// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015-2020, The Linux Foundation. All rights reserved. */ #include "sde_hwio.h" #include "sde_hw_catalog.h" #include "sde_hw_top.h" #include "sde_dbg.h" #include "sde_kms.h" #define SSPP_SPARE 0x28 #define UBWC_DEC_HW_VERSION 0x058 #define UBWC_STATIC 0x144 #define UBWC_CTRL_2 0x150 #define UBWC_PREDICTION_MODE 0x154 #define FLD_SPLIT_DISPLAY_CMD BIT(1) #define FLD_SMART_PANEL_FREE_RUN BIT(2) #define FLD_INTF_1_SW_TRG_MUX BIT(4) #define FLD_INTF_2_SW_TRG_MUX BIT(8) #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF #define DANGER_STATUS 0x360 #define SAFE_STATUS 0x364 #define TE_LINE_INTERVAL 0x3F4 #define TRAFFIC_SHAPER_EN BIT(31) #define TRAFFIC_SHAPER_RD_CLIENT(num) (0x030 + (num * 4)) #define TRAFFIC_SHAPER_WR_CLIENT(num) (0x060 + (num * 4)) #define TRAFFIC_SHAPER_FIXPOINT_FACTOR 4 #define MDP_WD_TIMER_0_CTL 0x380 #define MDP_WD_TIMER_0_CTL2 0x384 #define MDP_WD_TIMER_0_LOAD_VALUE 0x388 #define MDP_WD_TIMER_1_CTL 0x390 #define MDP_WD_TIMER_1_CTL2 0x394 #define MDP_WD_TIMER_1_LOAD_VALUE 0x398 #define MDP_WD_TIMER_2_CTL 0x420 #define MDP_WD_TIMER_2_CTL2 0x424 #define MDP_WD_TIMER_2_LOAD_VALUE 0x428 #define MDP_WD_TIMER_3_CTL 0x430 #define MDP_WD_TIMER_3_CTL2 0x434 #define MDP_WD_TIMER_3_LOAD_VALUE 0x438 #define MDP_WD_TIMER_4_CTL 0x440 #define MDP_WD_TIMER_4_CTL2 0x444 #define MDP_WD_TIMER_4_LOAD_VALUE 0x448 #define MDP_TICK_COUNT 16 #define XO_CLK_RATE 19200 #define MS_TICKS_IN_SEC 1000 #define CALCULATE_WD_LOAD_VALUE(fps) \ ((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps))) #define DCE_SEL 0x450 #define ROT_SID_RD 0x20 #define ROT_SID_WR 0x24 #define ROT_SID_ID_VAL 0x1c static void sde_hw_setup_split_pipe(struct sde_hw_mdp *mdp, struct split_pipe_cfg *cfg) { struct sde_hw_blk_reg_map *c; u32 upper_pipe = 0; u32 lower_pipe = 0; if (!mdp || !cfg) return; c = &mdp->hw; if (cfg->en) { if (cfg->mode == INTF_MODE_CMD) { lower_pipe = FLD_SPLIT_DISPLAY_CMD; /* interface controlling sw trigger */ if (cfg->intf == INTF_2) lower_pipe |= FLD_INTF_1_SW_TRG_MUX; else lower_pipe |= FLD_INTF_2_SW_TRG_MUX; /* free run */ if (cfg->pp_split_slave != INTF_MAX) lower_pipe = FLD_SMART_PANEL_FREE_RUN; upper_pipe = lower_pipe; /* smart panel align mode */ lower_pipe |= BIT(mdp->caps->smart_panel_align_mode); } else { if (cfg->intf == INTF_2) { lower_pipe = FLD_INTF_1_SW_TRG_MUX; upper_pipe = FLD_INTF_2_SW_TRG_MUX; } else { lower_pipe = FLD_INTF_2_SW_TRG_MUX; upper_pipe = FLD_INTF_1_SW_TRG_MUX; } } } SDE_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0); SDE_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe); SDE_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe); SDE_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1); } static u32 sde_hw_get_split_flush(struct sde_hw_mdp *mdp) { struct sde_hw_blk_reg_map *c; if (!mdp) return 0; c = &mdp->hw; return (SDE_REG_READ(c, SSPP_SPARE) & 0x1); } static void sde_hw_setup_pp_split(struct sde_hw_mdp *mdp, struct split_pipe_cfg *cfg) { u32 ppb_config = 0x0; u32 ppb_control = 0x0; if (!mdp || !cfg) return; if (cfg->split_link_en) { ppb_config |= BIT(16); /* split enable */ ppb_control = BIT(5); /* horz split*/ } else if (cfg->en && cfg->pp_split_slave != INTF_MAX) { ppb_config |= (cfg->pp_split_slave - INTF_0 + 1) << 20; ppb_config |= BIT(16); /* split enable */ ppb_control = BIT(5); /* horz split*/ } if (cfg->pp_split_index && !cfg->split_link_en) { SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, 0x0); SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, 0x0); SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, ppb_config); SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, ppb_control); } else { SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, ppb_config); SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, ppb_control); SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, 0x0); SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, 0x0); } } static void sde_hw_setup_cdm_output(struct sde_hw_mdp *mdp, struct cdm_output_cfg *cfg) { struct sde_hw_blk_reg_map *c; u32 out_ctl = 0; if (!mdp || !cfg) return; c = &mdp->hw; if (cfg->wb_en) out_ctl |= BIT(24); else if (cfg->intf_en) out_ctl |= BIT(19); SDE_REG_WRITE(c, MDP_OUT_CTL_0, out_ctl); } static bool sde_hw_setup_clk_force_ctrl(struct sde_hw_mdp *mdp, enum sde_clk_ctrl_type clk_ctrl, bool enable) { struct sde_hw_blk_reg_map *c; u32 reg_off, bit_off; u32 reg_val, new_val; bool clk_forced_on; if (!mdp) return false; c = &mdp->hw; if (clk_ctrl <= SDE_CLK_CTRL_NONE || clk_ctrl >= SDE_CLK_CTRL_MAX) return false; reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off; bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off; reg_val = SDE_REG_READ(c, reg_off); if (enable) new_val = reg_val | BIT(bit_off); else new_val = reg_val & ~BIT(bit_off); SDE_REG_WRITE(c, reg_off, new_val); wmb(); /* ensure write finished before progressing */ clk_forced_on = !(reg_val & BIT(bit_off)); return clk_forced_on; } static void sde_hw_get_danger_status(struct sde_hw_mdp *mdp, struct sde_danger_safe_status *status) { struct sde_hw_blk_reg_map *c; u32 value; if (!mdp || !status) return; c = &mdp->hw; value = SDE_REG_READ(c, DANGER_STATUS); status->mdp = (value >> 0) & 0x3; status->sspp[SSPP_VIG0] = (value >> 4) & 0x3; status->sspp[SSPP_VIG1] = (value >> 6) & 0x3; status->sspp[SSPP_VIG2] = (value >> 8) & 0x3; status->sspp[SSPP_VIG3] = (value >> 10) & 0x3; status->sspp[SSPP_RGB0] = (value >> 12) & 0x3; status->sspp[SSPP_RGB1] = (value >> 14) & 0x3; status->sspp[SSPP_RGB2] = (value >> 16) & 0x3; status->sspp[SSPP_RGB3] = (value >> 18) & 0x3; status->sspp[SSPP_DMA0] = (value >> 20) & 0x3; status->sspp[SSPP_DMA1] = (value >> 22) & 0x3; status->sspp[SSPP_DMA2] = (value >> 28) & 0x3; status->sspp[SSPP_DMA3] = (value >> 30) & 0x3; status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3; status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3; status->wb[WB_0] = 0; status->wb[WB_1] = 0; status->wb[WB_2] = (value >> 2) & 0x3; status->wb[WB_3] = 0; } static void _update_vsync_source(struct sde_hw_mdp *mdp, struct sde_vsync_source_cfg *cfg) { struct sde_hw_blk_reg_map *c; u32 reg, wd_load_value, wd_ctl, wd_ctl2; if (!mdp || !cfg) return; c = &mdp->hw; if (cfg->vsync_source >= SDE_VSYNC_SOURCE_WD_TIMER_4 && cfg->vsync_source <= SDE_VSYNC_SOURCE_WD_TIMER_0) { switch (cfg->vsync_source) { case SDE_VSYNC_SOURCE_WD_TIMER_4: wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE; wd_ctl = MDP_WD_TIMER_4_CTL; wd_ctl2 = MDP_WD_TIMER_4_CTL2; break; case SDE_VSYNC_SOURCE_WD_TIMER_3: wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE; wd_ctl = MDP_WD_TIMER_3_CTL; wd_ctl2 = MDP_WD_TIMER_3_CTL2; break; case SDE_VSYNC_SOURCE_WD_TIMER_2: wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE; wd_ctl = MDP_WD_TIMER_2_CTL; wd_ctl2 = MDP_WD_TIMER_2_CTL2; break; case SDE_VSYNC_SOURCE_WD_TIMER_1: wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE; wd_ctl = MDP_WD_TIMER_1_CTL; wd_ctl2 = MDP_WD_TIMER_1_CTL2; break; case SDE_VSYNC_SOURCE_WD_TIMER_0: default: wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE; wd_ctl = MDP_WD_TIMER_0_CTL; wd_ctl2 = MDP_WD_TIMER_0_CTL2; break; } if (cfg->is_dummy) { SDE_REG_WRITE(c, wd_ctl2, 0x0); } else { SDE_REG_WRITE(c, wd_load_value, CALCULATE_WD_LOAD_VALUE(cfg->frame_rate)); SDE_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */ reg = SDE_REG_READ(c, wd_ctl2); reg |= BIT(8); /* enable heartbeat timer */ reg |= BIT(0); /* enable WD timer */ SDE_REG_WRITE(c, wd_ctl2, reg); } /* make sure that timers are enabled/disabled for vsync state */ wmb(); } } static void sde_hw_setup_vsync_source(struct sde_hw_mdp *mdp, struct sde_vsync_source_cfg *cfg) { struct sde_hw_blk_reg_map *c; u32 reg, i; static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18}; if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber))) return; c = &mdp->hw; reg = SDE_REG_READ(c, MDP_VSYNC_SEL); for (i = 0; i < cfg->pp_count; i++) { int pp_idx = cfg->ppnumber[i] - PINGPONG_0; if (pp_idx >= ARRAY_SIZE(pp_offset)) continue; reg &= ~(0xf << pp_offset[pp_idx]); reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx]; } SDE_REG_WRITE(c, MDP_VSYNC_SEL, reg); _update_vsync_source(mdp, cfg); } static void sde_hw_setup_vsync_source_v1(struct sde_hw_mdp *mdp, struct sde_vsync_source_cfg *cfg) { _update_vsync_source(mdp, cfg); } static void sde_hw_get_safe_status(struct sde_hw_mdp *mdp, struct sde_danger_safe_status *status) { struct sde_hw_blk_reg_map *c; u32 value; if (!mdp || !status) return; c = &mdp->hw; value = SDE_REG_READ(c, SAFE_STATUS); status->mdp = (value >> 0) & 0x1; status->sspp[SSPP_VIG0] = (value >> 4) & 0x1; status->sspp[SSPP_VIG1] = (value >> 6) & 0x1; status->sspp[SSPP_VIG2] = (value >> 8) & 0x1; status->sspp[SSPP_VIG3] = (value >> 10) & 0x1; status->sspp[SSPP_RGB0] = (value >> 12) & 0x1; status->sspp[SSPP_RGB1] = (value >> 14) & 0x1; status->sspp[SSPP_RGB2] = (value >> 16) & 0x1; status->sspp[SSPP_RGB3] = (value >> 18) & 0x1; status->sspp[SSPP_DMA0] = (value >> 20) & 0x1; status->sspp[SSPP_DMA1] = (value >> 22) & 0x1; status->sspp[SSPP_DMA2] = (value >> 28) & 0x1; status->sspp[SSPP_DMA3] = (value >> 30) & 0x1; status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1; status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1; status->wb[WB_0] = 