/* * Copyright (C) 2005-2006 Atmel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include "clock.h" #include "pio.h" #include "sm.h" #define PBMEM(base) \ { \ .start = base, \ .end = base + 0x3ff, \ .flags = IORESOURCE_MEM, \ } #define IRQ(num) \ { \ .start = num, \ .end = num, \ .flags = IORESOURCE_IRQ, \ } #define NAMED_IRQ(num, _name) \ { \ .start = num, \ .end = num, \ .name = _name, \ .flags = IORESOURCE_IRQ, \ } #define DEFINE_DEV(_name, _id) \ static struct platform_device _name##_id##_device = { \ .name = #_name, \ .id = _id, \ .resource = _name##_id##_resource, \ .num_resources = ARRAY_SIZE(_name##_id##_resource), \ } #define DEFINE_DEV_DATA(_name, _id) \ static struct platform_device _name##_id##_device = { \ .name = #_name, \ .id = _id, \ .dev = { \ .platform_data = &_name##_id##_data, \ }, \ .resource = _name##_id##_resource, \ .num_resources = ARRAY_SIZE(_name##_id##_resource), \ } #define select_peripheral(pin, periph, flags) \ at32_select_periph(GPIO_PIN_##pin, GPIO_##periph, flags) #define DEV_CLK(_name, devname, bus, _index) \ static struct clk devname##_##_name = { \ .name = #_name, \ .dev = &devname##_device.dev, \ .parent = &bus##_clk, \ .mode = bus##_clk_mode, \ .get_rate = bus##_clk_get_rate, \ .index = _index, \ } unsigned long at32ap7000_osc_rates[3] = { [0] = 32768, /* FIXME: these are ATSTK1002-specific */ [1] = 20000000, [2] = 12000000, }; static unsigned long osc_get_rate(struct clk *clk) { return at32ap7000_osc_rates[clk->index]; } static unsigned long pll_get_rate(struct clk *clk, unsigned long control) { unsigned long div, mul, rate; if (!(control & SM_BIT(PLLEN))) return 0; div = SM_BFEXT(PLLDIV, control) + 1; mul = SM_BFEXT(PLLMUL, control) + 1; rate = clk->parent->get_rate(clk->parent); rate = (rate + div / 2) / div; rate *= mul; return rate; } static unsigned long pll0_get_rate(struct clk *clk) { u32 control; control = sm_readl(&system_manager, PM_PLL0); return pll_get_rate(clk, control); } static unsigned long pll1_get_rate(struct clk *clk) { u32 control; control = sm_readl(&system_manager, PM_PLL1); return pll_get_rate(clk, control); } /* * The AT32AP7000 has five primary clock sources: One 32kHz * oscillator, two crystal oscillators and two PLLs. */ static struct clk osc32k = { .name = "osc32k", .get_rate = osc_get_rate, .users = 1, .index = 0, }; static struct clk osc0 = { .name = "osc0", .get_rate = osc_get_rate, .users = 1, .index = 1, }; static struct clk osc1 = { .name = "osc1", .get_rate = osc_get_rate, .index = 2, }; static struct clk pll0 = { .name = "pll0", .get_rate = pll0_get_rate, .parent = &osc0, }; static struct clk pll1 = { .name = "pll1", .get_rate = pll1_get_rate, .parent = &osc0, }; /* * The main clock can be either osc0 or pll0. The boot loader may * have chosen one for us, so we don't really know which one until we * have a look at the SM. */ static struct clk *main_clock; /* * Synchronous clocks are generated from the main clock. The clocks * must satisfy the constraint * fCPU >= fHSB >= fPB * i.e. each clock must not be faster than its parent. */ static unsigned long