/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "adsp_err.h" /* Max size of payload (buf size - apr header) */ #define MAX_PAYLOAD_SIZE 4076 #define RTAC_MAX_ACTIVE_VOICE_COMBOS 2 #define RTAC_MAX_ACTIVE_POPP 8 #define RTAC_BUF_SIZE 163840 #define TIMEOUT_MS 1000 struct rtac_cal_block_data rtac_cal[MAX_RTAC_BLOCKS] = { /* ADM_RTAC_CAL */ {{RTAC_BUF_SIZE, 0, 0}, {0, 0, 0} }, /* ASM_RTAC_CAL */ {{RTAC_BUF_SIZE, 0, 0}, {0, 0, 0} }, /* VOICE_RTAC_CAL */ {{RTAC_BUF_SIZE, 0, 0}, {0, 0, 0} }, /* AFE_RTAC_CAL */ {{RTAC_BUF_SIZE, 0, 0}, {0, 0, 0} } }; struct rtac_common_data { atomic_t usage_count; atomic_t apr_err_code; }; static struct rtac_common_data rtac_common; /* APR data */ struct rtac_apr_data { void *apr_handle; atomic_t cmd_state; wait_queue_head_t cmd_wait; }; static struct rtac_apr_data rtac_adm_apr_data; static struct rtac_apr_data rtac_asm_apr_data[ASM_ACTIVE_STREAMS_ALLOWED + 1]; static struct rtac_apr_data rtac_afe_apr_data; static struct rtac_apr_data rtac_voice_apr_data[RTAC_VOICE_MODES]; /* ADM info & APR */ static struct rtac_adm rtac_adm_data; static u32 *rtac_adm_buffer; /* ASM APR */ static u32 *rtac_asm_buffer; static u32 *rtac_afe_buffer; /* Voice info & APR */ struct rtac_voice_data_t { uint32_t tx_topology_id; uint32_t rx_topology_id; uint32_t tx_afe_topology; uint32_t rx_afe_topology; uint32_t tx_afe_port; uint32_t rx_afe_port; uint16_t cvs_handle; uint16_t cvp_handle; uint32_t tx_acdb_id; uint32_t rx_acdb_id; }; struct rtac_voice { uint32_t num_of_voice_combos; struct rtac_voice_data_t voice[RTAC_MAX_ACTIVE_VOICE_COMBOS]; }; struct rtac_afe_user_data { uint32_t buf_size; uint32_t cmd_size; uint32_t port_id; union { struct afe_rtac_user_data_set_v2 v2_set; struct afe_rtac_user_data_set_v3 v3_set; struct afe_rtac_user_data_get_v2 v2_get; struct afe_rtac_user_data_get_v3 v3_get; }; } __packed; static struct rtac_voice rtac_voice_data; static u32 *rtac_voice_buffer; static u32 voice_session_id[RTAC_MAX_ACTIVE_VOICE_COMBOS]; struct mutex rtac_adm_mutex; struct mutex rtac_adm_apr_mutex; struct mutex rtac_asm_apr_mutex; struct mutex rtac_voice_mutex; struct mutex rtac_voice_apr_mutex; struct mutex rtac_afe_apr_mutex; int rtac_clear_mapping(uint32_t cal_type) { int result = 0; pr_debug("%s\n", __func__); if (cal_type >= MAX_RTAC_BLOCKS) { pr_debug("%s: invalid cal type %d\n", __func__, cal_type); result = -EINVAL; goto done; } rtac_cal[cal_type].map_data.map_handle = 0; done: return result; } int rtac_allocate_cal_buffer(uint32_t cal_type) { int result = 0; size_t len; pr_debug("%s\n", __func__); if (cal_type >= MAX_RTAC_BLOCKS) { pr_err("%s: cal_type %d is invalid!\n", __func__, cal_type); result = -EINVAL; goto done; } if (rtac_cal[cal_type].cal_data.paddr != 0) { pr_err("%s: memory already allocated! cal_type %d, paddr 0x%pK\n", __func__, cal_type, &rtac_cal[cal_type].cal_data.paddr); result = -EPERM; goto done; } result = msm_audio_ion_alloc(&rtac_cal[cal_type].map_data.dma_buf, rtac_cal[cal_type].map_data.map_size, &rtac_cal[cal_type].cal_data.paddr, &len, &rtac_cal[cal_type].cal_data.kvaddr); if (result < 0) { pr_err("%s: ION create client for RTAC failed\n", __func__); goto done; } pr_debug("%s: cal_type %d, paddr 0x%pK, kvaddr 0x%pK, map_size 0x%x\n", __func__, cal_type, &rtac_cal[cal_type].cal_data.paddr, rtac_cal[cal_type].cal_data.kvaddr, rtac_cal[cal_type].map_data.map_size); done: return result; } int rtac_free_cal_buffer(uint32_t cal_type) { int result = 0; pr_debug("%s\n", __func__); if (cal_type >= MAX_RTAC_BLOCKS) { pr_err("%s: cal_type %d is invalid!\n", __func__, cal_type); result = -EINVAL; goto done; } if (rtac_cal[cal_type].map_data.dma_buf == NULL) { pr_debug("%s: cal_type %d not allocated!\n", __func__, cal_type); goto done; } result = msm_audio_ion_free(rtac_cal[cal_type].map_data.dma_buf); if (result < 0) { pr_err("%s: ION free for RTAC failed! cal_type %d, paddr 0x%pK\n", __func__, cal_type, &rtac_cal[cal_type].cal_data.paddr); goto done; } rtac_cal[cal_type].map_data.map_handle = 0; rtac_cal[cal_type].map_data.dma_buf = NULL; rtac_cal[cal_type].cal_data.size = 0; rtac_cal[cal_type].cal_data.kvaddr = 0; rtac_cal[cal_type].cal_data.paddr = 0; done: return result; } int rtac_map_cal_buffer(uint32_t cal_type) { int result = 0; pr_debug("%s\n", __func__); if (cal_type >= MAX_RTAC_BLOCKS) { pr_err("%s: cal_type %d is invalid!\n", __func__, cal_type); result = -EINVAL; goto done; } if (rtac_cal[cal_type].map_data.map_handle != 0) { pr_err("%s: already mapped cal_type %d\n", __func__, cal_type); result = -EPERM; goto done; } if (rtac_cal[cal_type].cal_data.paddr == 0) { pr_err("%s: physical address is NULL cal_type %d\n", __func__, cal_type); result = -EPERM; goto done; } switch (cal_type) { case ADM_RTAC_CAL: result = adm_map_rtac_block(&rtac_cal[cal_type]); break; case ASM_RTAC_CAL: result = q6asm_map_rtac_block(&rtac_cal[cal_type]); break; case VOICE_RTAC_CAL: result = voc_map_rtac_block(&rtac_cal[cal_type]); break; case AFE_RTAC_CAL: result = afe_map_rtac_block(&rtac_cal[cal_type]); break; } if (result < 0) { pr_err("%s: map RTAC failed! cal_type %d\n", __func__, cal_type); goto done; } done: return result; } int rtac_unmap_cal_buffer(uint32_t cal_type) { int result = 0; pr_debug("%s\n", __func__); if (cal_type >= MAX_RTAC_BLOCKS) { pr_err("%s: cal_type %d is invalid!\n", __func__, cal_type); result = -EINVAL; goto done; } if (rtac_cal[cal_type].map_data.map_handle == 0) { pr_debug("%s: nothing to unmap cal_type %d\n", __func__, cal_type); goto done; } switch (cal_type) { case ADM_RTAC_CAL: result = adm_unmap_rtac_block( &rtac_cal[cal_type].map_data.map_handle); break; case ASM_RTAC_CAL: result = q6asm_unmap_rtac_block( &rtac_cal[cal_type].map_data.map_handle); break; case VOICE_RTAC_CAL: result = voc_unmap_rtac_block( &rtac_cal[cal_type].map_data.map_handle); break; case AFE_RTAC_CAL: result = afe_unmap_rtac_block( &rtac_cal[cal_type].map_data.map_handle); break; } if (result < 0) { pr_err("%s: unmap RTAC failed! cal_type %d\n", __func__, cal_type); goto done; } done: return result; } static int rtac_open(struct inode *inode, struct file *f) { int result = 0; pr_debug("%s\n", __func__); atomic_inc(&rtac_common.usage_count); return result; } static int rtac_release(struct inode *inode, struct file *f) { int result = 0; int result2 = 0; int i; pr_debug("%s\n", __func__); atomic_dec(&rtac_common.usage_count); pr_debug("%s: ref count %d!