0; status->wb[WB_1] = 0; status->wb[WB_2] = (value >> 2) & 0x1; status->wb[WB_3] = 0; } static void sde_hw_setup_dce(struct sde_hw_mdp *mdp, u32 dce_sel) { struct sde_hw_blk_reg_map *c; if (!mdp) return; c = &mdp->hw; SDE_REG_WRITE(c, DCE_SEL, dce_sel); } void sde_hw_reset_ubwc(struct sde_hw_mdp *mdp, struct sde_mdss_cfg *m) { struct sde_hw_blk_reg_map c; u32 ubwc_version; if (!mdp || !m) return; /* force blk offset to zero to access beginning of register region */ c = mdp->hw; c.blk_off = 0x0; ubwc_version = SDE_REG_READ(&c, UBWC_DEC_HW_VERSION); if (IS_UBWC_40_SUPPORTED(ubwc_version)) { u32 ver = 2; u32 mode = 1; u32 reg = (m->mdp[0].ubwc_swizzle & 0x7) | ((m->mdp[0].ubwc_static & 0x1) << 3) | ((m->mdp[0].highest_bank_bit & 0x7) << 4) | ((m->macrotile_mode & 0x1) << 12); if (IS_UBWC_30_SUPPORTED(m->ubwc_version)) { ver = 1; mode = 0; } SDE_REG_WRITE(&c, UBWC_STATIC, reg); SDE_REG_WRITE(&c, UBWC_CTRL_2, ver); SDE_REG_WRITE(&c, UBWC_PREDICTION_MODE, mode); } else if (IS_UBWC_20_SUPPORTED(ubwc_version)) { SDE_REG_WRITE(&c, UBWC_STATIC, m->mdp[0].ubwc_static); } else if (IS_UBWC_30_SUPPORTED(ubwc_version)) { u32 reg = m->mdp[0].ubwc_static | (m->mdp[0].ubwc_swizzle & 0x1) | ((m->mdp[0].highest_bank_bit & 0x3) << 4) | ((m->macrotile_mode & 0x1) << 12); if (IS_UBWC_30_SUPPORTED(m->ubwc_version)) reg |= BIT(10); if (IS_UBWC_10_SUPPORTED(m->ubwc_version)) reg |= BIT(8); SDE_REG_WRITE(&c, UBWC_STATIC, reg); } else { SDE_ERROR("Unsupported UBWC version 0x%08x\n", ubwc_version); } } static void sde_hw_intf_audio_select(struct sde_hw_mdp *mdp) { struct sde_hw_blk_reg_map *c; if (!mdp) return; c = &mdp->hw; SDE_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1); } static void sde_hw_mdp_events(struct sde_hw_mdp *mdp, bool enable) { struct sde_hw_blk_reg_map *c; if (!mdp) return; c = &mdp->hw; SDE_REG_WRITE(c, HW_EVENTS_CTL, enable); } struct sde_hw_sid *sde_hw_sid_init(void __iomem *addr, u32 sid_len, const struct sde_mdss_cfg *m) { struct sde_hw_sid *c; c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) return ERR_PTR(-ENOMEM); c->hw.base_off = addr; c->hw.blk_off = 0; c->hw.length = sid_len; c->hw.hwversion = m->hwversion; c->hw.log_mask = SDE_DBG_MASK_SID; return c; } void sde_hw_sid_rotator_set(struct sde_hw_sid *sid) { SDE_REG_WRITE(&sid->hw, ROT_SID_RD, ROT_SID_ID_VAL); SDE_REG_WRITE(&sid->hw, ROT_SID_WR, ROT_SID_ID_VAL); } static void sde_hw_program_cwb_ppb_ctrl(struct sde_hw_mdp *mdp, bool dual, bool dspp_out) { u32 value = dspp_out ? 0x4 : 0x0; SDE_REG_WRITE(&mdp->hw, PPB2_CNTL, value); if (dual) { value |= 0x1; SDE_REG_WRITE(&mdp->hw, PPB3_CNTL, value); } } static void sde_hw_set_hdr_plus_metadata(struct sde_hw_mdp *mdp, u8 *payload, u32 len, u32 stream_id) { u32 i, b; u32 length = len - 1; u32 d_offset, nb_offset, data = 0; const u32 dword_size = sizeof(u32); bool is_4k_aligned = mdp->caps->features & BIT(SDE_MDP_DHDR_MEMPOOL_4K); if (!payload || !len) { SDE_ERROR("invalid payload with length: %d\n", len); return; } if (stream_id) { if (is_4k_aligned) { d_offset = DP_DHDR_MEM_POOL_1_DATA_4K; nb_offset = DP_DHDR_MEM_POOL_1_NUM_BYTES_4K; } else { d_offset = DP_DHDR_MEM_POOL_1_DATA; nb_offset = DP_DHDR_MEM_POOL_1_NUM_BYTES; } } else { if (is_4k_aligned) { d_offset = DP_DHDR_MEM_POOL_0_DATA_4K; nb_offset = DP_DHDR_MEM_POOL_0_NUM_BYTES_4K; } else { d_offset = DP_DHDR_MEM_POOL_0_DATA; nb_offset = DP_DHDR_MEM_POOL_0_NUM_BYTES; } } /* payload[0] is set in VSCEXT header byte 1, skip programming here */ SDE_REG_WRITE(&mdp->hw, nb_offset, length); for (i = 1; i < len; i += dword_size) { for (b = 0; (i + b) < len && b < dword_size; b++) data |= payload[i + b] << (8 * b); SDE_REG_WRITE(&mdp->hw, d_offset, data); data = 0; } } static void _setup_mdp_ops(struct sde_hw_mdp_ops *ops, unsigned long cap) { ops->setup_split_pipe = sde_hw_setup_split_pipe; ops->setup_pp_split = sde_hw_setup_pp_split; ops->setup_cdm_output = sde_hw_setup_cdm_output; ops->setup_clk_force_ctrl = sde_hw_setup_clk_force_ctrl; ops->get_danger_status = sde_hw_get_danger_status; ops->setup_vsync_source = sde_hw_setup_vsync_source; ops->set_cwb_ppb_cntl = sde_hw_program_cwb_ppb_ctrl; ops->get_safe_status = sde_hw_get_safe_status; ops->get_split_flush_status = sde_hw_get_split_flush; ops->setup_dce = sde_hw_setup_dce; ops->reset_ubwc = sde_hw_reset_ubwc; ops->intf_audio_select = sde_hw_intf_audio_select; ops->set_mdp_hw_events = sde_hw_mdp_events; if (cap & BIT(SDE_MDP_VSYNC_SEL)) ops->setup_vsync_source = sde_hw_setup_vsync_source; else ops->setup_vsync_source = sde_hw_setup_vsync_source_v1; if (cap & BIT(SDE_MDP_DHDR_MEMPOOL_4K) || cap & BIT(SDE_MDP_DHDR_MEMPOOL)) ops->set_hdr_plus_metadata = sde_hw_set_hdr_plus_metadata; } static const struct sde_mdp_cfg *_top_offset(enum sde_mdp mdp, const struct sde_mdss_cfg *m, void __iomem *addr, struct sde_hw_blk_reg_map *b) { int i; if (!m || !addr || !b) return ERR_PTR(-EINVAL); for (i = 0; i < m->mdp_count; i++) { if (mdp == m->mdp[i].id) { b->base_off = addr; b->blk_off = m->mdp[i].base; b->length = m->mdp[i].len; b->hwversion = m->hwversion; b->log_mask = SDE_DBG_MASK_TOP; return &m->mdp[i]; } } return ERR_PTR(-EINVAL); } static struct sde_hw_blk_ops sde_hw_ops = { .start = NULL, .stop = NULL, }; struct sde_hw_mdp *sde_hw_mdptop_init(enum sde_mdp idx, void __iomem *addr, const struct sde_mdss_cfg *m) { struct sde_hw_mdp *mdp; const struct sde_mdp_cfg *cfg; int rc; if (!addr || !m) return ERR_PTR(-EINVAL); mdp = kzalloc(sizeof(*mdp), GFP_KERNEL); if (!mdp) return ERR_PTR(-ENOMEM); cfg = _top_offset(idx, m, addr, &mdp->hw); if (IS_ERR_OR_NULL(cfg)) { kfree(mdp); return ERR_PTR(-EINVAL); } /* * Assign ops */ mdp->idx = idx; mdp->caps = cfg; _setup_mdp_ops(&mdp->ops, mdp->caps->features); rc = sde_hw_blk_init(&mdp->base, SDE_HW_BLK_TOP, idx, &sde_hw_ops); if (rc) { SDE_ERROR("failed to init hw blk %d\n", rc); goto blk_init_error; } sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name, mdp->hw.blk_off, mdp->hw.blk_off + mdp->hw.length, mdp->hw.xin_id); sde_dbg_set_sde_top_offset(mdp->hw.blk_off); return mdp; blk_init_error: kzfree(mdp); return ERR_PTR(rc); } void sde_hw_mdp_destroy(struct sde_hw_mdp *mdp) { if (mdp) sde_hw_blk_destroy(&mdp->base); kfree(mdp); }