// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2019-2021, Linux Foundation. All rights reserved. */ #include "phy-qcom-ufs-qmp-v4-yupik.h" #define UFS_PHY_NAME "ufs_phy_qmp_v4_yupik" static inline void ufs_qcom_phy_qmp_v4_start_serdes(struct ufs_qcom_phy *phy); static int ufs_qcom_phy_qmp_v4_is_pcs_ready(struct ufs_qcom_phy *phy_common); static int ufs_qcom_phy_qmp_v4_phy_calibrate(struct phy *generic_phy) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy); struct device *dev = ufs_qcom_phy->dev; bool is_g4, is_rate_B; int err; err = reset_control_assert(ufs_qcom_phy->ufs_reset); if (err) { dev_err(dev, "Failed to assert UFS PHY reset %d\n", err); goto out; } /* For UFS PHY's submode, 1 = G4, 0 = non-G4 */ is_g4 = !!ufs_qcom_phy->submode; is_rate_B = (ufs_qcom_phy->mode == PHY_MODE_UFS_HS_B) ? true : false; writel_relaxed(0x01, ufs_qcom_phy->mmio + UFS_PHY_SW_RESET); /* Ensure PHY is in reset before writing PHY calibration data */ wmb(); /* * Writing PHY calibration in this order: * 1. Write Rate-A calibration first (1-lane mode). * 2. Write 2nd lane configuration if needed. * 3. Write Rate-B calibration overrides */ if (is_g4) { ufs_qcom_phy_write_tbl(ufs_qcom_phy, phy_cal_table_rate_A, ARRAY_SIZE(phy_cal_table_rate_A)); if (ufs_qcom_phy->lanes_per_direction == 2) ufs_qcom_phy_write_tbl(ufs_qcom_phy, phy_cal_table_2nd_lane, ARRAY_SIZE(phy_cal_table_2nd_lane)); } else { ufs_qcom_phy_write_tbl(ufs_qcom_phy, phy_cal_table_rate_A_no_g4, ARRAY_SIZE(phy_cal_table_rate_A_no_g4)); if (ufs_qcom_phy->lanes_per_direction == 2) ufs_qcom_phy_write_tbl(ufs_qcom_phy, phy_cal_table_2nd_lane_no_g4, ARRAY_SIZE(phy_cal_table_2nd_lane_no_g4)); } if (is_rate_B) ufs_qcom_phy_write_tbl(ufs_qcom_phy, phy_cal_table_rate_B, ARRAY_SIZE(phy_cal_table_rate_B)); writel_relaxed(0x00, ufs_qcom_phy->mmio + UFS_PHY_SW_RESET); /* flush buffered writes */ wmb(); err = reset_control_deassert(ufs_qcom_phy->ufs_reset); if (err) { dev_err(dev, "Failed to deassert UFS PHY reset %d\n", err); goto out; } ufs_qcom_phy_qmp_v4_start_serdes(ufs_qcom_phy); err = ufs_qcom_phy_qmp_v4_is_pcs_ready(ufs_qcom_phy); out: return err; } static int ufs_qcom_phy_qmp_v4_init(struct phy *generic_phy) { struct ufs_qcom_phy_qmp_v4 *phy = phy_get_drvdata(generic_phy); struct ufs_qcom_phy *phy_common = &phy->common_cfg; int err; err = ufs_qcom_phy_init_clks(phy_common); if (err) { dev_err(phy_common->dev, "%s: ufs_qcom_phy_init_clks() failed %d\n", __func__, err); goto out; } err = ufs_qcom_phy_init_vregulators(phy_common); if (err) { dev_err(phy_common->dev, "%s: ufs_qcom_phy_init_vregulators() failed %d\n", __func__, err); goto out; } /* Optional */ ufs_qcom_phy_get_reset(phy_common); out: return