\n", __func__, atomic_read(&rtac_common.usage_count)); if (atomic_read(&rtac_common.usage_count) > 0) goto done; for (i = 0; i < MAX_RTAC_BLOCKS; i++) { result2 = rtac_unmap_cal_buffer(i); if (result2 < 0) { pr_err("%s: unmap buffer failed! error %d!\n", __func__, result2); result = result2; } result2 = rtac_free_cal_buffer(i); if (result2 < 0) { pr_err("%s: free buffer failed! error %d!\n", __func__, result2); result = result2; } } done: return result; } /* ADM Info */ void add_popp(u32 dev_idx, u32 port_id, u32 popp_id) { u32 i = 0; for (; i < rtac_adm_data.device[dev_idx].num_of_popp; i++) if (rtac_adm_data.device[dev_idx].popp[i].popp == popp_id) goto done; if (rtac_adm_data.device[dev_idx].num_of_popp == RTAC_MAX_ACTIVE_POPP) { pr_err("%s, Max POPP!\n", __func__); goto done; } rtac_adm_data.device[dev_idx].popp[ rtac_adm_data.device[dev_idx].num_of_popp].popp = popp_id; rtac_adm_data.device[dev_idx].popp[ rtac_adm_data.device[dev_idx].num_of_popp].popp_topology = q6asm_get_asm_topology(popp_id); rtac_adm_data.device[dev_idx].popp[ rtac_adm_data.device[dev_idx].num_of_popp++].app_type = q6asm_get_asm_app_type(popp_id); pr_debug("%s: popp_id = %d, popp topology = 0x%x, popp app type = 0x%x\n", __func__, rtac_adm_data.device[dev_idx].popp[ rtac_adm_data.device[dev_idx].num_of_popp - 1].popp, rtac_adm_data.device[dev_idx].popp[ rtac_adm_data.device[dev_idx].num_of_popp - 1].popp_topology, rtac_adm_data.device[dev_idx].popp[ rtac_adm_data.device[dev_idx].num_of_popp - 1].app_type); done: return; } void rtac_update_afe_topology(u32 port_id) { u32 i = 0; mutex_lock(&rtac_adm_mutex); for (i = 0; i < rtac_adm_data.num_of_dev; i++) { if (rtac_adm_data.device[i].afe_port == port_id) { rtac_adm_data.device[i].afe_topology = afe_get_topology(port_id); pr_debug("%s: port_id = 0x%x topology_id = 0x%x copp_id = %d\n", __func__, port_id, rtac_adm_data.device[i].afe_topology, rtac_adm_data.device[i].copp); } } mutex_unlock(&rtac_adm_mutex); } void rtac_add_adm_device(u32 port_id, u32 copp_id, u32 path_id, u32 popp_id, u32 app_type, u32 acdb_id) { u32 i = 0; pr_debug("%s: num rtac devices %d port_id = %d, copp_id = %d\n", __func__, rtac_adm_data.num_of_dev, port_id, copp_id); mutex_lock(&rtac_adm_mutex); if (rtac_adm_data.num_of_dev == RTAC_MAX_ACTIVE_DEVICES) { pr_err("%s, Can't add anymore RTAC devices!\n", __func__); goto done; } /* Check if device already added */ if (rtac_adm_data.num_of_dev != 0) { for (; i < rtac_adm_data.num_of_dev; i++) { if (rtac_adm_data.device[i].afe_port == port_id && rtac_adm_data.device[i].copp == copp_id) { add_popp(i, port_id, popp_id); goto done; } if (rtac_adm_data.device[i].num_of_popp == RTAC_MAX_ACTIVE_POPP) { pr_err("%s, Max POPP!\n", __func__); goto done; } } } /* Add device */ rtac_adm_data.num_of_dev++; rtac_adm_data.device[i].topology_id = adm_get_topology_for_port_from_copp_id(port_id, copp_id); rtac_adm_data.device[i].afe_topology = afe_get_topology(port_id); rtac_adm_data.device[i].afe_port = port_id; rtac_adm_data.device[i].copp = copp_id; rtac_adm_data.device[i].app_type = app_type; rtac_adm_data.device[i].acdb_dev_id = acdb_id; rtac_adm_data.device[i].popp[ rtac_adm_data.device[i].num_of_popp].popp = popp_id; rtac_adm_data.device[i].popp[ rtac_adm_data.device[i].num_of_popp].popp_topology = q6asm_get_asm_topology(popp_id); rtac_adm_data.device[i].popp[ rtac_adm_data.device[i].num_of_popp++].app_type = q6asm_get_asm_app_type(popp_id); pr_debug("%s: topology = 0x%x, afe_topology = 0x%x, port_id = %d, copp_id = %d, app id = 0x%x, acdb id = %d, popp_id = %d, popp topology = 0x%x, popp app type = 0x%x\n", __func__, rtac_adm_data.device[i].topology_id, rtac_adm_data.device[i].afe_topology, rtac_adm_data.device[i].afe_port, rtac_adm_data.device[i].copp, rtac_adm_data.device[i].app_type, rtac_adm_data.device[i].acdb_dev_id, rtac_adm_data.device[i].popp[ rtac_adm_data.device[i].num_of_popp - 1].popp, rtac_adm_data.device[i].popp[ rtac_adm_data.device[i].num_of_popp - 1].popp_topology, rtac_adm_data.device[i].popp[ rtac_adm_data.device[i].num_of_popp - 1].app_type); done: mutex_unlock(&rtac_adm_mutex); } static void shift_adm_devices(u32 dev_idx) { for (; dev_idx < rtac_adm_data.num_of_dev; dev_idx++) { memcpy(&rtac_adm_data.device[dev_idx], &rtac_adm_data.device[dev_idx + 1], sizeof(rtac_adm_data.device[dev_idx])); memset(&rtac_adm_data.device[dev_idx + 1], 0, sizeof(rtac_adm_data.device[dev_idx])); } } static void shift_popp(u32 copp_idx, u32 popp_idx) { for (; popp_idx < rtac_adm_data.device[copp_idx].num_of_popp; popp_idx++) { memcpy(&rtac_adm_data.device[copp_idx].popp[popp_idx].popp, &rtac_adm_data.device[copp_idx].popp[popp_idx + 1]. popp, sizeof(uint32_t)); memcpy(&rtac_adm_data.device[copp_idx].popp[popp_idx]. popp_topology, &rtac_adm_data.device[copp_idx].popp[popp_idx + 1]. popp_topology, sizeof(uint32_t)); memset(&rtac_adm_data.device[copp_idx].popp[popp_idx + 1]. popp, 0, sizeof(uint32_t)); memset(&rtac_adm_data.device[copp_idx].popp[popp_idx + 1]. popp_topology, 0, sizeof(uint32_t)); } } void rtac_remove_adm_device(u32 port_id, u32 copp_id) { s32 i; pr_debug("%s: num rtac devices %d port_id = %d, copp_id = %d\n", __func__, rtac_adm_data.num_of_dev, port_id, copp_id); mutex_lock(&rtac_adm_mutex); /* look for device */ for (i = 0; i < rtac_adm_data.num_of_dev; i++) { if (rtac_adm_data.device[i].afe_port == port_id && rtac_adm_data.device[i].copp == copp_id) { memset(&rtac_adm_data.device[i], 0, sizeof(rtac_adm_data.device[i])); rtac_adm_data.num_of_dev--; if (rtac_adm_data.num_of_dev >= 1) { shift_adm_devices(i); break; } } } mutex_unlock(&rtac_adm_mutex); } void rtac_remove_popp_from_adm_devices(u32 popp_id) { s32 i, j; pr_debug("%s: popp_id = %d\n", __func__, popp_id); mutex_lock(&rtac_adm_mutex); for (i = 0; i < rtac_adm_data.num_of_dev; i++) { for (j = 0; j < rtac_adm_data.device[i].num_of_popp; j++) { if (rtac_adm_data.device[i].popp[j].popp == popp_id) { rtac_adm_data.device[i].popp[j].popp = 0; rtac_adm_data.device[i].popp[j]. popp_topology = 0; rtac_adm_data.device[i].num_of_popp--; shift_popp(i, j); } } } mutex_unlock(&rtac_adm_mutex); } /* Voice Info */ static void set_rtac_voice_data(int idx, u32 cvs_handle, u32 cvp_handle, u32 rx_afe_port, u32 tx_afe_port, u32 rx_acdb_id, u32 tx_acdb_id, u32 session_id) { rtac_voice_data.voice[idx].tx_topology_id = voice_get_topology(CVP_VOC_TX_TOPOLOGY_CAL); rtac_voice_data.voice[idx].rx_topology_id = voice_get_topology(CVP_VOC_RX_TOPOLOGY_CAL); rtac_voice_data.voice[idx].tx_afe_topology = afe_get_topology(tx_afe_port); rtac_voice_data.voice[idx].rx_afe_topology = afe_get_topology(rx_afe_port); rtac_voice_data.voice[idx].tx_afe_port = tx_afe_port; rtac_voice_data.voice[idx].rx_afe_port = rx_afe_port; rtac_voice_data.voice[idx].tx_acdb_id = tx_acdb_id; rtac_voice_data.voice[idx].rx_acdb_id = rx_acdb_id; rtac_voice_data.voice[idx].cvs_handle = cvs_handle; rtac_voice_data.voice[idx].cvp_handle = cvp_handle; pr_debug("%s\n%s: %x\n%s: %d %s: %d\n%s: %d %s: %d\n %s: %d\n %s: %d\n%s: %d %s: %d\n%s", "<---- Voice Data Info ---->", "Session id", session_id, "cvs_handle", cvs_handle, "cvp_handle", cvp_handle, "rx_afe_topology", rtac_voice_data.voice[idx].rx_afe_topology, "tx_afe_topology", rtac_voice_data.voice[idx].tx_afe_topology, "rx_afe_port", rx_afe_port, "tx_afe_port", tx_afe_port, "rx_acdb_id", rx_acdb_id, "tx_acdb_id", tx_acdb_id, "<-----------End----------->"); /* Store session ID for voice RTAC */ voice_session_id[idx] = session_id; } void rtac_add_voice(u32 cvs_handle, u32 cvp_handle, u32 rx_afe_port, u32 tx_afe_port, u32 rx_acdb_id, u32 tx_acdb_id, u32 session_id) { u32 i = 0; pr_debug("%s\n", __func__); mutex_lock(&rtac_voice_mutex); if (rtac_voice_data.num_of_voice_combos == RTAC_MAX_ACTIVE_VOICE_COMBOS) { pr_err("%s, Can't add anymore RTAC devices!\n", __func__); goto done; } /* Check if device already added */ if (rtac_voice_data.num_of_voice_combos != 0) { for (; i < rtac_voice_data.num_of_voice_combos; i++) { if (rtac_voice_data.voice[i].cvs_handle == cvs_handle) { set_rtac_voice_data(i, cvs_handle, cvp_handle, rx_afe_port, tx_afe_port, rx_acdb_id, tx_acdb_id, session_id); goto done; } } } /* Add device */ rtac_voice_data.num_of_voice_combos++; set_rtac_voice_data(i, cvs_handle, cvp_handle, rx_afe_port, tx_afe_port, rx_acdb_id, tx_acdb_id, session_id); done: mutex_unlock(&rtac_voice_mutex); } static void shift_voice_devices(u32 idx) { for (; idx < rtac_voice_data.num_of_voice_combos - 1; idx++) { memcpy(&rtac_voice_data.voice[idx], &rtac_voice_data.voice[idx + 1], sizeof(rtac_voice_data.voice[idx])); voice_session_id[idx] = voice_session_id[idx + 1]; } } void rtac_remove_voice(u32 cvs_handle) { u32 i = 0; pr_debug("%s\n", __func__); mutex_lock(&rtac_voice_mutex); /* look for device */ for (i = 0; i < rtac_voice_data.num_of_voice_combos; i++) { if (rtac_voice_data.voice[i].cvs_handle == cvs_handle) { shift_voice_devices(i); rtac_voice_data.num_of_voice_combos--; memset(&rtac_voice_data.voice[ rtac_voice_data.num_of_voice_combos], 0, sizeof(rtac_voice_data.voice [rtac_voice_data.num_of_voice_combos])); voice_session_id[rtac_voice_data.num_of_voice_combos] = 0; break; } } mutex_unlock(&rtac_voice_mutex); } static u32 get_voice_session_id_cvs(u32 cvs_handle) { u32 i; for (i = 0; i < rtac_voice_data.num_of_voice_combos; i++) { if (rtac_voice_data.voice[i].cvs_handle == cvs_handle) return voice_session_id[i]; } pr_err("%s: No voice index for CVS handle %d found returning 0\n", __func__, cvs_handle); return 0; } static u32 get_voice_session_id_cvp(u32 cvp_handle) { u32 i; for (i = 0; i < rtac_voice_data.num_of_voice_combos; i++) { if (rtac_voice_data.voice[i].cvp_handle == cvp_handle) return voice_session_id[i]; } pr_err("%s: No voice index for CVP handle %d found returning 0\n", __func__, cvp_handle); return 0; } static int get_voice_index(u32 mode, u32 handle) { if (mode == RTAC_CVP) return voice_get_idx_for_session( get_voice_session_id_cvp(handle)); if (mode == RTAC_CVS) return voice_get_idx_for_session( get_voice_session_id_cvs(handle)); pr_err("%s: Invalid mode %d, returning 0\n", __func__, mode); return 0; } /* ADM APR */ void rtac_set_adm_handle(void *handle) { pr_debug("%s: handle = %pK\n", __func__, handle); mutex_lock(&rtac_adm_apr_mutex); rtac_adm_apr_data.apr_handle = handle; mutex_unlock(&rtac_adm_apr_mutex); } bool rtac_make_adm_callback(uint32_t *payload, u32 payload_size) { pr_debug("%s:cmd_state = %d\n", __func__, atomic_read(&rtac_adm_apr_data.cmd_state)); if (atomic_read(&rtac_adm_apr_data.cmd_state) != 1) return false; pr_debug("%s\n", __func__); if (payload_size == sizeof(uint32_t)) atomic_set(&rtac_common.apr_err_code, payload[0]); else if (payload_size == (2*sizeof(uint32_t))) atomic_set(&rtac_common.apr_err_code, payload[1]); atomic_set(&rtac_adm_apr_data.cmd_state, 0); wake_up(&rtac_adm_apr_data.cmd_wait); return true; } int send_adm_apr(void *buf, u32 opcode) { s32 result; u32 user_buf_size = 0; u32 bytes_returned = 0; u32 copp_id; u32 payload_size; u32 data_size = 0; int copp_idx; int port_idx; struct apr_hdr adm_params; pr_debug("%s\n", __func__); if (rtac_cal[ADM_RTAC_CAL].map_data.dma_buf == NULL) { result = rtac_allocate_cal_buffer(ADM_RTAC_CAL); if (result < 0) { pr_err("%s: allocate buffer failed!", __func__); goto done; } } if (rtac_cal[ADM_RTAC_CAL].map_data.map_handle == 0) { result = rtac_map_cal_buffer(ADM_RTAC_CAL); if (result < 0) { pr_err("%s: map buffer failed!", __func__); goto done; } } if (copy_from_user(&user_buf_size, (void *)buf, sizeof(user_buf_size))) { pr_err("%s: Copy from user failed! buf = 0x%pK\n", __func__, buf); goto done; } if (user_buf_size <= 0) { pr_err("%s: Invalid buffer size = %d\n", __func__, user_buf_size); goto done; } if (copy_from_user(&payload_size, buf + sizeof(u32), sizeof(u32))) { pr_err("%s: Could not copy payload size from user buffer\n", __func__); goto done; } if (copy_from_user(&copp_id, buf + 2 * sizeof(u32), sizeof(u32))) { pr_err("%s: Could not copy port id from user buffer\n", __func__); goto done; } if (adm_get_indexes_from_copp_id(copp_id, &copp_idx, &port_idx) != 0) { pr_err("%s: Copp Id-%d is not active\n", __func__, copp_id); goto done; } mutex_lock(&rtac_adm_apr_mutex); if (rtac_adm_apr_data.apr_handle == NULL) { pr_err("%s: APR not initialized\n", __func__); result = -EINVAL; goto err; } switch (opcode) { case ADM_CMD_SET_PP_PARAMS_V5: case ADM_CMD_SET_PP_PARAMS_V6: /* set payload size to in-band payload */ /* set data size to actual out of band payload size */ data_size = payload_size - 4 * sizeof(u32); if (data_size > rtac_cal[ADM_RTAC_CAL].map_data.map_size) { pr_err("%s: Invalid data size = %d\n", __func__, data_size); result = -EINVAL; goto err; } payload_size = 4 * sizeof(u32); /* Copy buffer to out-of-band payload */ if (copy_from_user((void *) rtac_cal[ADM_RTAC_CAL].cal_data.kvaddr, buf + 7 * sizeof(u32), data_size)) { pr_err("%s: Could not copy payload