/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved. */ /* * Cross Partition Communication (XPC) partition support. * * This is the part of XPC that detects the presence/absence of * other partitions. It provides a heartbeat and monitors the * heartbeats of other partitions. * */ #include #include #include #include #include #include #include #include #include #include #include "xpc.h" /* XPC is exiting flag */ int xpc_exiting; /* SH_IPI_ACCESS shub register value on startup */ static u64 xpc_sh1_IPI_access; static u64 xpc_sh2_IPI_access0; static u64 xpc_sh2_IPI_access1; static u64 xpc_sh2_IPI_access2; static u64 xpc_sh2_IPI_access3; /* original protection values for each node */ u64 xpc_prot_vec[MAX_COMPACT_NODES]; /* this partition's reserved page */ struct xpc_rsvd_page *xpc_rsvd_page; /* this partition's XPC variables (within the reserved page) */ struct xpc_vars *xpc_vars; struct xpc_vars_part *xpc_vars_part; /* * For performance reasons, each entry of xpc_partitions[] is cacheline * aligned. And xpc_partitions[] is padded with an additional entry at the * end so that the last legitimate entry doesn't share its cacheline with * another variable. */ struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1]; /* * Generic buffer used to store a local copy of the remote partitions * reserved page or XPC variables. * * xpc_discovery runs only once and is a seperate thread that is * very likely going to be processing in parallel with receiving * interrupts. */ char ____cacheline_aligned xpc_remote_copy_buffer[XPC_RSVD_PAGE_ALIGNED_SIZE]; /* systune related variables */ int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL; int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_TIMEOUT; /* * Given a nasid, get the physical address of the partition's reserved page * for that nasid. This function returns 0 on any error. */ static u64 xpc_get_rsvd_page_pa(int nasid, u64 buf, u64 buf_size) { bte_result_t bte_res; s64 status; u64 cookie = 0; u64 rp_pa = nasid; /* seed with nasid */ u64 len = 0; while (1) { status = sn_partition_reserved_page_pa(buf, &cookie, &rp_pa, &len); dev_dbg(xpc_part, "SAL returned with status=%li, cookie=" "0x%016lx, address=0x%016lx, len=0x%016lx\n", status, cookie, rp_pa, len); if (status != SALRET_MORE_PASSES) { break; } if (len > buf_size) { dev_err(xpc_part, "len (=0x%016lx) > buf_size\n", len); status = SALRET_ERROR; break; } bte_res = xp_bte_copy(rp_pa, ia64_tpa(buf), buf_size, (BTE_NOTIFY | BTE_WACQUIRE), NULL); if (bte_res != BTE_SUCCESS) { dev_dbg(xpc_part, "xp_bte_copy failed %i\n", bte_res); status = SALRET_ERROR; break; } } if (status != SALRET_OK) { rp_pa = 0; } dev_dbg(xpc_part, "reserved page at phys address 0x%016lx\n", rp_pa); return rp_pa; } /* * Fill the partition reserved page with the information needed by * other partitions to discover we are alive and establish initial * communications. */ struct xpc_rsvd_page * xpc_rsvd_page_init(void) { struct xpc_rsvd_page *rp; AMO_t *amos_page; u64 rp_pa, next_cl, nasid_array = 0; int i, ret; /* get the local reserved page's address */ rp_pa = xpc_get_rsvd_page_pa(cnodeid_to_nasid(0), (u64) xpc_remote_copy_buffer, XPC_RSVD_PAGE_ALIGNED_SIZE); if (rp_pa == 0) { dev_err(xpc_part, "SAL failed to locate the reserved page\n"); return NULL; } rp = (struct xpc_rsvd_page *) __va(rp_pa); if (rp->partid != sn_partition_id) { dev_err(xpc_part, "the reserved page's partid of %d should