err; } static int ufs_qcom_phy_qmp_v4_exit(struct phy *generic_phy) { return 0; } static int ufs_qcom_phy_qmp_v4_set_mode(struct phy *generic_phy, enum phy_mode mode, int submode) { struct ufs_qcom_phy *phy_common = get_ufs_qcom_phy(generic_phy); phy_common->mode = PHY_MODE_INVALID; if (mode > 0) phy_common->mode = mode; phy_common->submode = submode; return 0; } static inline void ufs_qcom_phy_qmp_v4_tx_pull_down_ctrl(struct ufs_qcom_phy *phy, bool enable) { u32 temp; temp = readl_relaxed(phy->mmio + QSERDES_RX0_RX_INTERFACE_MODE); if (enable) temp |= QSERDES_RX_INTERFACE_MODE_CLOCK_EDGE_BIT; else temp &= ~QSERDES_RX_INTERFACE_MODE_CLOCK_EDGE_BIT; writel_relaxed(temp, phy->mmio + QSERDES_RX0_RX_INTERFACE_MODE); if (phy->lanes_per_direction == 1) goto out; temp = readl_relaxed(phy->mmio + QSERDES_RX1_RX_INTERFACE_MODE); if (enable) temp |= QSERDES_RX_INTERFACE_MODE_CLOCK_EDGE_BIT; else temp &= ~QSERDES_RX_INTERFACE_MODE_CLOCK_EDGE_BIT; writel_relaxed(temp, phy->mmio + QSERDES_RX1_RX_INTERFACE_MODE); out: /* ensure register value is committed */ mb(); } static void ufs_qcom_phy_qmp_v4_power_control(struct ufs_qcom_phy *phy, bool power_ctrl) { if (!power_ctrl) { /* apply analog power collapse */ writel_relaxed(0x0, phy->mmio + UFS_PHY_POWER_DOWN_CONTROL); /* * Make sure that PHY knows its analog rail is going to be * powered OFF. */ mb(); ufs_qcom_phy_qmp_v4_tx_pull_down_ctrl(phy, true); } else { ufs_qcom_phy_qmp_v4_tx_pull_down_ctrl(phy, false); /* bring PHY out of analog power collapse */ writel_relaxed(0x1, phy->mmio + UFS_PHY_POWER_DOWN_CONTROL); /* * Before any transactions involving PHY, ensure PHY knows * that it's analog rail is powered ON. */ mb(); } } static inline void ufs_qcom_phy_qmp_v4_set_tx_lane_enable(struct ufs_qcom_phy *phy, u32 val) { /* * v4 PHY does not have TX_LANE_ENABLE register. * Implement this function so as not to propagate error to caller. */ } static void ufs_qcom_phy_qmp_v4_ctrl_rx_linecfg(struct ufs_qcom_phy *phy, bool ctrl) { u32 temp; temp = readl_relaxed(phy->mmio + UFS_PHY_LINECFG_DISABLE); if (ctrl) /* enable RX LineCfg */ temp &= ~UFS_PHY_RX_LINECFG_DISABLE_BIT; else /* disable RX LineCfg */ temp |= UFS_PHY_RX_LINECFG_DISABLE_BIT; writel_relaxed(temp, phy->mmio + UFS_PHY_LINECFG_DISABLE); /* make sure that RX LineCfg config applied before we return */ mb(); } static inline void ufs_qcom_phy_qmp_v4_start_serdes(struct ufs_qcom_phy *phy) { u32 tmp; tmp = readl_relaxed(phy->mmio + UFS_PHY_PHY_START); tmp &= ~MASK_SERDES_START; tmp |= (1 << OFFSET_SERDES_START); writel_relaxed(tmp, phy->mmio + UFS_PHY_PHY_START); /* Ensure register value is committed */ mb(); } static int ufs_qcom_phy_qmp_v4_is_pcs_ready(struct ufs_qcom_phy *phy_common) { int err = 0; u32 val; err = readl_poll_timeout(phy_common->mmio + UFS_PHY_PCS_READY_STATUS, val, (val & MASK_PCS_READY), 10, 1000000); if (err) { dev_err(phy_common->dev, "%s: poll for pcs failed err = %d\n", __func__, err); } return err; } static void ufs_qcom_phy_qmp_v4_dbg_register_dump(struct ufs_qcom_phy *phy) { ufs_qcom_phy_dump_regs(phy, COM_BASE, COM_SIZE, "PHY QSERDES COM Registers "); ufs_qcom_phy_dump_regs(phy, PCS2_BASE, PCS2_SIZE, "PHY PCS2 Registers "); ufs_qcom_phy_dump_regs(phy, PHY_BASE, PHY_SIZE, "PHY Registers "); ufs_qcom_phy_dump_regs(phy, RX_BASE(0), RX_SIZE, "PHY RX0 Registers "); ufs_qcom_phy_dump_regs(phy, TX_BASE(0), TX_SIZE, "PHY TX0 Registers "); ufs_qcom_phy_dump_regs(phy, RX_BASE(1), RX_SIZE, "PHY RX1 Registers "); ufs_qcom_phy_dump_regs(phy, TX_BASE(1), TX_SIZE, "PHY TX1 Registers "); } static const struct phy_ops ufs_qcom_phy_qmp_v4_phy_ops = { .init = ufs_qcom_phy_qmp_v4_init, .exit = ufs_qcom_phy_qmp_v4_exit, .power_on = ufs_qcom_phy_power_on, .power_off = ufs_qcom_phy_power_off, .set_mode = ufs_qcom_phy_qmp_v4_set_mode, .calibrate = ufs_qcom_phy_qmp_v4_phy_calibrate, .owner = THIS_MODULE, }; static struct ufs_qcom_phy_specific_ops phy_v4_ops = { .start_serdes = ufs_qcom_phy_qmp_v4_start_serdes, .is_physical_coding_sublayer_ready = ufs_qcom_phy_qmp_v4_is_pcs_ready, .set_tx_lane_enable = ufs_qcom_phy_qmp_v4_set_tx_lane_enable, .ctrl_rx_linecfg = ufs_qcom_phy_qmp_v4_ctrl_rx_linecfg, .power_control = ufs_qcom_phy_qmp_v4_power_control, .dbg_register_dump = ufs_qcom_phy_qmp_v4_dbg_register_dump, }; static int ufs_qcom_phy_qmp_v4_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct phy *generic_phy; struct ufs_qcom_phy_qmp_v4 *phy; int err = 0; phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL); if (!phy) { err = -ENOMEM; goto out; } generic_phy = ufs_qcom_phy_generic_probe(pdev, &phy->common_cfg, &ufs_qcom_phy_qmp_v4_phy_ops, &phy_v4_ops); if (!generic_phy) { dev_err(dev, "%s: ufs_qcom_phy_generic_probe() failed\n", __func__); err = -EIO; goto out; } phy_set_drvdata(generic_phy, phy); strlcpy(phy->common_cfg.name, UFS_PHY_NAME, sizeof(phy->common_cfg.name)); out: return err; } static const struct of_device_id ufs_qcom_phy_qmp_v4_of_match[] = { {.compatible = "qcom,ufs-phy-qmp-v4-yupik"}, {}, }; MODULE_DEVICE_TABLE(of, ufs_qcom_phy_qmp_v4_of_match); static struct platform_driver ufs_qcom_phy_qmp_v4_driver = { .probe = ufs_qcom_phy_qmp_v4_probe, .driver = { .of_match_table = ufs_qcom_phy_qmp_v4_of_match, .name = "ufs_qcom_phy_qmp_v4_yupik", }, }; module_platform_driver(ufs_qcom_phy_qmp_v4_driver); MODULE_DESCRIPTION("Universal Flash Storage (UFS) QCOM PHY QMP v4 yupik"); MODULE_LICENSE("GPL v2");