from user buffer\n", __func__); result = -EFAULT; goto err; } /* set payload size in packet */ rtac_adm_buffer[8] = data_size; break; case ADM_CMD_GET_PP_PARAMS_V5: case ADM_CMD_GET_PP_PARAMS_V6: if (payload_size > MAX_PAYLOAD_SIZE) { pr_err("%s: Invalid payload size = %d\n", __func__, payload_size); result = -EINVAL; goto err; } /* Copy buffer to in-band payload */ if (copy_from_user(rtac_adm_buffer + sizeof(adm_params)/sizeof(u32), buf + 3 * sizeof(u32), payload_size)) { pr_err("%s: Could not copy payload from user buffer\n", __func__); result = -EFAULT; goto err; } break; default: pr_err("%s: Invalid opcode %d\n", __func__, opcode); result = -EINVAL; goto err; } /* Pack header */ adm_params.hdr_field = APR_HDR_FIELD(APR_MSG_TYPE_SEQ_CMD, APR_HDR_LEN(20), APR_PKT_VER); adm_params.pkt_size = APR_PKT_SIZE(APR_HDR_SIZE, payload_size); adm_params.src_svc = APR_SVC_ADM; adm_params.src_domain = APR_DOMAIN_APPS; adm_params.src_port = copp_id; adm_params.dest_svc = APR_SVC_ADM; adm_params.dest_domain = APR_DOMAIN_ADSP; adm_params.dest_port = copp_id; adm_params.token = port_idx << 16 | copp_idx; adm_params.opcode = opcode; /* fill for out-of-band */ rtac_adm_buffer[5] = lower_32_bits(rtac_cal[ADM_RTAC_CAL].cal_data.paddr); rtac_adm_buffer[6] = msm_audio_populate_upper_32_bits( rtac_cal[ADM_RTAC_CAL].cal_data.paddr); rtac_adm_buffer[7] = rtac_cal[ADM_RTAC_CAL].map_data.map_handle; memcpy(rtac_adm_buffer, &adm_params, sizeof(adm_params)); atomic_set(&rtac_adm_apr_data.cmd_state, 1); pr_debug("%s: Sending RTAC command ioctl 0x%x, paddr 0x%pK\n", __func__, opcode, &rtac_cal[ADM_RTAC_CAL].cal_data.paddr); result = apr_send_pkt(rtac_adm_apr_data.apr_handle, (uint32_t *)rtac_adm_buffer); if (result < 0) { pr_err("%s: Set params failed copp = %d\n", __func__, copp_id); goto err; } /* Wait for the callback */ result = wait_event_timeout(rtac_adm_apr_data.cmd_wait, (atomic_read(&rtac_adm_apr_data.cmd_state) == 0), msecs_to_jiffies(TIMEOUT_MS)); if (!result) { pr_err("%s: Set params timed out copp = %d\n", __func__, copp_id); goto err; } if (atomic_read(&rtac_common.apr_err_code)) { pr_err("%s: DSP returned error code = [%s], opcode = 0x%x\n", __func__, adsp_err_get_err_str(atomic_read( &rtac_common.apr_err_code)), opcode); result = adsp_err_get_lnx_err_code( atomic_read( &rtac_common.apr_err_code)); goto err; } if (opcode == ADM_CMD_GET_PP_PARAMS_V5) { bytes_returned = ((u32 *)rtac_cal[ADM_RTAC_CAL].cal_data. kvaddr)[2] + 3 * sizeof(u32); } else if (opcode == ADM_CMD_GET_PP_PARAMS_V6) { bytes_returned = ((u32 *) rtac_cal[ADM_RTAC_CAL].cal_data.kvaddr)[3] + 4 * sizeof(u32); } else { bytes_returned = data_size; goto unlock; } if (bytes_returned > rtac_cal[ADM_RTAC_CAL].map_data.map_size) { pr_err("%s: Invalid data size = %d\n", __func__, bytes_returned); result = -EINVAL; goto err; } if (bytes_returned > user_buf_size) { pr_err("%s: User buf not big enough, size = 0x%x, returned size = 0x%x\n", __func__, user_buf_size, bytes_returned); result = -EINVAL; goto err; } if (copy_to_user((void __user *) buf, rtac_cal[ADM_RTAC_CAL].cal_data.kvaddr, bytes_returned)) { pr_err("%s: Could not copy buffer to user,size = %d\n", __func__, bytes_returned); result = -EFAULT; goto err; } unlock: mutex_unlock(&rtac_adm_apr_mutex); done: return bytes_returned; err: mutex_unlock(&rtac_adm_apr_mutex); return result; } /* ASM APR */ void rtac_set_asm_handle(u32 session_id, void *handle) { pr_debug("%s\n", __func__); mutex_lock(&rtac_asm_apr_mutex); rtac_asm_apr_data[session_id].apr_handle = handle; mutex_unlock(&rtac_asm_apr_mutex); } bool rtac_make_asm_callback(u32 session_id, uint32_t *payload, u32 payload_size) { if (atomic_read(&rtac_asm_apr_data[session_id].cmd_state) != 1) return false; pr_debug("%s\n", __func__); if (payload_size == sizeof(uint32_t)) atomic_set(&rtac_common.apr_err_code, payload[0]); else if (payload_size == (2*sizeof(uint32_t))) atomic_set(&rtac_common.apr_err_code, payload[1]); atomic_set(&rtac_asm_apr_data[session_id].cmd_state, 0); wake_up(&rtac_asm_apr_data[session_id].cmd_wait); return true; } int send_rtac_asm_apr(void *buf, u32 opcode) { s32 result; u32 user_buf_size = 0; u32 bytes_returned = 0; u32 session_id = 0; u32 payload_size; u32 data_size = 0; struct apr_hdr asm_params; pr_debug("%s\n", __func__); if (rtac_cal[ASM_RTAC_CAL].map_data.dma_buf == NULL) { result = rtac_allocate_cal_buffer(ASM_RTAC_CAL); if (result < 0) { pr_err("%s: allocate buffer failed!", __func__); goto done; } } if (rtac_cal[ASM_RTAC_CAL].map_data.map_handle == 0) { result = rtac_map_cal_buffer(ASM_RTAC_CAL); if (result < 0) { pr_err("%s: map buffer failed!", __func__); goto done; } } if (copy_from_user(&user_buf_size, (void *)buf, sizeof(user_buf_size))) { pr_err("%s: Copy from user failed! buf = 0x%pK\n", __func__, buf); goto done; } if (user_buf_size <= 0) { pr_err("%s: Invalid buffer size = %d\n", __func__, user_buf_size); goto done; } if (copy_from_user(&payload_size, buf + sizeof(u32), sizeof(u32))) { pr_err("%s: Could not copy payload size from user buffer\n", __func__); goto done; } if (copy_from_user(&session_id, buf + 2 * sizeof(u32), sizeof(u32))) { pr_err("%s: Could not copy session id from user buffer\n", __func__); goto done; } if (session_id >= (ASM_ACTIVE_STREAMS_ALLOWED + 1)) { pr_err("%s: Invalid Session = %d\n", __func__, session_id); goto done; } mutex_lock(&rtac_asm_apr_mutex); if (rtac_asm_apr_data[session_id].apr_handle == NULL) { pr_err("%s: APR not initialized\n", __func__); result = -EINVAL; goto err; } switch (opcode) { case ASM_STREAM_CMD_SET_PP_PARAMS_V2: case ASM_STREAM_CMD_SET_PP_PARAMS_V3: /* set payload size to in-band payload */ /* set data size to actual out of band payload size */ data_size = payload_size - 4 * sizeof(u32); if (data_size > rtac_cal[ASM_RTAC_CAL].map_data.map_size) { pr_err("%s: Invalid data size = %d\n", __func__, data_size); result = -EINVAL; goto err; } payload_size = 4 * sizeof(u32); /* Copy buffer to out-of-band payload */ if (copy_from_user((void *) rtac_cal[ASM_RTAC_CAL].cal_data.kvaddr, buf + 7 * sizeof(u32), data_size)) { pr_err("%s: Could not copy payload from user buffer\n", __func__); result = -EFAULT; goto err; } /* set payload size in packet */ rtac_asm_buffer[8] = data_size; break; case ASM_STREAM_CMD_GET_PP_PARAMS_V2: case ASM_STREAM_CMD_GET_PP_PARAMS_V3: if (payload_size > MAX_PAYLOAD_SIZE) { pr_err("%s: Invalid payload size = %d\n", __func__, payload_size); result = -EINVAL; goto err; } /* Copy buffer to in-band payload */ if (copy_from_user(rtac_asm_buffer + sizeof(asm_params)/sizeof(u32), buf + 3 * sizeof(u32), payload_size)) { pr_err("%s: Could not copy payload from user buffer\n", __func__); result = -EFAULT; goto err; } break; default: pr_err("%s: Invalid opcode %d\n", __func__, opcode); result = -EINVAL; goto err; } /* Pack header */ asm_params.hdr_field = APR_HDR_FIELD(APR_MSG_TYPE_SEQ_CMD, APR_HDR_LEN(20), APR_PKT_VER); asm_params.pkt_size = APR_PKT_SIZE(APR_HDR_SIZE, payload_size); asm_params.src_svc = q6asm_get_apr_service_id(session_id); asm_params.src_domain = APR_DOMAIN_APPS; asm_params.src_port = (session_id << 8) | 0x0001; asm_params.dest_svc = APR_SVC_ASM; asm_params.dest_domain = APR_DOMAIN_ADSP; asm_params.dest_port = (session_id << 8) | 0x0001; asm_params.token = session_id; asm_params.opcode = opcode; /* fill for out-of-band */ rtac_asm_buffer[5] = lower_32_bits(rtac_cal[ASM_RTAC_CAL].cal_data.paddr); rtac_asm_buffer[6] = msm_audio_populate_upper_32_bits( rtac_cal[ASM_RTAC_CAL].cal_data.paddr); rtac_asm_buffer[7] = rtac_cal[ASM_RTAC_CAL].map_data.map_handle; memcpy(rtac_asm_buffer, &asm_params, sizeof(asm_params)); atomic_set(&rtac_asm_apr_data[session_id].cmd_state, 1); pr_debug("%s: Sending RTAC command ioctl 0x%x, paddr 0x%pK\n", __func__, opcode, &rtac_cal[ASM_RTAC_CAL].cal_data.paddr); result = apr_send_pkt(rtac_asm_apr_data[session_id].apr_handle, (uint32_t *)rtac_asm_buffer); if (result < 0) { pr_err("%s: Set params failed session = %d\n", __func__, session_id); goto err; } /* Wait for the callback */ result = wait_event_timeout(rtac_asm_apr_data[session_id].cmd_wait, (atomic_read(&rtac_asm_apr_data[session_id].cmd_state) == 0), 5 * HZ); if (!result) { pr_err("%s: Set params timed out session = %d\n", __func__, session_id); goto err; } if (atomic_read(&rtac_common.apr_err_code)) { pr_err("%s: DSP returned error code = [%s], opcode = 0x%x\n", __func__, adsp_err_get_err_str(atomic_read( &rtac_common.apr_err_code)), opcode); result = adsp_err_get_lnx_err_code( atomic_read( &rtac_common.apr_err_code)); goto err; } if (opcode == ASM_STREAM_CMD_GET_PP_PARAMS_V2) { bytes_returned = ((u32 *)rtac_cal[ASM_RTAC_CAL].cal_data. kvaddr)[2] + 3 * sizeof(u32); } else if (opcode == ASM_STREAM_CMD_GET_PP_PARAMS_V3) { bytes_returned = ((u32 *) rtac_cal[ASM_RTAC_CAL].cal_data.kvaddr)[3] + 4 * sizeof(u32); } else { bytes_returned = data_size; goto unlock; } if (bytes_returned > rtac_cal[ASM_RTAC_CAL].map_data.map_size) { pr_err("%s: Invalid data size = %d\n", __func__, bytes_returned); result = -EINVAL; goto err; } if (bytes_returned > user_buf_size) { pr_err("%s: User buf not big enough, size = 0x%x, returned size = 0x%x\n", __func__, user_buf_size, bytes_returned); result = -EINVAL; goto err; } if (copy_to_user((void __user *) buf, rtac_cal[ASM_RTAC_CAL].cal_data.kvaddr, bytes_returned)) { pr_err("%s: Could not copy buffer to user,size = %d\n", __func__, bytes_returned); result = -EFAULT; goto err; } unlock: mutex_unlock(&rtac_asm_apr_mutex); done: return bytes_returned; err: mutex_unlock(&rtac_asm_apr_mutex); return result; } /* AFE APR */ void rtac_set_afe_handle(void *handle) { mutex_lock(&rtac_afe_apr_mutex); rtac_afe_apr_data.apr_handle = handle; mutex_unlock(&rtac_afe_apr_mutex); } bool rtac_make_afe_callback(uint32_t *payload, uint32_t payload_size) { pr_debug("%s:cmd_state = %d\n", __func__, atomic_read(&rtac_afe_apr_data.cmd_state)); if (atomic_read(&rtac_afe_apr_data.cmd_state) != 1) return false; if (payload_size == sizeof(uint32_t)) atomic_set(&rtac_common.apr_err_code, payload[0]); else if (payload_size == (2*sizeof(uint32_t))) atomic_set(&rtac_common.apr_err_code, payload[1]); atomic_set(&rtac_afe_apr_data.cmd_state, 0); wake_up(&rtac_afe_apr_data.cmd_wait); return true; } static int fill_afe_apr_hdr(struct apr_hdr *apr_hdr, uint32_t port, uint32_t opcode, uint32_t apr_msg_size) { if (apr_hdr == NULL) { pr_err("%s: invalid APR pointer", __func__); return -EINVAL; } apr_hdr->hdr_field = APR_HDR_FIELD(APR_MSG_TYPE_SEQ_CMD, APR_HDR_LEN(APR_HDR_SIZE), APR_PKT_VER); apr_hdr->pkt_size = apr_msg_size; apr_hdr->src_svc = APR_SVC_AFE; apr_hdr->src_domain = APR_DOMAIN_APPS; apr_hdr->src_port = 0; apr_hdr->dest_svc = APR_SVC_AFE; apr_hdr->dest_domain = APR_DOMAIN_ADSP; apr_hdr->dest_port = 0; apr_hdr->token = port; apr_hdr->opcode = opcode; return 0; } static int send_rtac_afe_apr(void __user *buf, uint32_t opcode) { int32_t result; uint32_t bytes_returned = 0; uint32_t payload_size = 0; uint32_t port_index = 0; uint32_t *afe_cmd = NULL; uint32_t apr_msg_size = 0; struct rtac_afe_user_data user_afe_buf; struct mem_mapping_hdr *mem_hdr = NULL; struct param_hdr_v1 *get_resp_v2; struct param_hdr_v3 *get_resp_v3; pr_debug("%s\n", __func__); if (rtac_cal[AFE_RTAC_CAL].map_data.dma_buf == NULL) { result = rtac_allocate_cal_buffer(AFE_RTAC_CAL); if (result < 0) { pr_err("%s: allocate buffer failed! ret = %d\n", __func__, result); goto done; } } if (rtac_cal[AFE_RTAC_CAL].map_data.map_handle == 0) { result = rtac_map_cal_buffer(AFE_RTAC_CAL); if (result < 0) { pr_err("%s: map buffer failed! ret = %d\n", __func__, result); goto done; } } if (copy_from_user(&user_afe_buf, (void *)buf, sizeof(struct rtac_afe_user_data))) { pr_err("%s: Copy from user failed! buf = 0x%pK\n", __func__, buf); goto done; } if (user_afe_buf.buf_size <= 0) { pr_err("%s: Invalid buffer size = %d\n", __func__, user_afe_buf.buf_size); goto done; } port_index = q6audio_get_port_index(user_afe_buf.port_id); if (port_index >= AFE_MAX_PORTS) { pr_err("%s: Invalid AFE port = 0x%x\n", __func__, user_afe_buf.port_id); goto done; } mutex_lock(&rtac_afe_apr_mutex); if (rtac_afe_apr_data.apr_handle == NULL) { pr_err("%s: APR not initialized\n", __func__); result = -EINVAL; goto err; } afe_cmd = (u32 *) rtac_afe_buffer + sizeof(struct apr_hdr) / sizeof(u32); switch (opcode) { case AFE_PORT_CMD_SET_PARAM_V2: apr_msg_size = sizeof(struct afe_port_cmd_set_param_v2); payload_size = user_afe_buf.v2_set.payload_size; if (payload_size > rtac_cal[AFE_RTAC_CAL].map_data.map_size) { pr_err("%s: Invalid payload size = %d\n", __func__, payload_size); result = -EINVAL; goto err; } /* Copy the command to the rtac buffer */ memcpy(afe_cmd, &user_afe_buf.v2_set, sizeof(user_afe_buf.v2_set)); /* Copy the param data to the out-of-band location */ if (copy_from_user(rtac_cal[AFE_RTAC_CAL].cal_data.kvaddr, (void __user *) buf + offsetof(struct rtac_afe_user_data, v2_set.param_hdr), payload_size)) { pr_err("%s: Could not copy payload from user buffer\n", __func__); result = -EFAULT; goto err; } break; case AFE_PORT_CMD_SET_PARAM_V3: apr_msg_size = sizeof(struct afe_port_cmd_set_param_v3); payload_size = user_afe_buf.v3_set.payload_size; if (payload_size > rtac_cal[AFE_RTAC_CAL].map_data.map_size) { pr_err("%s: Invalid payload size = %d\n", __func__, payload_size); result = -EINVAL; goto err; } /* Copy the command to the rtac buffer */ memcpy(afe_cmd, &user_afe_buf.v3_set, sizeof(user_afe_buf.v3_set)); /* Copy the param data to the out-of-band location */ if (copy_from_user(rtac_cal[AFE_RTAC_CAL].cal_data.kvaddr, (void __user *) buf + offsetof(struct rtac_afe_user_data, v3_get.param_hdr), payload_size)) { pr_err("%s: Could not copy payload from user buffer\n", __func__); result = -EFAULT; goto err; } break; case AFE_PORT_CMD_GET_PARAM_V2: apr_msg_size = sizeof(struct afe_port_cmd_get_param_v2); if (user_afe_buf.cmd_size > MAX_PAYLOAD_SIZE) { pr_err("%s: Invalid payload size = %d\n", __func__, user_afe_buf.cmd_size); result = -EINVAL; goto err; } /* Copy the command and param data in-band */ if (copy_from_user(afe_cmd, (void __user *) buf + offsetof(struct rtac_afe_user_data, v2_get), user_afe_buf.cmd_size)) { pr_err("%s: Could not copy payload from user buffer\n", __func__); result = -EFAULT; goto err; } break; case AFE_PORT_CMD_GET_PARAM_V3: apr_msg_size = sizeof(struct afe_port_cmd_get_param_v3); if (user_afe_buf.cmd_size > MAX_PAYLOAD_SIZE) { pr_err("%s: Invalid payload size = %d\n", __func__, user_afe_buf.cmd_size); result = -EINVAL; goto err; } /* Copy the command and param data in-band */ if (copy_from_user(afe_cmd, (void __user *) buf + offsetof(struct rtac_afe_user_data, v3_get), user_afe_buf.cmd_size)) { pr_err("%s: Could not copy payload from user buffer\n", __func__); result = -EFAULT; goto err; } break; default: pr_err("%s: Invalid opcode %d\n", __func__, opcode); result = -EINVAL; goto err; } /* * The memory header is in the same location in all commands. Therefore, * it doesn't matter what command the buffer is cast into. */ mem_hdr = &((struct afe_port_cmd_set_param_v3 *) rtac_afe_buffer) ->mem_hdr; mem_hdr->data_payload_addr_lsw = lower_32_bits(rtac_cal[AFE_RTAC_CAL].cal_data.paddr); mem_hdr->data_payload_addr_msw = msm_audio_populate_upper_32_bits( rtac_cal[AFE_RTAC_CAL].cal_data.paddr); mem_hdr->mem_map_handle = rtac_cal[AFE_RTAC_CAL].map_data.map_handle; /* Fill the APR header at the end so we have the correct message size */ fill_afe_apr_hdr((struct apr_hdr *) rtac_afe_buffer, port_index, opcode, apr_msg_size); atomic_set(&rtac_afe_apr_data.cmd_state, 1); pr_debug("%s: Sending RTAC command ioctl 0x%x, paddr 0x%pK\n", __func__, opcode, &rtac_cal[AFE_RTAC_CAL].cal_data.paddr); result = apr_send_pkt(rtac_afe_apr_data.apr_handle, (uint32_t *)rtac_afe_buffer); if (result < 0) { pr_err("%s: Set params failed port = 0x%x, ret = %d\n", __func__, user_afe_buf.port_id, result); goto err; } /* Wait for the callback */ result = wait_event_timeout(rtac_afe_apr_data.cmd_wait, (atomic_read(&rtac_afe_apr_data.cmd_state) == 0), msecs_to_jiffies(TIMEOUT_MS)); if (!result) { pr_err("%s: Set params timed out port = 0x%x, ret = %d\n", __func__, user_afe_buf.port_id, result); goto err; } if (atomic_read(&rtac_common.apr_err_code)) { pr_err("%s: DSP returned error code = [%s], opcode = 0x%x\n", __func__, adsp_err_get_err_str(atomic_read( &rtac_common.apr_err_code)), opcode); result = adsp_err_get_lnx_err_code( atomic_read( &rtac_common.apr_err_code)); goto err; } if (opcode == AFE_PORT_CMD_GET_PARAM_V2) { get_resp_v2 = (struct param_hdr_v1 *) rtac_cal[AFE_RTAC_CAL] .cal_data.kvaddr; bytes_returned = get_resp_v2->param_size + sizeof(struct param_hdr_v1); } else if (opcode == AFE_PORT_CMD_GET_PARAM_V3) { get_resp_v3 = (struct param_hdr_v3 *) rtac_cal[AFE_RTAC_CAL] .cal_data.kvaddr; bytes_returned = get_resp_v3->param_size + sizeof(struct param_hdr_v3); } else { bytes_returned = payload_size; goto unlock; } if (bytes_returned > rtac_cal[AFE_RTAC_CAL].map_data.map_size) { pr_err("%s: Invalid data size = %d\n", __func__, bytes_returned); result = -EINVAL; goto err; } if (bytes_returned > user_afe_buf.buf_size) { pr_err("%s: user size = 0x%x, returned size = 0x%x\n", __func__, user_afe_buf.buf_size, bytes_returned); result = -EINVAL; goto err; } if (copy_to_user((void __user *) buf, rtac_cal[AFE_RTAC_CAL].cal_data.kvaddr, bytes_returned)) { pr_err("%s: Could not copy buffer to user,size = %d\n", __func__, bytes_returned); result = -EFAULT; goto err; } unlock: mutex_unlock(&rtac_afe_apr_mutex); done: return bytes_returned; err: mutex_unlock(&rtac_afe_apr_mutex); return result; } /* Voice APR */ void rtac_set_voice_handle(u32 mode, void *handle) { pr_debug("%s\n", __func__); mutex_lock(&rtac_voice_apr_mutex); rtac_voice_apr_data[mode].apr_handle = handle; mutex_unlock(&rtac_voice_apr_mutex); } bool rtac_make_voice_callback(u32 mode, uint32_t *payload, u32 payload_size) { if ((atomic_read(&rtac_voice_apr_data[mode].cmd_state) != 1) || (mode >= RTAC_VOICE_MODES)) return false; pr_debug("%s\n", __func__); if (payload_size == sizeof(uint32_t)) atomic_set(&rtac_common.apr_err_code, payload[0]); else if (payload_size == (2*sizeof(uint32_t))) atomic_set(&rtac_common.apr_err_code, payload[1]); atomic_set(&rtac_voice_apr_data[mode].cmd_state, 0); wake_up(&rtac_voice_apr_data[mode].cmd_wait); return true; } int send_voice_apr(u32 mode, void *buf, u32 opcode) { s32 result; u32 user_buf_size = 0; u32 bytes_returned = 0; u32 payload_size; u32 dest_port; u32 data_size = 0; struct apr_hdr voice_params; pr_debug("%s\n", __func__); if (rtac_cal[VOICE_RTAC_CAL].map_data.dma_buf == NULL) { result = rtac_allocate_cal_buffer(VOICE_RTAC_CAL); if (result < 0) { pr_err("%s: allocate buffer failed!", __func__); goto done; } } if (rtac_cal[VOICE_RTAC_CAL].map_data.map_handle == 0) { result = rtac_map_cal_buffer(VOICE_RTAC_CAL); if (result < 0) { pr_err("%s: map buffer failed!", __func__); goto done; } } if (copy_from_user(&user_buf_size, (void *)buf, sizeof(user_buf_size))) { pr_err("%s: Copy from user failed! buf = 0x%pK\n", __func__, buf); goto done; } if (user_buf_size <= 0) { pr_err("%s: Invalid buffer size = %d\n", __func__, user_buf_size); goto done; } if (copy_from_user(&payload_size, buf + sizeof(u32), sizeof(u32))) { pr_err("%s: Could not copy payload