bus_clk_get_rate(struct clk *clk, unsigned int shift) { return main_clock->get_rate(main_clock) >> shift; }; static void cpu_clk_mode(struct clk *clk, int enabled) { struct at32_sm *sm = &system_manager; unsigned long flags; u32 mask; spin_lock_irqsave(&sm->lock, flags); mask = sm_readl(sm, PM_CPU_MASK); if (enabled) mask |= 1 << clk->index; else mask &= ~(1 << clk->index); sm_writel(sm, PM_CPU_MASK, mask); spin_unlock_irqrestore(&sm->lock, flags); } static unsigned long cpu_clk_get_rate(struct clk *clk) { unsigned long cksel, shift = 0; cksel = sm_readl(&system_manager, PM_CKSEL); if (cksel & SM_BIT(CPUDIV)) shift = SM_BFEXT(CPUSEL, cksel) + 1; return bus_clk_get_rate(clk, shift); } static void hsb_clk_mode(struct clk *clk, int enabled) { struct at32_sm *sm = &system_manager; unsigned long flags; u32 mask; spin_lock_irqsave(&sm->lock, flags); mask = sm_readl(sm, PM_HSB_MASK); if (enabled) mask |= 1 << clk->index; else mask &= ~(1 << clk->index); sm_writel(sm, PM_HSB_MASK, mask); spin_unlock_irqrestore(&sm->lock, flags); } static unsigned long hsb_clk_get_rate(struct clk *clk) { unsigned long cksel, shift = 0; cksel = sm_readl(&system_manager, PM_CKSEL); if (cksel & SM_BIT(HSBDIV)) shift = SM_BFEXT(HSBSEL, cksel) + 1; return bus_clk_get_rate(clk, shift); } static void pba_clk_mode(struct clk *clk, int enabled) { struct at32_sm *sm = &system_manager; unsigned long flags; u32 mask; spin_lock_irqsave(&sm->lock, flags); mask = sm_readl(sm, PM_PBA_MASK); if (enabled) mask |= 1 << clk->index; else mask &= ~(1 << clk->index); sm_writel(sm, PM_PBA_MASK, mask); spin_unlock_irqrestore(&sm->lock, flags); } static unsigned long pba_clk_get_rate(struct clk *clk) { unsigned long cksel, shift = 0; cksel = sm_readl(&system_manager, PM_CKSEL); if (cksel & SM_BIT(PBADIV)) shift = SM_BFEXT(PBASEL, cksel) + 1; return bus_clk_get_rate(clk, shift); } static void pbb_clk_mode(struct clk *clk, int enabled) { struct at32_sm *sm = &system_manager; unsigned long flags; u32 mask; spin_lock_irqsave(&sm->lock, flags); mask = sm_readl(sm, PM_PBB_MASK); if (enabled) mask |= 1 << clk->index; else mask &= ~(1 << clk->index); sm_writel(sm, PM_PBB_MASK, mask); spin_unlock_irqrestore(&sm->lock, flags); } static unsigned long pbb_clk_get_rate(struct clk *clk) { unsigned long cksel, shift = 0; cksel = sm_readl(&system_manager, PM_CKSEL); if (cksel & SM_BIT(PBBDIV)) shift = SM_BFEXT(PBBSEL, cksel) + 1; return bus_clk_get_rate(clk, shift); } static struct clk cpu_clk = { .name = "cpu", .get_rate = cpu_clk_get_rate, .users = 1, }; static struct clk hsb_clk = { .name = "hsb", .parent = &cpu_clk, .get_rate = hsb_clk_get_rate, }; static struct clk pba_clk = { .name = "pba", .parent = &hsb_clk, .mode = hsb_clk_mode, .get_rate = pba_clk_get_rate, .index = 1, }; static struct clk pbb_clk = { .name = "pbb", .parent = &hsb_clk, .mode = hsb_clk_mode, .get_rate = pbb_clk_get_rate, .users = 1, .index = 2, }; /* -------------------------------------------------------------------- * Generic Clock operations * -------------------------------------------------------------------- */ static void