn_rep_iq_credits : 5; uint64_t i_rsvd : 3; uint64_t i_xn_req_iq_credits : 5; uint64_t i_rsvd1 : 51; } ii_iws_fld_s; } ii_iws_u_t; /************************************************************************ * * * Masks errors in the IWEL register. * * * ************************************************************************/ typedef union ii_iweim_u { uint64_t ii_iweim_regval; struct { uint64_t i_intr_timed_out : 1; uint64_t i_rsvd : 7; uint64_t i_cam_overflow : 1; uint64_t i_cam_read_miss : 1; uint64_t i_rsvd1 : 2; uint64_t i_ioq_rep_underflow : 1; uint64_t i_ioq_req_underflow : 1; uint64_t i_ioq_rep_overflow : 1; uint64_t i_ioq_req_overflow : 1; uint64_t i_iiq_rep_overflow : 1; uint64_t i_iiq_req_overflow : 1; uint64_t i_rsvd2 : 6; uint64_t i_ii_xn_rep_cred_overflow : 1; uint64_t i_ii_xn_req_cred_overflow : 1; uint64_t i_rsvd3 : 6; uint64_t i_ii_xn_invalid_cmd : 1; uint64_t i_xn_ii_invalid_cmd : 1; uint64_t i_rsvd4 : 30; } ii_iweim_fld_s; } ii_iweim_u_t; /************************************************************************ * * * A write to this register causes a particular field in the * * corresponding widget's PRB entry to be adjusted up or down by 1. * * This counter should be used when recovering from error and reset * * conditions. Note that software would be capable of causing * * inadvertent overflow or underflow of these counters. * * * ************************************************************************/ typedef union ii_ipca_u { uint64_t ii_ipca_regval; struct { uint64_t i_wid : 4; uint64_t i_adjust : 1; uint64_t i_rsvd_1 : 3; uint64_t i_field : 2; uint64_t i_rsvd : 54; } ii_ipca_fld_s; } ii_ipca_u_t; /************************************************************************ * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * * * ************************************************************************/ typedef union ii_iprte0a_u { uint64_t ii_iprte0a_regval; struct { uint64_t i_rsvd_1 : 54; uint64_t i_widget : 4; uint64_t i_to_cnt : 5; uint64_t i_vld : 1; } ii_iprte0a_fld_s; } ii_iprte0a_u_t; /************************************************************************ * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * * * ************************************************************************/ typedef union ii_iprte1a_u { uint64_t ii_iprte1a_regval; struct { uint64_t i_rsvd_1 : 54; uint64_t i_widget : 4; uint64_t i_to_cnt : 5; uint64_t i_vld : 1; } ii_iprte1a_fld_s; } ii_iprte1a_u_t; /************************************************************************ * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * * * ************************************************************************/ typedef union ii_iprte2a_u { uint64_t ii_iprte2a_regval; struct { uint64_t i_rsvd_1 : 54; uint64_t i_widget : 4; uint64_t i_to_cnt : 5; uint64_t i_vld : 1; } ii_iprte2a_fld_s; } ii_iprte2a_u_t; /************************************************************************ * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * * * ************************************************************************/ typedef union ii_iprte3a_u { uint64_t ii_iprte3a_regval; struct { uint64_t i_rsvd_1 : 54; uint64_t i_widget : 4; uint64_t i_to_cnt : 5; uint64_t i_vld : 1; } ii_iprte3a_fld_s; } ii_iprte3a_u_t; /************************************************************************ * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * * * ************************************************************************/ typedef union ii_iprte4a_u { uint64_t ii_iprte4a_regval; struct { uint64_t i_rsvd_1 : 54; uint64_t i_widget : 4; uint64_t i_to_cnt : 5; uint64_t i_vld : 1; } ii_iprte4a_fld_s; } ii_iprte4a_u_t; /************************************************************************ * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * * * ************************************************************************/ typedef union ii_iprte5a_u { uint64_t ii_iprte5a_regval; struct { uint64_t i_rsvd_1 : 54; uint64_t i_widget : 4; uint64_t i_to_cnt : 5; uint64_t i_vld : 1; } ii_iprte5a_fld_s; } ii_iprte5a_u_t; /************************************************************************ * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * * * ************************************************************************/ typedef union ii_iprte6a_u { uint64_t ii_iprte6a_regval; struct { uint64_t i_rsvd_1 : 54; uint64_t i_widget : 4; uint64_t i_to_cnt : 5; uint64_t i_vld : 1; } ii_iprte6a_fld_s; } ii_iprte6a_u_t; /************************************************************************ * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * * * ************************************************************************/ typedef union ii_iprte7a_u { uint64_t ii_iprte7a_regval; struct { uint64_t i_rsvd_1 : 54; uint64_t i_widget : 4; uint64_t i_to_cnt : 5; uint64_t i_vld : 1; } ii_iprtea7_fld_s; } ii_iprte7a_u_t; /************************************************************************ * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * * * ************************************************************************/ typedef union ii_iprte0b_u { uint64_t ii_iprte0b_regval; struct { uint64_t i_rsvd_1 : 3; uint64_t i_address : 47; uint64_t i_init : 3; uint64_t i_source : 11; } ii_iprte0b_fld_s; } ii_iprte0b_u_t; /************************************************************************ * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * * * ************************************************************************/ typedef union ii_iprte1b_u { uint64_t ii_iprte1b_regval; struct { uint64_t i_rsvd_1 : 3; uint64_t i_address : 47; uint64_t i_init : 3; uint64_t i_source : 11; } ii_iprte1b_fld_s; } ii_iprte1b_u_t; /************************************************************************ * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * * * ************************************************************************/ typedef union ii_iprte2b_u { uint64_t ii_iprte2b_regval; struct { uint64_t i_rsvd_1 : 3; uint64_t i_address : 47; uint64_t i_init : 3; uint64_t i_source : 11; } ii_iprte2b_fld_s; } ii_iprte2b_u_t; /************************************************************************ * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * * * ************************************************************************/ typedef union ii_iprte3b_u { uint64_t ii_iprte3b_regval; struct { uint64_t i_rsvd_1 : 3; uint64_t i_address : 47; uint64_t i_init : 3; uint64_t i_source : 11; } ii_iprte3b_fld_s; } ii_iprte3b_u_t; /************************************************************************ * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * * * ************************************************************************/ typedef union ii_iprte4b_u { uint64_t ii_iprte4b_regval; struct { uint64_t i_rsvd_1 : 3; uint64_t i_address : 47; uint64_t i_init : 3; uint64_t i_source : 11; } ii_iprte4b_fld_s; } ii_iprte4b_u_t; /************************************************************************ * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * * * ************************************************************************/ typedef union ii_iprte5b_u { uint64_t ii_iprte5b_regval; struct { uint64_t i_rsvd_1 : 3; uint64_t i_address : 47; uint64_t i_init : 3; uint64_t i_source : 11; } ii_iprte5b_fld_s; } ii_iprte5b_u_t; /************************************************************************ * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * * * ************************************************************************/ typedef union ii_iprte6b_u { uint64_t ii_iprte6b_regval; struct { uint64_t i_rsvd_1 : 3; uint64_t i_address : 47; uint64_t i_init : 3; uint64_t i_source : 11; } ii_iprte6b_fld_s; } ii_iprte6b_u_t; /************************************************************************ * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * * * ************************************************************************/ typedef union ii_iprte7b_u { uint64_t ii_iprte7b_regval; struct { uint64_t i_rsvd_1 : 3; uint64_t i_address : 47; uint64_t i_init : 3; uint64_t i_source : 11; } ii_iprte7b_fld_s; } ii_iprte7b_u_t; /************************************************************************ * * * Description: SHub II contains a feature which did not exist in * * the Hub which automatically cleans up after a Read Response * * timeout, including deallocation of the IPRTE and recovery of IBuf * * space. The inclusion of this register in SHub is for backward * * compatibility * * A write to this register causes an entry from the table of * * outstanding PIO Read Requests to be freed and returned to the * * stack of free entries. This register is used in handling the * * timeout errors that result in a PIO Reply never returning from * * Crosstalk. * * Note that this register does not affect the contents of the IPRTE * * registers. The Valid bits in those registers have to be * * specifically turned off by software. * * * ************************************************************************/ typedef union ii_ipdr_u { uint64_t ii_ipdr_regval; struct { uint64_t i_te : 3; uint64_t i_rsvd_1 : 1; uint64_t i_pnd : 1; uint64_t i_init_rpcnt : 1; uint64_t i_rsvd : 58; } ii_ipdr_fld_s; } ii_ipdr_u_t; /************************************************************************ * * * A write to this register causes a CRB entry to be returned to the * * queue of free CRBs. The entry should have previously been cleared * * (mark bit) via backdoor access to the pertinent CRB entry. This * * register is used in the last step of handling the errors that are * * captured and marked in CRB entries. Briefly: 1) first error for * * DMA write from a particular device, and first error for a * * particular BTE stream, lead to a marked CRB entry, and processor * * interrupt, 2) software reads the error information captured in the * * CRB entry, and presumably takes some corrective action, 3) * * software clears the mark bit, and finally 4) software writes to * * the ICDR register to return the CRB entry to the