size from user buffer\n", __func__); goto done; } if (copy_from_user(&dest_port, buf + 2 * sizeof(u32), sizeof(u32))) { pr_err("%s: Could not copy port id from user buffer\n", __func__); goto done; } if ((mode != RTAC_CVP) && (mode != RTAC_CVS)) { pr_err("%s: Invalid Mode for APR, mode = %d\n", __func__, mode); goto done; } mutex_lock(&rtac_voice_apr_mutex); if (rtac_voice_apr_data[mode].apr_handle == NULL) { pr_err("%s: APR not initialized\n", __func__); result = -EINVAL; goto err; } switch (opcode) { case VSS_ICOMMON_CMD_SET_PARAM_V2: case VSS_ICOMMON_CMD_SET_PARAM_V3: /* set payload size to in-band payload */ /* set data size to actual out of band payload size */ data_size = payload_size - 4 * sizeof(u32); if (data_size > rtac_cal[VOICE_RTAC_CAL].map_data.map_size) { pr_err("%s: Invalid data size = %d\n", __func__, data_size); result = -EINVAL; goto err; } payload_size = 4 * sizeof(u32); /* Copy buffer to out-of-band payload */ if (copy_from_user((void *) rtac_cal[VOICE_RTAC_CAL].cal_data.kvaddr, buf + 7 * sizeof(u32), data_size)) { pr_err("%s: Could not copy payload from user buffer\n", __func__); result = -EFAULT; goto err; } /* set payload size in packet */ rtac_voice_buffer[8] = data_size; /* set token for set param case */ voice_params.token = VOC_RTAC_SET_PARAM_TOKEN; break; case VSS_ICOMMON_CMD_GET_PARAM_V2: case VSS_ICOMMON_CMD_GET_PARAM_V3: if (payload_size > MAX_PAYLOAD_SIZE) { pr_err("%s: Invalid payload size = %d\n", __func__, payload_size); result = -EINVAL; goto err; } /* Copy buffer to in-band payload */ if (copy_from_user(rtac_voice_buffer + sizeof(voice_params)/sizeof(u32), buf + 3 * sizeof(u32), payload_size)) { pr_err("%s: Could not copy payload from user buffer\n", __func__); result = -EFAULT; goto err; } /* set token for get param case */ voice_params.token = 0; break; default: pr_err("%s: Invalid opcode %d\n", __func__, opcode); result = -EINVAL; goto err; } /* Pack header */ voice_params.hdr_field = APR_HDR_FIELD(APR_MSG_TYPE_SEQ_CMD, APR_HDR_LEN(20), APR_PKT_VER); voice_params.pkt_size = APR_PKT_SIZE(APR_HDR_SIZE, payload_size); voice_params.src_svc = 0; voice_params.src_domain = APR_DOMAIN_APPS; voice_params.src_port = get_voice_index(mode, dest_port); voice_params.dest_svc = 0; voice_params.dest_domain = APR_DOMAIN_MODEM; voice_params.dest_port = (u16)dest_port; voice_params.opcode = opcode; /* fill for out-of-band */ rtac_voice_buffer[5] = rtac_cal[VOICE_RTAC_CAL].map_data.map_handle; rtac_voice_buffer[6] = lower_32_bits(rtac_cal[VOICE_RTAC_CAL].cal_data.paddr); rtac_voice_buffer[7] = msm_audio_populate_upper_32_bits( rtac_cal[VOICE_RTAC_CAL].cal_data.paddr); memcpy(rtac_voice_buffer, &voice_params, sizeof(voice_params)); atomic_set(&rtac_voice_apr_data[mode].cmd_state, 1); pr_debug("%s: Sending RTAC command ioctl 0x%x, paddr 0x%pK\n", __func__, opcode, &rtac_cal[VOICE_RTAC_CAL].cal_data.paddr); result = apr_send_pkt(rtac_voice_apr_data[mode].apr_handle, (uint32_t *)rtac_voice_buffer); if (result < 0) { pr_err("%s: apr_send_pkt failed opcode = %x\n", __func__, opcode); goto err; } /* Wait for the callback */ result = wait_event_timeout(rtac_voice_apr_data[mode].cmd_wait, (atomic_read(&rtac_voice_apr_data[mode].cmd_state) == 0), msecs_to_jiffies(TIMEOUT_MS)); if (!result) { pr_err("%s: apr_send_pkt timed out opcode = %x\n", __func__, opcode); goto err; } if (atomic_read(&rtac_common.apr_err_code)) { pr_err("%s: DSP returned error code = [%s], opcode = 0x%x\n", __func__, adsp_err_get_err_str(atomic_read( &rtac_common.apr_err_code)), opcode); result = adsp_err_get_lnx_err_code( atomic_read( &rtac_common.apr_err_code)); goto err; } if (opcode == VSS_ICOMMON_CMD_GET_PARAM_V2) { bytes_returned = ((u32 *)rtac_cal[VOICE_RTAC_CAL].cal_data. kvaddr)[2] + 3 * sizeof(u32); } else if (opcode == VSS_ICOMMON_CMD_GET_PARAM_V3) { bytes_returned = ((u32 *) rtac_cal[VOICE_RTAC_CAL].cal_data.kvaddr)[3] + 4 * sizeof(u32); } else { bytes_returned = data_size; goto unlock; } if (bytes_returned > rtac_cal[VOICE_RTAC_CAL].map_data.map_size) { pr_err("%s: Invalid data size = %d\n", __func__, bytes_returned); result = -EINVAL; goto err; } if (bytes_returned > user_buf_size) { pr_err("%s: User buf not big enough, size = 0x%x, returned size = 0x%x\n", __func__, user_buf_size, bytes_returned); result = -EINVAL; goto err; } if (copy_to_user((void __user *) buf, rtac_cal[VOICE_RTAC_CAL].cal_data.kvaddr, bytes_returned)) { pr_err("%s: Could not copy buffer to user, size = %d\n", __func__, bytes_returned); result = -EFAULT; goto err; } unlock: mutex_unlock(&rtac_voice_apr_mutex); done: return bytes_returned; err: mutex_unlock(&rtac_voice_apr_mutex); return result; } void get_rtac_adm_data(struct rtac_adm *adm_data) { mutex_lock(&rtac_adm_mutex); memcpy(adm_data, &rtac_adm_data, sizeof(struct rtac_adm)); mutex_unlock(&rtac_adm_mutex); } static long rtac_ioctl_shared(struct file *f, unsigned int cmd, void *arg) { u32 opcode; int result = 0; if (!arg) { pr_err("%s: No data sent to driver!\n", __func__); result = -EFAULT; goto done; } switch (cmd) { case AUDIO_GET_RTAC_ADM_INFO: { mutex_lock(&rtac_adm_mutex); if (copy_to_user((void *)arg, &rtac_adm_data, sizeof(rtac_adm_data))) { pr_err("%s: copy_to_user failed for AUDIO_GET_RTAC_ADM_INFO\n", __func__); mutex_unlock(&rtac_adm_mutex); return -EFAULT; } result = sizeof(rtac_adm_data); mutex_unlock(&rtac_adm_mutex); break; } case AUDIO_GET_RTAC_VOICE_INFO: { mutex_lock(&rtac_voice_mutex); if (copy_to_user((void *)arg, &rtac_voice_data, sizeof(rtac_voice_data))) { pr_err("%s: copy_to_user failed for AUDIO_GET_RTAC_VOICE_INFO\n", __func__); mutex_unlock(&rtac_voice_mutex); return -EFAULT; } result = sizeof(rtac_voice_data); mutex_unlock(&rtac_voice_mutex); break; } case AUDIO_GET_RTAC_ADM_CAL: opcode = q6common_is_instance_id_supported() ? ADM_CMD_GET_PP_PARAMS_V6 : ADM_CMD_GET_PP_PARAMS_V5; result = send_adm_apr((void *) arg, opcode); break; case AUDIO_SET_RTAC_ADM_CAL: opcode = q6common_is_instance_id_supported() ? ADM_CMD_SET_PP_PARAMS_V6 : ADM_CMD_SET_PP_PARAMS_V5; result = send_adm_apr((void *) arg, opcode); break; case AUDIO_GET_RTAC_ASM_CAL: opcode = q6common_is_instance_id_supported() ? ASM_STREAM_CMD_GET_PP_PARAMS_V3 : ASM_STREAM_CMD_GET_PP_PARAMS_V2; result = send_rtac_asm_apr((void *) arg, opcode); break; case AUDIO_SET_RTAC_ASM_CAL: opcode = q6common_is_instance_id_supported() ? ASM_STREAM_CMD_SET_PP_PARAMS_V3 : ASM_STREAM_CMD_SET_PP_PARAMS_V2; result = send_rtac_asm_apr((void *) arg, opcode); break; case AUDIO_GET_RTAC_CVS_CAL: opcode = q6common_is_instance_id_supported() ? VSS_ICOMMON_CMD_GET_PARAM_V3 : VSS_ICOMMON_CMD_GET_PARAM_V2; result = send_voice_apr(RTAC_CVS, (void *) arg, opcode); break; case AUDIO_SET_RTAC_CVS_CAL: opcode = q6common_is_instance_id_supported() ? VSS_ICOMMON_CMD_SET_PARAM_V3 : VSS_ICOMMON_CMD_SET_PARAM_V2; result = send_voice_apr(RTAC_CVS, (void *) arg, opcode); break; case AUDIO_GET_RTAC_CVP_CAL: opcode = q6common_is_instance_id_supported() ? VSS_ICOMMON_CMD_GET_PARAM_V3 : VSS_ICOMMON_CMD_GET_PARAM_V2; result = send_voice_apr(RTAC_CVP, (void *) arg, opcode); break; case AUDIO_SET_RTAC_CVP_CAL: opcode = q6common_is_instance_id_supported() ? VSS_ICOMMON_CMD_SET_PARAM_V3 : VSS_ICOMMON_CMD_SET_PARAM_V2; result = send_voice_apr(RTAC_CVP, (void *) arg, opcode); break; case AUDIO_GET_RTAC_AFE_CAL: opcode = q6common_is_instance_id_supported() ? AFE_PORT_CMD_GET_PARAM_V3 : AFE_PORT_CMD_GET_PARAM_V2; result = send_rtac_afe_apr((void __user *) arg, opcode); break; case AUDIO_SET_RTAC_AFE_CAL: opcode = q6common_is_instance_id_supported() ? AFE_PORT_CMD_SET_PARAM_V3 : AFE_PORT_CMD_SET_PARAM_V2; result = send_rtac_afe_apr((void __user *) arg, opcode); break; default: pr_err("%s: Invalid IOCTL, command = %d!\n", __func__, cmd); result = -EINVAL; } done: return result; } static long rtac_ioctl(struct file *f, unsigned int cmd, unsigned long arg) { int result = 0; if (!arg) { pr_err("%s: No data sent to driver!\n", __func__); result = -EFAULT; } else { result = rtac_ioctl_shared(f, cmd, (void __user *)arg); } return result; } #ifdef CONFIG_COMPAT #define AUDIO_GET_RTAC_ADM_INFO_32 _IOR(CAL_IOCTL_MAGIC, 207, compat_uptr_t) #define AUDIO_GET_RTAC_VOICE_INFO_32 _IOR(CAL_IOCTL_MAGIC, 208, compat_uptr_t) #define AUDIO_GET_RTAC_ADM_CAL_32 _IOWR(CAL_IOCTL_MAGIC, 209, compat_uptr_t) #define AUDIO_SET_RTAC_ADM_CAL_32 _IOWR(CAL_IOCTL_MAGIC, 210, compat_uptr_t) #define AUDIO_GET_RTAC_ASM_CAL_32 _IOWR(CAL_IOCTL_MAGIC, 211, compat_uptr_t) #define AUDIO_SET_RTAC_ASM_CAL_32 _IOWR(CAL_IOCTL_MAGIC, 212, compat_uptr_t) #define AUDIO_GET_RTAC_CVS_CAL_32 _IOWR(CAL_IOCTL_MAGIC, 213, compat_uptr_t) #define AUDIO_SET_RTAC_CVS_CAL_32 _IOWR(CAL_IOCTL_MAGIC, 214, compat_uptr_t) #define AUDIO_GET_RTAC_CVP_CAL_32 _IOWR(CAL_IOCTL_MAGIC, 215, compat_uptr_t) #define AUDIO_SET_RTAC_CVP_CAL_32 _IOWR(CAL_IOCTL_MAGIC, 216, compat_uptr_t) #define AUDIO_GET_RTAC_AFE_CAL_32 _IOWR(CAL_IOCTL_MAGIC, 217, compat_uptr_t) #define AUDIO_SET_RTAC_AFE_CAL_32 _IOWR(CAL_IOCTL_MAGIC, 218, compat_uptr_t) static long rtac_compat_ioctl(struct file *f, unsigned int cmd, unsigned long arg) { int result = 0; if (!arg) { pr_err("%s: No data sent to driver!\n", __func__); result = -EINVAL; goto done; } switch (cmd) { case AUDIO_GET_RTAC_ADM_INFO_32: cmd = AUDIO_GET_RTAC_ADM_INFO; goto process; case AUDIO_GET_RTAC_VOICE_INFO_32: cmd = AUDIO_GET_RTAC_VOICE_INFO; goto process; case AUDIO_GET_RTAC_AFE_CAL_32: cmd = AUDIO_GET_RTAC_AFE_CAL; goto process; case AUDIO_SET_RTAC_AFE_CAL_32: cmd = AUDIO_SET_RTAC_AFE_CAL; goto process; case AUDIO_GET_RTAC_ADM_CAL_32: cmd = AUDIO_GET_RTAC_ADM_CAL; goto process; case AUDIO_SET_RTAC_ADM_CAL_32: cmd = AUDIO_SET_RTAC_ADM_CAL; goto process; case AUDIO_GET_RTAC_ASM_CAL_32: cmd = AUDIO_GET_RTAC_ASM_CAL; goto process; case AUDIO_SET_RTAC_ASM_CAL_32: cmd = AUDIO_SET_RTAC_ASM_CAL; goto process; case AUDIO_GET_RTAC_CVS_CAL_32: cmd = AUDIO_GET_RTAC_CVS_CAL; goto process; case AUDIO_SET_RTAC_CVS_CAL_32: cmd = AUDIO_SET_RTAC_CVS_CAL; goto process; case AUDIO_GET_RTAC_CVP_CAL_32: cmd = AUDIO_GET_RTAC_CVP_CAL; goto process; case AUDIO_SET_RTAC_CVP_CAL_32: cmd = AUDIO_SET_RTAC_CVP_CAL; process: result = rtac_ioctl_shared(f, cmd, compat_ptr(arg)); break; default: result = -EINVAL; pr_err("%s: Invalid IOCTL, command = %d!\n", __func__, cmd); break; } done: return result; } #else #define rtac_compat_ioctl NULL #endif static const struct file_operations rtac_fops = { .owner = THIS_MODULE, .open = rtac_open, .release = rtac_release, .unlocked_ioctl = rtac_ioctl, .compat_ioctl = rtac_compat_ioctl, }; struct miscdevice rtac_misc = { .minor = MISC_DYNAMIC_MINOR, .name = "msm_rtac", .fops = &rtac_fops, }; int __init rtac_init(void) { int i = 0; /* Driver */ atomic_set(&rtac_common.usage_count, 0); atomic_set(&rtac_common.apr_err_code, 0); /* ADM */ memset(&rtac_adm_data, 0, sizeof(rtac_adm_data)); rtac_adm_apr_data.apr_handle = NULL; atomic_set(&rtac_adm_apr_data.cmd_state, 0); init_waitqueue_head(&rtac_adm_apr_data.cmd_wait); mutex_init(&rtac_adm_mutex); mutex_init(&rtac_adm_apr_mutex); rtac_adm_buffer = kzalloc( rtac_cal[ADM_RTAC_CAL].map_data.map_size, GFP_KERNEL); if (rtac_adm_buffer == NULL) goto nomem; /* ASM */ for (i = 0; i < ASM_ACTIVE_STREAMS_ALLOWED+1; i++) { rtac_asm_apr_data[i].apr_handle = NULL; atomic_set(&rtac_asm_apr_data[i].cmd_state, 0); init_waitqueue_head(&rtac_asm_apr_data[i].cmd_wait); } mutex_init(&rtac_asm_apr_mutex); rtac_asm_buffer = kzalloc( rtac_cal[ASM_RTAC_CAL].map_data.map_size, GFP_KERNEL); if (rtac_asm_buffer == NULL) { kzfree(rtac_adm_buffer); goto nomem; } /* AFE */ rtac_afe_apr_data.apr_handle = NULL; atomic_set(&rtac_afe_apr_data.cmd_state, 0); init_waitqueue_head(&rtac_afe_apr_data.cmd_wait); mutex_init(&rtac_afe_apr_mutex); rtac_afe_buffer = kzalloc( rtac_cal[AFE_RTAC_CAL].map_data.map_size, GFP_KERNEL); if (rtac_afe_buffer == NULL) { kzfree(rtac_adm_buffer); kzfree(rtac_asm_buffer); goto nomem; } /* Voice */ memset(&rtac_voice_data, 0, sizeof(rtac_voice_data)); for (i = 0; i < RTAC_VOICE_MODES; i++) { rtac_voice_apr_data[i].apr_handle = NULL; atomic_set(&rtac_voice_apr_data[i].cmd_state, 0); init_waitqueue_head(&rtac_voice_apr_data[i].cmd_wait); } mutex_init(&rtac_voice_mutex); mutex_init(&rtac_voice_apr_mutex); rtac_voice_buffer = kzalloc( rtac_cal[VOICE_RTAC_CAL].map_data.map_size, GFP_KERNEL); if (rtac_voice_buffer == NULL) { kzfree(rtac_adm_buffer); kzfree(rtac_asm_buffer); kzfree(rtac_afe_buffer); goto nomem; } if (misc_register(&rtac_misc) != 0) { kzfree(rtac_adm_buffer); kzfree(rtac_asm_buffer); kzfree(rtac_afe_buffer); kzfree(rtac_voice_buffer); goto nomem; } return 0; nomem: return -ENOMEM; } void rtac_exit(void) { misc_deregister(&rtac_misc); kzfree(rtac_adm_buffer); kzfree(rtac_asm_buffer); kzfree(rtac_afe_buffer); kzfree(rtac_voice_buffer); } MODULE_DESCRIPTION("SoC QDSP6v2 Real-Time Audio Calibration driver"); MODULE_LICENSE("GPL v2");