genclk_mode(struct clk *clk, int enabled) { u32 control; BUG_ON(clk->index > 7); control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index); if (enabled) control |= SM_BIT(CEN); else control &= ~SM_BIT(CEN); sm_writel(&system_manager, PM_GCCTRL + 4 * clk->index, control); } static unsigned long genclk_get_rate(struct clk *clk) { u32 control; unsigned long div = 1; BUG_ON(clk->index > 7); if (!clk->parent) return 0; control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index); if (control & SM_BIT(DIVEN)) div = 2 * (SM_BFEXT(DIV, control) + 1); return clk->parent->get_rate(clk->parent) / div; } static long genclk_set_rate(struct clk *clk, unsigned long rate, int apply) { u32 control; unsigned long parent_rate, actual_rate, div; BUG_ON(clk->index > 7); if (!clk->parent) return 0; parent_rate = clk->parent->get_rate(clk->parent); control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index); if (rate > 3 * parent_rate / 4) { actual_rate = parent_rate; control &= ~SM_BIT(DIVEN); } else { div = (parent_rate + rate) / (2 * rate) - 1; control = SM_BFINS(DIV, div, control) | SM_BIT(DIVEN); actual_rate = parent_rate / (2 * (div + 1)); } printk("clk %s: new rate %lu (actual rate %lu)\n", clk->name, rate, actual_rate); if (apply) sm_writel(&system_manager, PM_GCCTRL + 4 * clk->index, control); return actual_rate; } int genclk_set_parent(struct clk *clk, struct clk *parent) { u32 control; BUG_ON(clk->index > 7); printk("clk %s: new parent %s (was %s)\n", clk->name, parent->name, clk->parent ? clk->parent->name : "(null)"); control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index); if (parent == &osc1 || parent == &pll1) control |= SM_BIT(OSCSEL); else if (parent == &osc0 || parent == &pll0) control &= ~SM_BIT(OSCSEL); else return -EINVAL; if (parent == &pll0 || parent == &pll1) control |= SM_BIT(PLLSEL); else control &= ~SM_BIT(PLLSEL); sm_writel(&system_manager, PM_GCCTRL + 4 * clk->index, control); clk->parent = parent; return 0; } /* -------------------------------------------------------------------- * System peripherals * -------------------------------------------------------------------- */ static struct resource sm_resource[] = { PBMEM(0xfff00000), NAMED_IRQ(19, "eim"), NAMED_IRQ(20, "pm"), NAMED_IRQ(21, "rtc"), }; struct platform_device at32_sm_device = { .name = "sm", .id = 0, .resource = sm_resource, .num_resources = ARRAY_SIZE(sm_resource), }; DEV_CLK(pclk, at32_sm, pbb, 0); static struct resource intc0_resource[] = { PBMEM(0xfff00400), }; struct platform_device at32_intc0_device = { .name = "intc", .id = 0, .resource = intc0_resource, .num_resources = ARRAY_SIZE(intc0_resource), }; DEV_CLK(pclk, at32_intc0, pbb, 1); static struct clk ebi_clk = { .name = "ebi", .parent = &hsb_clk, .mode = hsb_clk_mode, .get_rate = hsb_clk_get_rate, .users = 1, }; static struct clk hramc_clk = { .name = "hramc", .parent = &hsb_clk, .mode = hsb_clk_mode, .get_rate = hsb_clk_get_rate, .users = 1, }; static struct resource smc0_resource[] = { PBMEM(0xfff03400), }; DEFINE_DEV(smc, 0); DEV_CLK(pclk, smc0, pbb, 13); DEV_CLK(mck, smc0, hsb, 