list of free CRB * * entries. * * * ************************************************************************/ typedef union ii_icdr_u { uint64_t ii_icdr_regval; struct { uint64_t i_crb_num : 4; uint64_t i_pnd : 1; uint64_t i_rsvd : 59; } ii_icdr_fld_s; } ii_icdr_u_t; /************************************************************************ * * * This register provides debug access to two FIFOs inside of II. * * Both IOQ_MAX* fields of this register contain the instantaneous * * depth (in units of the number of available entries) of the * * associated IOQ FIFO. A read of this register will return the * * number of free entries on each FIFO at the time of the read. So * * when a FIFO is idle, the associated field contains the maximum * * depth of the FIFO. This register is writable for debug reasons * * and is intended to be written with the maximum desired FIFO depth * * while the FIFO is idle. Software must assure that II is idle when * * this register is written. If there are any active entries in any * * of these FIFOs when this register is written, the results are * * undefined. * * * ************************************************************************/ typedef union ii_ifdr_u { uint64_t ii_ifdr_regval; struct { uint64_t i_ioq_max_rq : 7; uint64_t i_set_ioq_rq : 1; uint64_t i_ioq_max_rp : 7; uint64_t i_set_ioq_rp : 1; uint64_t i_rsvd : 48; } ii_ifdr_fld_s; } ii_ifdr_u_t; /************************************************************************ * * * This register allows the II to become sluggish in removing * * messages from its inbound queue (IIQ). This will cause messages to * * back up in either virtual channel. Disabling the "molasses" mode * * subsequently allows the II to be tested under stress. In the * * sluggish ("Molasses") mode, the localized effects of congestion * * can be observed. * * * ************************************************************************/ typedef union ii_iiap_u { uint64_t ii_iiap_regval; struct { uint64_t i_rq_mls : 6; uint64_t i_rsvd_1 : 2; uint64_t i_rp_mls : 6; uint64_t i_rsvd : 50; } ii_iiap_fld_s; } ii_iiap_u_t; /************************************************************************ * * * This register allows several parameters of CRB operation to be * * set. Note that writing to this register can have catastrophic side * * effects, if the CRB is not quiescent, i.e. if the CRB is * * processing protocol messages when the write occurs. * * * ************************************************************************/ typedef union ii_icmr_u { uint64_t ii_icmr_regval; struct { uint64_t i_sp_msg : 1; uint64_t i_rd_hdr : 1; uint64_t i_rsvd_4 : 2; uint64_t i_c_cnt : 4; uint64_t i_rsvd_3 : 4; uint64_t i_clr_rqpd : 1; uint64_t i_clr_rppd : 1; uint64_t i_rsvd_2 : 2; uint64_t i_fc_cnt : 4; uint64_t i_crb_vld : 15; uint64_t i_crb_mark : 15; uint64_t i_rsvd_1 : 2; uint64_t i_precise : 1; uint64_t i_rsvd : 11; } ii_icmr_fld_s; } ii_icmr_u_t; /************************************************************************ * * * This register allows control of the table portion of the CRB * * logic via software. Control operations from this register have * * priority over all incoming Crosstalk or BTE requests. * * * ************************************************************************/ typedef union ii_iccr_u { uint64_t ii_iccr_regval; struct { uint64_t i_crb_num : 4; uint64_t i_rsvd_1 : 4; uint64_t i_cmd : 8; uint64_t i_pending : 1; uint64_t i_rsvd : 47; } ii_iccr_fld_s; } ii_iccr_u_t; /************************************************************************ * * * This register allows the maximum timeout value to be programmed. * * * ************************************************************************/ typedef union ii_icto_u { uint64_t ii_icto_regval; struct { uint64_t i_timeout : 8; uint64_t i_rsvd : 56; } ii_icto_fld_s; } ii_icto_u_t; /************************************************************************ * * * This register allows the timeout prescalar to be programmed. An * * internal counter is associated with this register. When the * * internal counter reaches the value of the PRESCALE field, the * * timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT] * * field). The internal counter resets to zero, and then continues * * counting. * * * ************************************************************************/ typedef union ii_ictp_u { uint64_t ii_ictp_regval; struct { uint64_t i_prescale : 24; uint64_t i_rsvd : 40; } ii_ictp_fld_s; } ii_ictp_u_t; /************************************************************************ * * * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * * used for Crosstalk operations (both cacheline and partial * * operations) or BTE/IO. Because the CRB entries are very wide, five * * registers (_A to _E) are required to read and write each entry. * * The CRB Entry registers can be conceptualized as rows and columns * * (illustrated in the table above). Each row contains the 4 * * registers required for a single CRB Entry. The