be " "%d\n", rp->partid, sn_partition_id); return NULL; } rp->version = XPC_RP_VERSION; /* * Place the XPC variables on the cache line following the * reserved page structure. */ next_cl = (u64) rp + XPC_RSVD_PAGE_ALIGNED_SIZE; xpc_vars = (struct xpc_vars *) next_cl; /* * Before clearing xpc_vars, see if a page of AMOs had been previously * allocated. If not we'll need to allocate one and set permissions * so that cross-partition AMOs are allowed. * * The allocated AMO page needs MCA reporting to remain disabled after * XPC has unloaded. To make this work, we keep a copy of the pointer * to this page (i.e., amos_page) in the struct xpc_vars structure, * which is pointed to by the reserved page, and re-use that saved copy * on subsequent loads of XPC. This AMO page is never freed, and its * memory protections are never restricted. */ if ((amos_page = xpc_vars->amos_page) == NULL) { amos_page = (AMO_t *) mspec_kalloc_page(0); if (amos_page == NULL) { dev_err(xpc_part, "can't allocate page of AMOs\n"); return NULL; } /* * Open up AMO-R/W to cpu. This is done for Shub 1.1 systems * when xpc_allow_IPI_ops() is called via xpc_hb_init(). */ if (!enable_shub_wars_1_1()) { ret = sn_change_memprotect(ia64_tpa((u64) amos_page), PAGE_SIZE, SN_MEMPROT_ACCESS_CLASS_1, &nasid_array); if (ret != 0) { dev_err(xpc_part, "can't change memory " "protections\n"); mspec_kfree_page((unsigned long) amos_page); return NULL; } } } memset(xpc_vars, 0, sizeof(struct xpc_vars)); /* * Place the XPC per partition specific variables on the cache line * following the XPC variables structure. */ next_cl += XPC_VARS_ALIGNED_SIZE; memset((u64 *) next_cl, 0, sizeof(struct xpc_vars_part) * XP_MAX_PARTITIONS); xpc_vars_part = (struct xpc_vars_part *) next_cl; xpc_vars->vars_part_pa = __pa(next_cl); xpc_vars->version = XPC_V_VERSION; xpc_vars->act_nasid = cpuid_to_nasid(0); xpc_vars->act_phys_cpuid = cpu_physical_id(0); xpc_vars->amos_page = amos_page; /* save for next load of XPC */ /* * Initialize the activation related AMO variables. */ xpc_vars->act_amos = xpc_IPI_init(XP_MAX_PARTITIONS); for (i = 1; i < XP_NASID_MASK_WORDS; i++) { xpc_IPI_init(i + XP_MAX_PARTITIONS); } /* export AMO page's physical address to other partitions */ xpc_vars->amos_page_pa = ia64_tpa((u64) xpc_vars->amos_page); /* * This signifies to the remote partition that our reserved * page is initialized. */ (volatile u64) rp->vars_pa = __pa(xpc_vars); return rp; } /* * Change protections to allow IPI operations (and AMO operations on * Shub 1.1 systems). */ void xpc_allow_IPI_ops(void) { int node; int nasid; // >>> Change SH_IPI_ACCESS code to use SAL call once it is available. if (is_shub2()) { xpc_sh2_IPI_access0 = (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS0)); xpc_sh2_IPI_access1 = (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS1)); xpc_sh2_IPI_access2 = (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS2)); xpc_sh2_IPI_access3 = (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS3)); for_each_online_node(node) { nasid = cnodeid_to_nasid(node); HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), -1UL); HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), -1UL); HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), -1UL); HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), -1UL); } } else { xpc_sh1_IPI_access = (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_IPI_ACCESS)); for_each_online_node(node) { nasid = cnodeid_to_nasid(node); HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), -1UL); /* * Since the BIST collides with memory operations on * SHUB 1.1 sn_change_memprotect() cannot be used. */ if (enable_shub_wars_1_1()) { /* open up everything */ xpc_prot_vec[node] = (u64) HUB_L((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_MD_DQLP_MMR_DIR_PRIVEC0)); HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_MD_DQLP_MMR_DIR_PRIVEC0), -1UL); HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_MD_DQRP_MMR_DIR_PRIVEC0), -1UL); } } } } /* * Restrict protections to disallow IPI operations (and AMO operations on * Shub 1.1 systems). */ void xpc_restrict_IPI_ops(void) { int node; int nasid; // >>> Change SH_IPI_ACCESS code to use SAL call once it is available. if (is_shub2()) { for_each_online_node(node) { nasid = cnodeid_to_nasid(node); HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), xpc_sh2_IPI_access0); HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), xpc_sh2_IPI_access1); HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), xpc_sh2_IPI_access2); HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), xpc_sh2_IPI_access3); } } else { for_each_online_node(node) { nasid = cnodeid_to_nasid(node); HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), xpc_sh1_IPI_access); if (enable_shub_wars_1_1()) { HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_MD_DQLP_MMR_DIR_PRIVEC0), xpc_prot_vec[node]); HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_MD_DQRP_MMR_DIR_PRIVEC0), xpc_prot_vec[node]); } } } } /* * At periodic intervals, scan through all active partitions and ensure * their heartbeat is still active. If not, the partition is deactivated. */ void xpc_check_remote_hb(void) { struct xpc_vars *remote_vars; struct xpc_partition *part; partid_t partid; bte_result_t bres; remote_vars = (struct xpc_vars *) xpc_remote_copy_buffer; for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { if (partid == sn_partition_id) { continue; } part = &xpc_partitions[partid]; if (part->act_state == XPC_P_INACTIVE || part->act_state == XPC_P_DEACTIVATING) { continue; } /* pull the remote_hb cache line */ bres = xp_bte_copy(part->remote_vars_pa, ia64_tpa((u64) remote_vars), XPC_VARS_ALIGNED_SIZE, (BTE_NOTIFY | BTE_WACQUIRE), NULL); if (bres != BTE_SUCCESS) { XPC_DEACTIVATE_PARTITION(part, xpc_map_bte_errors(bres)); continue; } dev_dbg(xpc_part, "partid = %d, heartbeat = %ld, last_heartbeat" " = %ld, kdb_status = %ld, HB_mask = 0x%lx\n", partid, remote_vars->heartbeat, part->last_heartbeat, remote_vars->kdb_status, remote_vars->heartbeating_to_mask); if (((remote_vars->heartbeat == part->last_heartbeat) && (remote_vars->kdb_status == 0)) || !XPC_HB_ALLOWED(sn_partition_id, remote_vars)) { XPC_DEACTIVATE_PARTITION(part, xpcNoHeartbeat); continue; } part->last_heartbeat = remote_vars->heartbeat; } } /* * Get a copy of the remote partition's rsvd page. * * remote_rp points to a buffer that is cacheline aligned for BTE copies and * assumed to be of size XPC_RSVD_PAGE_ALIGNED_SIZE. */ static enum xpc_retval xpc_get_remote_rp(int nasid, u64 *discovered_nasids, struct xpc_rsvd_page *remote_rp, u64 *remote_rsvd_page_pa) { int bres, i; /* get the reserved page's physical address */ *remote_rsvd_page_pa = xpc_get_rsvd_page_pa(nasid, (u64) remote_rp, XPC_RSVD_PAGE_ALIGNED_SIZE); if (*remote_rsvd_page_pa == 0) { return