0); static struct platform_device pdc_device = { .name = "pdc", .id = 0, }; DEV_CLK(hclk, pdc, hsb, 4); DEV_CLK(pclk, pdc, pba, 16); static struct clk pico_clk = { .name = "pico", .parent = &cpu_clk, .mode = cpu_clk_mode, .get_rate = cpu_clk_get_rate, .users = 1, }; /* -------------------------------------------------------------------- * PIO * -------------------------------------------------------------------- */ static struct resource pio0_resource[] = { PBMEM(0xffe02800), IRQ(13), }; DEFINE_DEV(pio, 0); DEV_CLK(mck, pio0, pba, 10); static struct resource pio1_resource[] = { PBMEM(0xffe02c00), IRQ(14), }; DEFINE_DEV(pio, 1); DEV_CLK(mck, pio1, pba, 11); static struct resource pio2_resource[] = { PBMEM(0xffe03000), IRQ(15), }; DEFINE_DEV(pio, 2); DEV_CLK(mck, pio2, pba, 12); static struct resource pio3_resource[] = { PBMEM(0xffe03400), IRQ(16), }; DEFINE_DEV(pio, 3); DEV_CLK(mck, pio3, pba, 13); static struct resource pio4_resource[] = { PBMEM(0xffe03800), IRQ(17), }; DEFINE_DEV(pio, 4); DEV_CLK(mck, pio4, pba, 14); void __init at32_add_system_devices(void) { system_manager.eim_first_irq = EIM_IRQ_BASE; platform_device_register(&at32_sm_device); platform_device_register(&at32_intc0_device); platform_device_register(&smc0_device); platform_device_register(&pdc_device); platform_device_register(&pio0_device); platform_device_register(&pio1_device); platform_device_register(&pio2_device); platform_device_register(&pio3_device); platform_device_register(&pio4_device); } /* -------------------------------------------------------------------- * USART * -------------------------------------------------------------------- */ static struct atmel_uart_data atmel_usart0_data = { .use_dma_tx = 1, .use_dma_rx = 1, }; static struct resource atmel_usart0_resource[] = { PBMEM(0xffe00c00), IRQ(6), }; DEFINE_DEV_DATA(atmel_usart, 0); DEV_CLK(usart, atmel_usart0, pba, 4); static struct atmel_uart_data atmel_usart1_data = { .use_dma_tx = 1, .use_dma_rx = 1, }; static struct resource atmel_usart1_resource[] = { PBMEM(0xffe01000), IRQ(7), }; DEFINE_DEV_DATA(atmel_usart, 1); DEV_CLK(usart, atmel_usart1, pba, 4); static struct atmel_uart_data atmel_usart2_data = { .use_dma_tx = 1, .use_dma_rx = 1, }; static struct resource atmel_usart2_resource[] = { PBMEM(0xffe01400), IRQ(8), }; DEFINE_DEV_DATA(atmel_usart, 2); DEV_CLK(usart, atmel_usart2, pba, 5); static struct atmel_uart_data atmel_usart3_data = { .use_dma_tx = 1, .use_dma_rx = 1, }; static struct resource atmel_usart3_resource[] = { PBMEM(0xffe01800), IRQ(9), }; DEFINE_DEV_DATA(atmel_usart, 3); DEV_CLK(usart, atmel_usart3, pba, 6); static inline void configure_usart0_pins(void) { select_peripheral(PA(8), PERIPH_B, 0); /* RXD */ select_peripheral(PA(9), PERIPH_B, 0); /* TXD */ } static inline void configure_usart1_pins(void) { select_peripheral(PA(17), PERIPH_A, 0); /* RXD */ select_peripheral(PA(18), PERIPH_A, 0); /* TXD */ } static inline void configure_usart2_pins(void) { select_peripheral(PB(26), PERIPH_B, 0); /* RXD */ select_peripheral(PB(27), PERIPH_B, 0); /* TXD */ } static inline void