first doubleword * * (column) for each entry is labeled A, and the second doubleword * * (higher address) is labeled B, the third doubleword is labeled C, * * the fourth doubleword is labeled D and the fifth doubleword is * * labeled E. All CRB entries have their addresses on a quarter * * cacheline aligned boundary. * * Upon reset, only the following fields are initialized: valid * * (VLD), priority count, timeout, timeout valid, and context valid. * * All other bits should be cleared by software before use (after * * recovering any potential error state from before the reset). * * The following four tables summarize the format for the four * * registers that are used for each ICRB# Entry. * * * ************************************************************************/ typedef union ii_icrb0_a_u { uint64_t ii_icrb0_a_regval; struct { uint64_t ia_iow : 1; uint64_t ia_vld : 1; uint64_t ia_addr : 47; uint64_t ia_tnum : 5; uint64_t ia_sidn : 4; uint64_t ia_rsvd : 6; } ii_icrb0_a_fld_s; } ii_icrb0_a_u_t; /************************************************************************ * * * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * * used for Crosstalk operations (both cacheline and partial * * operations) or BTE/IO. Because the CRB entries are very wide, five * * registers (_A to _E) are required to read and write each entry. * * * ************************************************************************/ typedef union ii_icrb0_b_u { uint64_t ii_icrb0_b_regval; struct { uint64_t ib_xt_err : 1; uint64_t ib_mark : 1; uint64_t ib_ln_uce : 1; uint64_t ib_errcode : 3; uint64_t ib_error : 1; uint64_t ib_stall__bte_1 : 1; uint64_t ib_stall__bte_0 : 1; uint64_t ib_stall__intr : 1; uint64_t ib_stall_ib : 1; uint64_t ib_intvn : 1; uint64_t ib_wb : 1; uint64_t ib_hold : 1; uint64_t ib_ack : 1; uint64_t ib_resp : 1; uint64_t ib_ack_cnt : 11; uint64_t ib_rsvd : 7; uint64_t ib_exc : 5; uint64_t ib_init : 3; uint64_t ib_imsg : 8; uint64_t ib_imsgtype : 2; uint64_t ib_use_old : 1; uint64_t ib_rsvd_1 : 11; } ii_icrb0_b_fld_s; } ii_icrb0_b_u_t; /************************************************************************ * * * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * * used for Crosstalk operations (both cacheline and partial * * operations) or BTE/IO. Because the CRB entries are very wide, five * * registers (_A to _E) are required to read and write each entry. * * * ************************************************************************/ typedef union ii_icrb0_c_u { uint64_t ii_icrb0_c_regval; struct { uint64_t ic_source : 15; uint64_t ic_size : 2; uint64_t ic_ct : 1; uint64_t ic_bte_num : 1; uint64_t ic_gbr : 1; uint64_t ic_resprqd : 1; uint64_t ic_bo : 1; uint64_t ic_suppl : 15; uint64_t ic_rsvd : 27; } ii_icrb0_c_fld_s; } ii_icrb0_c_u_t; /************************************************************************ * * * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * * used for Crosstalk operations (both cacheline and partial * * operations) or BTE/IO. Because the CRB entries are very wide, five * * registers (_A to _E) are required to read and write each entry. * * * ************************************************************************/ typedef union ii_icrb0_d_u { uint64_t ii_icrb0_d_regval; struct { uint64_t id_pa_be : 43; uint64_t id_bte_op : 1; uint64_t id_pr_psc : 4; uint64_t id_pr_cnt : 4; uint64_t id_sleep : 1; uint64_t id_rsvd : 11; } ii_icrb0_d_fld_s; } ii_icrb0_d_u_t; /************************************************************************ * * * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * * used for Crosstalk operations (both cacheline and partial * * operations) or BTE/IO. Because the CRB entries are very wide, five * * registers (_A to _E) are required to read and write each entry. * * * ************************************************************************/ typedef union ii_icrb0_e_u { uint64_t ii_icrb0_e_regval; struct { uint64_t ie_timeout : 8; uint64_t ie_context : 15; uint64_t ie_rsvd : 1; uint64_t ie_tvld : 1; uint64_t ie_cvld : 1; uint64_t ie_rsvd_0 : 38; } ii_icrb0_e_fld_s; } ii_icrb0_e_u_t; /************************************************************************ * * * This register contains the lower 64 bits of the header of the * * spurious message captured by II. Valid when the SP_MSG bit in ICMR * * register is set. * * * ************************************************************************/ typedef union ii_icsml_u { uint64_t ii_icsml_regval; struct { uint64_t i_tt_addr : 47; uint64_t i_newsuppl_ex : 14; uint64_t i_reserved : 2; uint64_t i_overflow : 1; } ii_icsml_fld_s; } ii_icsml_u_t; /************************************************************************ * * * This register contains the middle 64 bits of the header of the * * spurious message captured by II. Valid when the SP_MSG bit in ICMR * * register is set. * * * ************************************************************************/ typedef union ii_icsmm_u { uint64_t ii_icsmm_regval; struct { uint64_t i_tt_ack_cnt : 11; uint64_t i_reserved : 53; } ii_icsmm_fld_s; } ii_icsmm_u_t; /************************************************************************ * * * This register contains the microscopic state, all the inputs to * * the protocol table, captured with the spurious message. Valid when * * the SP_MSG bit in the ICMR register is set. * * * ************************************************************************/ typedef union ii_icsmh_u { uint64_t ii_icsmh_regval; struct { uint64_t i_tt_vld : 1; uint64_t i_xerr : 1; uint64_t i_ft_cwact_o : 1; uint64_t i_ft_wact_o : 1; uint64_t i_ft_active_o : 1; uint64_t i_sync : 1; uint64_t i_mnusg : 1; uint64_t i_mnusz : 1; uint64_t i_plusz : 1; uint64_t i_plusg : 1; uint64_t i_tt_exc : 5; uint64_t i_tt_wb : 1; uint64_t i_tt_hold : 1; uint64_t i_tt_ack : 1; uint64_t i_tt_resp : 1; uint64_t i_tt_intvn : 1; uint64_t i_g_stall_bte1 : 1; uint64_t i_g_stall_bte0 : 1; uint64_t i_g_stall_il : 1; uint64_t i_g_stall_ib : 1; uint64_t i_tt_imsg : 8; uint64_t i_tt_imsgtype : 2; uint64_t i_tt_use_old : 1; uint64_t i_tt_respreqd : 1; uint64_t i_tt_bte_num : 1; uint64_t i_cbn : 1; uint64_t i_match : 1; uint64_t i_rpcnt_lt_34 : 1; uint64_t i_rpcnt_ge_34 : 1; uint64_t i_rpcnt_lt_18 : 1; uint64_t i_rpcnt_ge_18 : 1; uint64_t i_rpcnt_lt_2 : 1; uint64_t i_rpcnt_ge_2 : 1; uint64_t i_rqcnt_lt_18 : 1; uint64_t i_rqcnt_ge_18 : 1; uint64_t i_rqcnt_lt_2 : 1; uint64_t i_rqcnt_ge_2 : 1; uint64_t i_tt_device : 7; uint64_t i_tt_init : 3; uint64_t i_reserved : 5; } ii_icsmh_fld_s; } ii_icsmh_u_t; /************************************************************************ * * * The Shub DEBUG unit provides a 3-bit selection signal to the * * II core and a 3-bit selection signal to the fsbclk domain in the II * * wrapper. * * * ************************************************************************/ typedef union ii_idbss_u { uint64_t ii_idbss_regval; struct { uint64_t i_iioclk_core_submenu : 3; uint64_t i_rsvd : 5; uint64_t i_fsbclk_wrapper_submenu : 3; uint64_t i_rsvd_1 : 5; uint64_t i_iioclk_menu : 5; uint64_t i_rsvd_2 : 43; } ii_idbss_fld_s; } ii_idbss_u_t; /************************************************************************ * * * Description: This register is used to set up the length for a * * transfer and then to monitor the progress of that transfer. This * * register needs to be initialized before a transfer is started. A * * legitimate write to this register will set the Busy bit, clear the * * Error bit, and initialize the length to the value desired. * * While the transfer is in progress, hardware will decrement the * * length field with each successful block that is copied. Once the * * transfer completes, hardware will clear the Busy bit. The length * * field will also contain the number of cache lines left to be * * transferred. * * * ************************************************************************/ typedef union ii_ibls0_u { uint64_t ii_ibls0_regval; struct { uint64_t i_length : 16; uint64_t i_error : 1; uint64_t i_rsvd_1 : 3; uint64_t i_busy : 1; uint64_t i_rsvd : 43; } ii_ibls0_fld_s; } ii_ibls0_u_t; /************************************************************************ * * * This register should be loaded before a transfer is started. The * * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * * address as described in Section 1.3, Figure2 and Figure3. Since * * the bottom 7 bits of the address are always taken to be zero, BTE * * transfers are always cacheline-aligned. * * * ************************************************************************/ typedef union ii_ibsa0_u { uint64_t ii_ibsa0_regval; struct { uint64_t i_rsvd_1 : 7; uint64_t i_addr : 42; uint64_t i_rsvd : 15; } ii_ibsa0_fld_s; } ii_ibsa0_u_t; /************************************************************************ * * * This register should be loaded before a transfer is started. The * * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * * address as described in Section 1.3, Figure2 and Figure3. Since * * the bottom 7 bits of the address are always taken to be zero, BTE * * transfers are always cacheline-aligned. * * * ************************************************************************/ typedef union ii_ibda0_u { uint64_t ii_ibda0_regval; struct { uint64_t i_rsvd_1 : 7; uint64_t i_addr : 42; uint64_t i_rsvd : 15; } ii_ibda0_fld_s; } ii_ibda0_u_t; /************************************************************************ * * * Writing to this register sets up the attributes of the transfer * * and initiates the transfer operation. Reading this register has * * the side effect of terminating any transfer in progress. Note: * * stopping a transfer midstream could have an adverse impact on the * * other BTE. If a BTE stream has to be stopped (due to error * * handling for example), both BTE streams should be stopped and * * their transfers discarded. * * * ************************************************************************/ typedef union ii_ibct0_u { uint64_t ii_ibct0_regval; struct { uint64_t i_zerofill : 1; uint64_t i_rsvd_2 : 3; uint64_t i_notify : 1; uint64_t i_rsvd_1 : 3; uint64_t i_poison : 1; uint64_t i_rsvd : 55; } ii_ibct0_fld_s; } ii_ibct0_u_t; /************************************************************************ * * * This register contains the address to which the WINV is sent. * * This address has to be cache line aligned. * * * ************************************************************************/ typedef union ii_ibna0_u { uint64_t ii_ibna0_regval; struct { uint64_t i_rsvd_1 : 7; uint64_t i_addr : 42; uint64_t i_rsvd : 15; } ii_ibna0_fld_s; } ii_ibna0_u_t; /************************************************************************ * * * This register contains the programmable level as well as the node * * ID and PI unit of the processor to which the interrupt will be * * sent. * * * ************************************************************************/ typedef union ii_ibia0_u { uint64_t ii_ibia0_regval; struct { uint64_t i_rsvd_2 : 1; uint64_t i_node_id : 11; uint64_t i_rsvd_1 : 4; uint64_t i_level : 7; uint64_t i_rsvd : 41; } ii_ibia0_fld_s; } ii_ibia0_u_t; /************************************************************************ * * * Description: This register is used to set up the length for a * * transfer and then to monitor the progress of that transfer. This * * register needs to be initialized before a transfer is started. A * * legitimate write to this register will set the Busy bit, clear the * * Error bit, and initialize the length to the value desired. * * While the transfer is in progress, hardware will decrement the * * length field with each successful block that is copied. Once the * * transfer completes, hardware will clear the Busy bit. The length * * field will also contain the number of cache lines left to be * * transferred. * * * ************************************************************************/ typedef union ii_ibls1_u { uint64_t ii_ibls1_regval; struct { uint64_t i_length : 16; uint64_t i_error : 1; uint64_t i_rsvd_1 : 3; uint64_t i_busy : 1; uint64_t i_rsvd : 43; } ii_ibls1_fld_s; } ii_ibls1_u_t; /************************************************************************ * * * This register should be loaded before a transfer is started. The * * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * * address as described in Section 1.3, Figure2 and Figure3. Since * * the bottom 7 bits of the address are always taken to be zero, BTE * * transfers are always cacheline-aligned. * * * ************************************************************************/ typedef union ii_ibsa1_u { uint64_t ii_ibsa1_regval; struct { uint64_t i_rsvd_1 : 7; uint64_t i_addr : 33; uint64_t i_rsvd : 24; } ii_ibsa1_fld_s; } ii_ibsa1_u_t; /************************************************************************ * * * This register should be loaded before a transfer is started. The * * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * * address as described in Section 1.3, Figure2 and Figure3. Since * * the bottom 7 bits of the address are always taken to be zero, BTE * * transfers are always cacheline-aligned. * * * ************************************************************************/ typedef union ii_ibda1_u { uint64_t ii_ibda1_regval; struct { uint64_t i_rsvd_1 : 7; uint64_t i_addr : 33; uint64_t i_rsvd : 24; } ii_ibda1_fld_s; } ii_ibda1_u_t; /************************************************************************ * * * Writing to this register sets up the attributes of the transfer * * and initiates the transfer operation. Reading this register has * * the side effect of terminating any transfer in progress. Note: * * stopping a transfer midstream could have an adverse impact on the * * other BTE. If a BTE stream has to be stopped (due to error * * handling for example), both BTE streams should be stopped and * * their transfers discarded. * * * ************************************************************************/ typedef union ii_ibct1_u { uint64_t ii_ibct1_regval; struct { uint64_t i_zerofill : 1; uint64_t i_rsvd_2 : 3; uint64_t i_notify : 1; uint64_t i_rsvd_1 : 3; uint64_t i_poison : 1; uint64_t i_rsvd : 55; } ii_ibct1_fld_s; } ii_ibct1_u_t; /************************************************************************ * * * This register contains the address to which the WINV is sent. * * This address has to be cache line aligned. * * * ************************************************************************/ typedef union ii_ibna1_u { uint64_t ii_ibna1_regval; struct { uint64_t i_rsvd_1 : 7; uint64_t i_addr : 33; uint64_t i_rsvd : 24; } ii_ibna1_fld_s; } ii_ibna1_u_t; /************************************************************************ * * * This register contains the programmable level as well as the node * * ID and PI unit of the processor to which the interrupt will be * * sent. * * * ************************************************************************/ typedef union ii_ibia1_u { uint64_t ii_ibia1_regval; struct { uint64_t i_pi_id : 