configure_usart3_pins(void) { select_peripheral(PB(18), PERIPH_B, 0); /* RXD */ select_peripheral(PB(17), PERIPH_B, 0); /* TXD */ } static struct platform_device *__initdata at32_usarts[4]; void __init at32_map_usart(unsigned int hw_id, unsigned int line) { struct platform_device *pdev; switch (hw_id) { case 0: pdev = &atmel_usart0_device; configure_usart0_pins(); break; case 1: pdev = &atmel_usart1_device; configure_usart1_pins(); break; case 2: pdev = &atmel_usart2_device; configure_usart2_pins(); break; case 3: pdev = &atmel_usart3_device; configure_usart3_pins(); break; default: return; } if (PXSEG(pdev->resource[0].start) == P4SEG) { /* Addresses in the P4 segment are permanently mapped 1:1 */ struct atmel_uart_data *data = pdev->dev.platform_data; data->regs = (void __iomem *)pdev->resource[0].start; } pdev->id = line; at32_usarts[line] = pdev; } struct platform_device *__init at32_add_device_usart(unsigned int id) { platform_device_register(at32_usarts[id]); return at32_usarts[id]; } struct platform_device *atmel_default_console_device; void __init at32_setup_serial_console(unsigned int usart_id) { atmel_default_console_device = at32_usarts[usart_id]; } /* -------------------------------------------------------------------- * Ethernet * -------------------------------------------------------------------- */ static struct eth_platform_data macb0_data; static struct resource macb0_resource[] = { PBMEM(0xfff01800), IRQ(25), }; DEFINE_DEV_DATA(macb, 0); DEV_CLK(hclk, macb0, hsb, 8); DEV_CLK(pclk, macb0, pbb, 6); static struct eth_platform_data macb1_data; static struct resource macb1_resource[] = { PBMEM(0xfff01c00), IRQ(26), }; DEFINE_DEV_DATA(macb, 1); DEV_CLK(hclk, macb1, hsb, 9); DEV_CLK(pclk, macb1, pbb, 7); struct platform_device *__init at32_add_device_eth(unsigned int id, struct eth_platform_data *data) { struct platform_device *pdev; switch (id) { case 0: pdev = &macb0_device; select_peripheral(PC(3), PERIPH_A, 0); /* TXD0 */ select_peripheral(PC(4), PERIPH_A, 0); /* TXD1 */ select_peripheral(PC(7), PERIPH_A, 0); /* TXEN */ select_peripheral(PC(8), PERIPH_A, 0); /* TXCK */ select_peripheral(PC(9), PERIPH_A, 0); /* RXD0 */ select_peripheral(PC(10), PERIPH_A, 0); /* RXD1 */ select_peripheral(PC(13), PERIPH_A, 0); /* RXER */ select_peripheral(PC(15), PERIPH_A, 0); /* RXDV */ select_peripheral(PC(16), PERIPH_A, 0); /* MDC */ select_peripheral(PC(17), PERIPH_A, 0); /* MDIO */ if (!data->is_rmii) { select_peripheral(PC(0), PERIPH_A, 0); /* COL */ select_peripheral(PC(1), PERIPH_A, 0); /* CRS */ select_peripheral(PC(2), PERIPH_A, 0); /* TXER */ select_peripheral(PC(5), PERIPH_A, 0); /* TXD2 */ select_peripheral(PC(6), PERIPH_A, 0); /* TXD3 */ select_peripheral(PC(11), PERIPH_A, 0); /* RXD2 */ select_peripheral(PC(12), PERIPH_A, 0); /* RXD3 */ select_peripheral(PC(14), PERIPH_A, 0); /* RXCK */ select_peripheral(PC(18), PERIPH_A, 0); /* SPD */ } break; case 1: pdev = &macb1_device; select_peripheral(PD(13), PERIPH_B, 0); /* TXD0 */ select_peripheral(PD(14), PERIPH_B, 0); /* TXD1 */ select_peripheral(PD(11), PERIPH_B, 0); /* TXEN */ select_peripheral(PD(12), PERIPH_B, 0); /* TXCK */ select_peripheral(PD(10), PERIPH_B, 0); /* RXD0 */ select_peripheral(PD(6), PERIPH_B, 0); /* RXD1 */ select_peripheral(PD(5), PERIPH_B, 0); /* RXER */ select_peripheral(PD(4), PERIPH_B, 0); /* RXDV */ select_peripheral(PD(3), PERIPH_B, 0); /* MDC */ select_peripheral(PD(2), PERIPH_B, 0); /* MDIO */ if (!data->is_rmii) { select_peripheral(PC(19), PERIPH_B, 0); /* COL */ select_peripheral(PC(23), PERIPH_B, 0); /* CRS */ select_peripheral(PC(26), PERIPH_B, 0); /* TXER */ select_peripheral(PC(27), PERIPH_B, 0); /* TXD2 */ select_peripheral(PC(28), PERIPH_B, 0); /* TXD3 */ select_peripheral(PC(29), PERIPH_B, 0); /* RXD2 */ select_peripheral(PC(30), PERIPH_B, 0); /* RXD3 */ select_peripheral(PC(24), PERIPH_B, 0); /* RXCK */ select_peripheral(PD(15), PERIPH_B, 0); /* SPD */ } break; default: return NULL; } memcpy(pdev->dev.platform_data, data, sizeof(struct eth_platform_data)); platform_device_register(pdev); return pdev; } /* -------------------------------------------------------------------- * SPI * -------------------------------------------------------------------- */ static struct resource spi0_resource[] = { PBMEM(0xffe00000), IRQ(3), }; DEFINE_DEV(spi, 0); DEV_CLK(mck, spi0, pba, 0); struct platform_device *__init at32_add_device_spi(unsigned int id) { struct platform_device *pdev; switch (id) { case 0: pdev = &spi0_device; select_peripheral(PA(0), PERIPH_A, 0); /* MISO */ select_peripheral(PA(1), PERIPH_A, 0); /* MOSI */ select_peripheral(PA(2), PERIPH_A, 0); /* SCK */ select_peripheral(PA(3), PERIPH_A, 0); /* NPCS0 */ select_peripheral(PA(4), PERIPH_A, 0); /* NPCS1 */ select_peripheral(PA(5), PERIPH_A, 0); /* NPCS2 */ break; default: return NULL; } platform_device_register(pdev); return pdev; } /* -------------------------------------------------------------------- * LCDC * -------------------------------------------------------------------- */ static struct lcdc_platform_data lcdc0_data; static struct resource lcdc0_resource[] = { { .start = 0xff000000, .end = 0xff000fff, .flags = IORESOURCE_MEM, }, IRQ(1), }; DEFINE_DEV_DATA(lcdc, 0); DEV_CLK(hclk, lcdc0, hsb, 7); static struct clk lcdc0_pixclk = { .name = "pixclk", .dev = &lcdc0_device.dev, .mode = genclk_mode, .get_rate = genclk_get_rate, .set_rate = genclk_set_rate, .set_parent = genclk_set_parent, .index = 7, }; struct platform_device *__init at32_add_device_lcdc(unsigned int id, struct lcdc_platform_data *data) { struct platform_device *pdev; switch (id) { case 0: pdev = &lcdc0_device; select_peripheral(PC(19), PERIPH_A, 0); /* CC */ select_peripheral(PC(20), PERIPH_A, 0); /* HSYNC */ select_peripheral(PC(21), PERIPH_A, 0); /* PCLK */ select_peripheral(PC(22), PERIPH_A, 0); /* VSYNC */ select_peripheral(PC(23), PERIPH_A, 0); /* DVAL */ select_peripheral(PC(24), PERIPH_A, 0); /* MODE */ select_peripheral(PC(25), PERIPH_A, 0); /* PWR */ select_peripheral(PC(26), PERIPH_A, 0); /* DATA0 */ select_peripheral(PC(27), PERIPH_A, 0); /* DATA1 */ select_peripheral(PC(28), PERIPH_A, 0); /* DATA2 */ select_peripheral(PC(29), PERIPH_A, 0); /* DATA3 */ select_peripheral(PC(30), PERIPH_A, 0); /* DATA4 */ select_peripheral(PC(31), PERIPH_A, 0); /* DATA5 */ select_peripheral(PD(0), PERIPH_A, 0); /* DATA6 */ select_peripheral(PD(1), PERIPH_A, 0); /* DATA7 */ select_peripheral(PD(2), PERIPH_A, 0); /* DATA8 */ select_peripheral(PD(3), PERIPH_A, 0); /* DATA9 */ select_peripheral(PD(4), PERIPH_A, 0); /* DATA10 */ select_peripheral(PD(5), PERIPH_A, 0); /* DATA11 */ select_peripheral(PD(6), PERIPH_A, 0); /* DATA12 */ select_peripheral(PD(7), PERIPH_A, 0); /* DATA13 */ select_peripheral(PD(8), PERIPH_A, 0); /* DATA14 */ select_peripheral(PD(9), PERIPH_A, 0); /* DATA15 */ select_peripheral(PD(10), PERIPH_A, 0); /* DATA16 */ select_peripheral(PD(11), PERIPH_A, 0); /* DATA17 */ select_peripheral(PD(12), PERIPH_A, 0); /* DATA18 */ select_peripheral(PD(13), PERIPH_A, 0); /* DATA19 */ select_peripheral(PD(14), PERIPH_A, 0); /* DATA20 */ select_peripheral(PD(15), PERIPH_A, 0); /* DATA21 */ select_peripheral(PD(16), PERIPH_A, 0); /* DATA22 */ select_peripheral(PD(17), PERIPH_A, 0); /* DATA23 */ clk_set_parent(&lcdc0_pixclk, &pll0); clk_set_rate(&lcdc0_pixclk, clk_get_rate(&pll0)); break; default: return NULL; } memcpy(pdev->dev.platform_data, data, sizeof(struct lcdc_platform_data)); platform_device_register(pdev); return pdev; } struct clk *at32_clock_list[] = { &osc32k, &osc0, &osc1, &pll0, &pll1, &cpu_clk, &hsb_clk, &pba_clk, &pbb_clk, &at32_sm_pclk, &at32_intc0_pclk, &ebi_clk, &hramc_clk, &smc0_pclk, &smc0_mck, &pdc_hclk, &pdc_pclk, &pico_clk, &pio0_mck, &pio1_mck, &pio2_mck, &pio3_mck, &pio4_mck, &atmel_usart0_usart, &atmel_usart1_usart, &atmel_usart2_usart, &atmel_usart3_usart, &macb0_hclk, &macb0_pclk, &macb1_hclk, &macb1_pclk, &spi0_mck, &lcdc0_hclk, &lcdc0_pixclk, }; unsigned int at32_nr_clocks = ARRAY_SIZE(at32_clock_list); void __init at32_portmux_init(void) { at32_init_pio(&pio0_device); at32_init_pio(&pio1_device); at32_init_pio(&pio2_device); at32_init_pio(&pio3_device); at32_init_pio(&pio4_device); } void __init at32_clock_init(void) { struct at32_sm *sm = &system_manager; u32 cpu_mask = 0, hsb_mask = 0, pba_mask = 0, pbb_mask = 0; int i; if (sm_readl(sm, PM_MCCTRL) & SM_BIT(PLLSEL)) main_clock = &pll0; else main_clock = &osc0; if (sm_readl(sm, PM_PLL0) & SM_BIT(PLLOSC)) pll0.parent = &osc1; if (sm_readl(sm, PM_PLL1) & SM_BIT(PLLOSC)) pll1.parent = &osc1; /* * Turn on all clocks that have at least one user already, and * turn off everything else. We only do this for module * clocks, and even though it isn't particularly pretty to * check the address of the mode function, it should do the * trick... */ for (i = 0; i < ARRAY_SIZE(at32_clock_list); i++) { struct clk *clk = at32_clock_list[i]; if (clk->mode == &cpu_clk_mode) cpu_mask |= 1 << clk->index; else if (clk->mode == &hsb_clk_mode) hsb_mask |= 1 << clk->index; else if (clk->mode == &pba_clk_mode) pba_mask |= 1 << clk->index; else if (clk->mode == &pbb_clk_mode) pbb_mask |= 1 << clk->index; } sm_writel(sm, PM_CPU_MASK, cpu_mask); sm_writel(sm, PM_HSB_MASK, hsb_mask); sm_writel(sm, PM_PBA_MASK, pba_mask); sm_writel(sm, PM_PBB_MASK, pbb_mask); }