1; uint64_t i_node_id : 8; uint64_t i_rsvd_1 : 7; uint64_t i_level : 7; uint64_t i_rsvd : 41; } ii_ibia1_fld_s; } ii_ibia1_u_t; /************************************************************************ * * * This register defines the resources that feed information into * * the two performance counters located in the IO Performance * * Profiling Register. There are 17 different quantities that can be * * measured. Given these 17 different options, the two performance * * counters have 15 of them in common; menu selections 0 through 0xE * * are identical for each performance counter. As for the other two * * options, one is available from one performance counter and the * * other is available from the other performance counter. Hence, the * * II supports all 17*16=272 possible combinations of quantities to * * measure. * * * ************************************************************************/ typedef union ii_ipcr_u { uint64_t ii_ipcr_regval; struct { uint64_t i_ippr0_c : 4; uint64_t i_ippr1_c : 4; uint64_t i_icct : 8; uint64_t i_rsvd : 48; } ii_ipcr_fld_s; } ii_ipcr_u_t; /************************************************************************ * * * * * * ************************************************************************/ typedef union ii_ippr_u { uint64_t ii_ippr_regval; struct { uint64_t i_ippr0 : 32; uint64_t i_ippr1 : 32; } ii_ippr_fld_s; } ii_ippr_u_t; /************************************************************************** * * * The following defines which were not formed into structures are * * probably indentical to another register, and the name of the * * register is provided against each of these registers. This * * information needs to be checked carefully * * * * IIO_ICRB1_A IIO_ICRB0_A * * IIO_ICRB1_B IIO_ICRB0_B * * IIO_ICRB1_C IIO_ICRB0_C * * IIO_ICRB1_D IIO_ICRB0_D * * IIO_ICRB1_E IIO_ICRB0_E * * IIO_ICRB2_A IIO_ICRB0_A * * IIO_ICRB2_B IIO_ICRB0_B * * IIO_ICRB2_C IIO_ICRB0_C * * IIO_ICRB2_D IIO_ICRB0_D * * IIO_ICRB2_E IIO_ICRB0_E * * IIO_ICRB3_A IIO_ICRB0_A * * IIO_ICRB3_B IIO_ICRB0_B * * IIO_ICRB3_C IIO_ICRB0_C * * IIO_ICRB3_D IIO_ICRB0_D * * IIO_ICRB3_E IIO_ICRB0_E * * IIO_ICRB4_A IIO_ICRB0_A * * IIO_ICRB4_B IIO_ICRB0_B * * IIO_ICRB4_C IIO_ICRB0_C * * IIO_ICRB4_D IIO_ICRB0_D * * IIO_ICRB4_E IIO_ICRB0_E * * IIO_ICRB5_A IIO_ICRB0_A * * IIO_ICRB5_B IIO_ICRB0_B * * IIO_ICRB5_C IIO_ICRB0_C * * IIO_ICRB5_D IIO_ICRB0_D * * IIO_ICRB5_E IIO_ICRB0_E * * IIO_ICRB6_A IIO_ICRB0_A * * IIO_ICRB6_B IIO_ICRB0_B * * IIO_ICRB6_C IIO_ICRB0_C * * IIO_ICRB6_D IIO_ICRB0_D * * IIO_ICRB6_E IIO_ICRB0_E * * IIO_ICRB7_A IIO_ICRB0_A * * IIO_ICRB7_B IIO_ICRB0_B * * IIO_ICRB7_C IIO_ICRB0_C * * IIO_ICRB7_D IIO_ICRB0_D * * IIO_ICRB7_E IIO_ICRB0_E * * IIO_ICRB8_A IIO_ICRB0_A * * IIO_ICRB8_B IIO_ICRB0_B * * IIO_ICRB8_C IIO_ICRB0_C * * IIO_ICRB8_D IIO_ICRB0_D * * IIO_ICRB8_E IIO_ICRB0_E * * IIO_ICRB9_A IIO_ICRB0_A * * IIO_ICRB9_B IIO_ICRB0_B * * IIO_ICRB9_C IIO_ICRB0_C * * IIO_ICRB9_D IIO_ICRB0_D * * IIO_ICRB9_E IIO_ICRB0_E * * IIO_ICRBA_A IIO_ICRB0_A * * IIO_ICRBA_B IIO_ICRB0_B * * IIO_ICRBA_C IIO_ICRB0_C * * IIO_ICRBA_D IIO_ICRB0_D * * IIO_ICRBA_E IIO_ICRB0_E * * IIO_ICRBB_A IIO_ICRB0_A * * IIO_ICRBB_B IIO_ICRB0_B * * IIO_ICRBB_C IIO_ICRB0_C * * IIO_ICRBB_D IIO_ICRB0_D * * IIO_ICRBB_E IIO_ICRB0_E * * IIO_ICRBC_A IIO_ICRB0_A * * IIO_ICRBC_B IIO_ICRB0_B * * IIO_ICRBC_C IIO_ICRB0_C * * IIO_ICRBC_D IIO_ICRB0_D * * IIO_ICRBC_E IIO_ICRB0_E * * IIO_ICRBD_A IIO_ICRB0_A * * IIO_ICRBD_B IIO_ICRB0_B * * IIO_ICRBD_C IIO_ICRB0_C * * IIO_ICRBD_D IIO_ICRB0_D * * IIO_ICRBD_E IIO_ICRB0_E * * IIO_ICRBE_A IIO_ICRB0_A * * IIO_ICRBE_B IIO_ICRB0_B * * IIO_ICRBE_C IIO_ICRB0_C * * IIO_ICRBE_D IIO_ICRB0_D * * IIO_ICRBE_E IIO_ICRB0_E * * * **************************************************************************/ /* * Slightly friendlier names for some common registers. */ #define IIO_WIDGET IIO_WID /* Widget identification */ #define IIO_WIDGET_STAT IIO_WSTAT /* Widget status register */ #define IIO_WIDGET_CTRL IIO_WCR /* Widget control register */ #define IIO_PROTECT IIO_ILAPR /* IO interface protection */ #define IIO_PROTECT_OVRRD IIO_ILAPO /* IO protect override */ #define IIO_OUTWIDGET_ACCESS IIO_IOWA /* Outbound widget access */ #define IIO_INWIDGET_ACCESS IIO_IIWA /* Inbound widget access */ #define IIO_INDEV_ERR_MASK IIO_IIDEM /* Inbound device error mask */ #define IIO_LLP_CSR IIO_ILCSR /* LLP control and status */ #define IIO_LLP_LOG IIO_ILLR /* LLP log */ #define IIO_XTALKCC_TOUT IIO_IXCC /* Xtalk credit count timeout*/ #define IIO_XTALKTT_TOUT IIO_IXTT /* Xtalk tail timeout */ #define IIO_IO_ERR_CLR IIO_IECLR /* IO error clear */ #define IIO_IGFX_0 IIO_IGFX0 #define IIO_IGFX_1 IIO_IGFX1 #define IIO_IBCT_0 IIO_IBCT0 #define IIO_IBCT_1 IIO_IBCT1 #define IIO_IBLS_0 IIO_IBLS0 #define IIO_IBLS_1 IIO_IBLS1 #define IIO_IBSA_0 IIO_IBSA0 #define IIO_IBSA_1 IIO_IBSA1 #define IIO_IBDA_0 IIO_IBDA0 #define IIO_IBDA_1 IIO_IBDA1 #define IIO_IBNA_0 IIO_IBNA0 #define IIO_IBNA_1 IIO_IBNA1 #define IIO_IBIA_0 IIO_IBIA0 #define IIO_IBIA_1 IIO_IBIA1 #define IIO_IOPRB_0 IIO_IPRB0 #define IIO_PRTE_A(_x) (IIO_IPRTE0_A + (8 * (_x))) #define IIO_PRTE_B(_x) (IIO_IPRTE0_B + (8 * (_x))) #define IIO_NUM_PRTES 8 /* Total number of PRB table entries */ #define IIO_WIDPRTE_A(x) IIO_PRTE_A(((x) - 8)) /* widget ID to its PRTE num */ #define IIO_WIDPRTE_B(x) IIO_PRTE_B(((x) - 8)) /* widget ID to its PRTE num */ #define IIO_NUM_IPRBS (9) #define IIO_LLP_CSR_IS_UP 0x00002000 #define IIO_LLP_CSR_LLP_STAT_MASK 0x00003000 #define IIO_LLP_CSR_LLP_STAT_SHFT 12 #define IIO_LLP_CB_MAX 0xffff /* in ILLR CB_CNT, Max Check Bit errors */ #define IIO_LLP_SN_MAX 0xffff /* in ILLR SN_CNT, Max Sequence Number errors */ /* key to IIO_PROTECT_OVRRD */ #define IIO_PROTECT_OVRRD_KEY 0x53474972756c6573ull /* "SGIrules" */ /* BTE register names */ #define IIO_BTE_STAT_0 IIO_IBLS_0 /* Also BTE length/status 0 */ #define IIO_BTE_SRC_0 IIO_IBSA_0 /* Also BTE source address 0 */ #define IIO_BTE_DEST_0 IIO_IBDA_0 /* Also BTE dest. address 0 */ #define IIO_BTE_CTRL_0 IIO_IBCT_0 /* Also BTE control/terminate 0 */ #define IIO_BTE_NOTIFY_0 IIO_IBNA_0 /* Also BTE notification 0 */ #define IIO_BTE_INT_0 IIO_IBIA_0 /* Also BTE interrupt 0 */ #define IIO_BTE_OFF_0 0 /* Base offset from BTE 0 regs. */ #define IIO_BTE_OFF_1 (IIO_IBLS_1 - IIO_IBLS_0) /* Offset from base to BTE 1 */ /* BTE register offsets from base */ #define BTEOFF_STAT 0 #define BTEOFF_SRC (IIO_BTE_SRC_0 - IIO_BTE_STAT_0) #define BTEOFF_DEST (IIO_BTE_DEST_0 - IIO_BTE_STAT_0) #define BTEOFF_CTRL (IIO_BTE_CTRL_0 - IIO_BTE_STAT_0) #define BTEOFF_NOTIFY (IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0) #define BTEOFF_INT (IIO_BTE_INT_0 - IIO_BTE_STAT_0) /* names used in shub diags */ #define IIO_BASE_BTE0 IIO_IBLS_0 #define IIO_BASE_BTE1 IIO_IBLS_1 /* * Macro which takes the widget number, and returns the * IO PRB address of that widget. * value _x is expected to be a widget number in the range * 0, 8 - 0xF */ #define IIO_IOPRB(_x) (IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \ (_x) : \ (_x) - (HUB_WIDGET_ID_MIN-1)) << 3) ) /* GFX Flow Control Node/Widget Register */ #define IIO_IGFX_W_NUM_BITS 4 /* size of widget num field */ #define IIO_IGFX_W_NUM_MASK ((1<> IIO_WSTAT_TXRETRY_SHFT) & \ IIO_WSTAT_TXRETRY_MASK) /* Number of II perf. counters we can multiplex at once */ #define IO_PERF_SETS 32 /* Bit for the widget in inbound access register */ #define IIO_IIWA_WIDGET(_w) ((uint64_t)(1ULL << _w)) /* Bit for the widget in outbound access register */ #define IIO_IOWA_WIDGET(_w) ((uint64_t)(1ULL << _w)) /* NOTE: The following define assumes that we are going to get * widget numbers from 8 thru F and the device numbers within * widget from 0 thru 7. */ #define IIO_IIDEM_WIDGETDEV_MASK(w, d) ((uint64_t)(1ULL << (8 * ((w) - 8) + (d)))) /* IO Interrupt Destination Register */ #define IIO_IIDSR_SENT_SHIFT 28 #define IIO_IIDSR_SENT_MASK 0x30000000 #define IIO_IIDSR_ENB_SHIFT 24 #define IIO_IIDSR_ENB_MASK 0x01000000 #define IIO_IIDSR_NODE_SHIFT 9 #define IIO_IIDSR_NODE_MASK 0x000ff700 #define IIO_IIDSR_PI_ID_SHIFT 8 #define IIO_IIDSR_PI_ID_MASK 0x00000100 #define IIO_IIDSR_LVL_SHIFT 0 #define IIO_IIDSR_LVL_MASK 0x000000ff /* Xtalk timeout threshhold register (IIO_IXTT) */ #define IXTT_RRSP_TO_SHFT 55 /* read response timeout */ #define IXTT_RRSP_TO_MASK (0x1FULL << IXTT_RRSP_TO_SHFT) #define IXTT_RRSP_PS_SHFT 32 /* read responsed TO prescalar */ #define IXTT_RRSP_PS_MASK (0x7FFFFFULL << IXTT_RRSP_PS_SHFT) #define IXTT_TAIL_TO_SHFT 0 /* tail timeout counter threshold */ #define IXTT_TAIL_TO_MASK (0x3FFFFFFULL << IXTT_TAIL_TO_SHFT) /* * The IO LLP control status register and widget control register */ typedef union hubii_wcr_u { uint64_t wcr_reg_value; struct { uint64_t wcr_widget_id: 4, /* LLP crossbar credit */ wcr_tag_mode: 1, /* Tag mode */ wcr_rsvd1: 8, /* Reserved */ wcr_xbar_crd: 3, /* LLP crossbar credit */ wcr_f_bad_pkt: 1, /* Force bad llp pkt enable */ wcr_dir_con: 1, /* widget direct connect */ wcr_e_thresh: 5, /* elasticity threshold */ wcr_rsvd: 41; /* unused */ } wcr_fields_s; } hubii_wcr_t; #define iwcr_dir_con wcr_fields_s.wcr_dir_con /* The structures below are defined to extract and modify the ii performance registers */ /* io_perf_sel allows the caller to specify what tests will be performed */ typedef union io_perf_sel { uint64_t perf_sel_reg; struct { uint64_t perf_ippr0 : 4, perf_ippr1 : 4, perf_icct : 8, perf_rsvd : 48; } perf_sel_bits; } io_perf_sel_t; /* io_perf_cnt is to extract the count from the shub registers. Due to hardware problems there is only one counter, not two. */ typedef union io_perf_cnt { uint64_t perf_cnt; struct { uint64_t perf_cnt : 20, perf_rsvd2 : 12, perf_rsvd1 : 32; } perf_cnt_bits; } io_perf_cnt_t; typedef union iprte_a { uint64_t entry; struct { uint64_t i_rsvd_1 : 3; uint64_t i_addr : 38; uint64_t i_init : 3; uint64_t i_source : 8; uint64_t i_rsvd : 2; uint64_t i_widget : 4; uint64_t i_to_cnt : 5; uint64_t i_vld : 1; } iprte_fields; } iprte_a_t; #endif /* _ASM_IA64_SN_SHUBIO_H */