xpcNoRsvdPageAddr; } /* pull over the reserved page structure */ bres = xp_bte_copy(*remote_rsvd_page_pa, ia64_tpa((u64) remote_rp), XPC_RSVD_PAGE_ALIGNED_SIZE, (BTE_NOTIFY | BTE_WACQUIRE), NULL); if (bres != BTE_SUCCESS) { return xpc_map_bte_errors(bres); } if (discovered_nasids != NULL) { for (i = 0; i < XP_NASID_MASK_WORDS; i++) { discovered_nasids[i] |= remote_rp->part_nasids[i]; } } /* check that the partid is for another partition */ if (remote_rp->partid < 1 || remote_rp->partid > (XP_MAX_PARTITIONS - 1)) { return xpcInvalidPartid; } if (remote_rp->partid == sn_partition_id) { return xpcLocalPartid; } if (XPC_VERSION_MAJOR(remote_rp->version) != XPC_VERSION_MAJOR(XPC_RP_VERSION)) { return xpcBadVersion; } return xpcSuccess; } /* * Get a copy of the remote partition's XPC variables. * * remote_vars points to a buffer that is cacheline aligned for BTE copies and * assumed to be of size XPC_VARS_ALIGNED_SIZE. */ static enum xpc_retval xpc_get_remote_vars(u64 remote_vars_pa, struct xpc_vars *remote_vars) { int bres; if (remote_vars_pa == 0) { return xpcVarsNotSet; } /* pull over the cross partition variables */ bres = xp_bte_copy(remote_vars_pa, ia64_tpa((u64) remote_vars), XPC_VARS_ALIGNED_SIZE, (BTE_NOTIFY | BTE_WACQUIRE), NULL); if (bres != BTE_SUCCESS) { return xpc_map_bte_errors(bres); } if (XPC_VERSION_MAJOR(remote_vars->version) != XPC_VERSION_MAJOR(XPC_V_VERSION)) { return xpcBadVersion; } return xpcSuccess; } /* * Prior code has determine the nasid which generated an IPI. Inspect * that nasid to determine if its partition needs to be activated or * deactivated. * * A partition is consider "awaiting activation" if our partition * flags indicate it is not active and it has a heartbeat. A * partition is considered "awaiting deactivation" if our partition * flags indicate it is active but it has no heartbeat or it is not * sending its heartbeat to us. * * To determine the heartbeat, the remote nasid must have a properly * initialized reserved page. */ static void xpc_identify_act_IRQ_req(int nasid) { struct xpc_rsvd_page *remote_rp; struct xpc_vars *remote_vars; u64 remote_rsvd_page_pa; u64 remote_vars_pa; partid_t partid; struct xpc_partition *part; enum xpc_retval ret; /* pull over the reserved page structure */ remote_rp = (struct xpc_rsvd_page *) xpc_remote_copy_buffer; ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rsvd_page_pa); if (ret != xpcSuccess) { dev_warn(xpc_part, "unable to get reserved page from nasid %d, " "which sent interrupt, reason=%d\n", nasid, ret); return; } remote_vars_pa = remote_rp->vars_pa; partid = remote_rp->partid; part = &xpc_partitions[partid]; /* pull over the cross partition variables */ remote_vars = (struct xpc_vars *) xpc_remote_copy_buffer; ret = xpc_get_remote_vars(remote_vars_pa, remote_vars); if (ret != xpcSuccess) { dev_warn(xpc_part, "unable to get XPC variables from nasid %d, " "which sent interrupt, reason=%d\n", nasid, ret); XPC_DEACTIVATE_PARTITION(part, ret); return; } part->act_IRQ_rcvd++; dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = " "%ld:0x%lx\n", (int) nasid, (int) partid, part->act_IRQ_rcvd, remote_vars->heartbeat, remote_vars->heartbeating_to_mask); if (part->act_state == XPC_P_INACTIVE) { part->remote_rp_pa = remote_rsvd_page_pa; dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n", part->remote_rp_pa); part->remote_vars_pa = remote_vars_pa; dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n", part->remote_vars_pa); part->last_heartbeat = remote_vars->heartbeat; dev_dbg(xpc_part, " last_heartbeat = 0x%016lx\n", part->last_heartbeat); part->remote_vars_part_pa = remote_vars->vars_part_pa; dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n", part->remote_vars_part_pa); part->remote_act_nasid = remote_vars->act_nasid; dev_dbg(xpc_part, " remote_act_nasid = 0x%x\n", part->remote_act_nasid); part->remote_act_phys_cpuid = remote_vars->act_phys_cpuid; dev_dbg(xpc_part, " remote_act_phys_cpuid = 0x%x\n", part->remote_act_phys_cpuid); part->remote_amos_page_pa = remote_vars->amos_page_pa; dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n", part->remote_amos_page_pa); xpc_activate_partition(part); } else if (part->remote_amos_page_pa != remote_vars->amos_page_pa || !XPC_HB_ALLOWED(sn_partition_id, remote_vars)) { part->reactivate_nasid = nasid; XPC_DEACTIVATE_PARTITION(part, xpcReactivating); } } /* * Loop through the activation AMO variables and process any bits * which are set. Each bit indicates a nasid sending a partition * activation or deactivation request. * * Return #of IRQs detected. */ int xpc_identify_act_IRQ_sender(void) { int word, bit; u64 nasid_mask; u64 nasid; /* remote nasid */ int n_IRQs_detected = 0; AMO_t *act_amos; struct xpc_rsvd_page *rp = (struct xpc_rsvd_page *) xpc_rsvd_page; act_amos = xpc_vars->act_amos; /* scan through act AMO variable looking for non-zero entries */ for (word = 0; word < XP_NASID_MASK_WORDS; word++) { nasid_mask = xpc_IPI_receive(&act_amos[word]); if (nasid_mask == 0) { /* no IRQs from nasids in this variable */ continue; } dev_dbg(xpc_part, "AMO[%d] gave back 0x%lx\n", word, nasid_mask); /* * If this nasid has been added to the machine since * our partition was reset, this will retain the * remote nasid in our reserved pages machine mask. * This is used in the event of module reload. */ rp->mach_nasids[word] |= nasid_mask; /* locate the nasid(s) which sent interrupts */ for (bit = 0; bit < (8 * sizeof(u64)); bit++) { if (nasid_mask & (1UL << bit)) { n_IRQs_detected++; nasid = XPC_NASID_FROM_W_B(word, bit); dev_dbg(xpc_part, "interrupt from nasid %ld\n", nasid); xpc_identify_act_IRQ_req(nasid); } } } return n_IRQs_detected; } /* * Mark specified partition as active. */ enum xpc_retval xpc_mark_partition_active(struct xpc_partition *part) { unsigned long irq_flags; enum xpc_retval ret; dev_dbg(xpc_part, "setting partition %d to ACTIVE\n", XPC_PARTID(part)); spin_lock_irqsave(&part->act_lock, irq_flags); if (part->act_state == XPC_P_ACTIVATING) { part->act_state = XPC_P_ACTIVE; ret = xpcSuccess; } else { DBUG_ON(part->reason == xpcSuccess); ret = part->reason; } spin_unlock_irqrestore(&part->act_lock, irq_flags); return ret; } /* * Notify XPC that the partition is down. */ void xpc_deactivate_partition(const int line, struct xpc_partition *part, enum xpc_retval reason) { unsigned long irq_flags; partid_t partid = XPC_PARTID(part); spin_lock_irqsave(&part->act_lock, irq_flags); if (part->act_state == XPC_P_INACTIVE) { XPC_SET_REASON(part, reason, line); spin_unlock_irqrestore(&part->act_lock, irq_flags); if (reason == xpcReactivating) { /* we interrupt ourselves to reactivate partition */ xpc_IPI_send_reactivate(part); } return; } if (part->act_state == XPC_P_DEACTIVATING) { if ((part->reason == xpcUnloading && reason != xpcUnloading) || reason == xpcReactivating) { XPC_SET_REASON(part, reason, line); } spin_unlock_irqrestore(&part->act_lock, irq_flags); return; } part->act_state = XPC_P_DEACTIVATING; XPC_SET_REASON(part, reason, line); spin_unlock_irqrestore(&part->act_lock, irq_flags); XPC_DISALLOW_HB(partid, xpc_vars); dev_dbg(xpc_part, "bringing partition %d down, reason = %d\n", partid, reason); xpc_partition_down(part, reason); } /* * Mark specified partition as active. */ void xpc_mark_partition_inactive(struct xpc_partition *part) { unsigned long irq_flags; dev_dbg(xpc_part, "setting partition %d to INACTIVE\n", XPC_PARTID(part)); spin_lock_irqsave(&part->act_lock, irq_flags); part->act_state = XPC_P_INACTIVE; spin_unlock_irqrestore(&part->act_lock, irq_flags); part->remote_rp_pa = 0; } /* * SAL has provided a partition and machine mask. The partition mask * contains a bit for each even nasid in our partition. The machine * mask contains a bit for each even nasid in the entire machine. * * Using those two bit arrays, we can determine which nasids are * known in the machine. Each should also have a reserved page * initialized if they are available for partitioning. */ void xpc_discovery(void) { void *remote_rp_base; struct xpc_rsvd_page *remote_rp; struct xpc_vars *remote_vars; u64 remote_rsvd_page_pa; u64 remote_vars_pa; int region; int max_regions; int nasid; struct xpc_rsvd_page *rp; partid_t partid; struct xpc_partition *part; u64 *discovered_nasids; enum xpc_retval ret; remote_rp = xpc_kmalloc_cacheline_aligned(XPC_RSVD_PAGE_ALIGNED_SIZE, GFP_KERNEL, &remote_rp_base); if (remote_rp == NULL) { return; } remote_vars = (struct xpc_vars *) remote_rp; discovered_nasids = kmalloc(sizeof(u64) * XP_NASID_MASK_WORDS, GFP_KERNEL); if (discovered_nasids == NULL) { kfree(remote_rp_base); return; } memset(discovered_nasids, 0, sizeof(u64) * XP_NASID_MASK_WORDS); rp = (struct xpc_rsvd_page *) xpc_rsvd_page; /* * The term 'region' in this context refers to the minimum number of * nodes that can comprise an access protection grouping. The access * protection is in regards to memory, IOI and IPI. */ //>>> move the next two #defines into either include/asm-ia64/sn/arch.h or //>>> include/asm-ia64/sn/addrs.h #define SH1_MAX_REGIONS 64 #define SH2_MAX_REGIONS 256 max_regions = is_shub2() ? SH2_MAX_REGIONS : SH1_MAX_REGIONS; for (region = 0; region < max_regions; region++) { if ((volatile int) xpc_exiting) { break; } dev_dbg(xpc_part, "searching region %d\n", region); for (nasid = (region * sn_region_size * 2); nasid < ((region + 1) * sn_region_size * 2); nasid += 2) { if ((volatile int) xpc_exiting) { break; } dev_dbg(xpc_part, "checking nasid %d\n", nasid); if (XPC_NASID_IN_ARRAY(nasid, rp->part_nasids)) { dev_dbg(xpc_part, "PROM indicates Nasid %d is " "part of the local partition; skipping " "region\n", nasid); break; } if (!(XPC_NASID_IN_ARRAY(nasid, rp->mach_nasids))) { dev_dbg(xpc_part, "PROM indicates Nasid %d was " "not on Numa-Link network at reset\n", nasid); continue; } if (XPC_NASID_IN_ARRAY(nasid, discovered_nasids)) { dev_dbg(xpc_part, "Nasid %d is part of a " "partition which was previously " "discovered\n", nasid); continue; } /* pull over the reserved page structure */ ret = xpc_get_remote_rp(nasid, discovered_nasids, remote_rp, &remote_rsvd_page_pa); if (ret != xpcSuccess) { dev_dbg(xpc_part, "unable to get reserved page " "from nasid %d, reason=%d\n", nasid, ret); if (ret == xpcLocalPartid) { break; } continue; } remote_vars_pa = remote_rp->vars_pa; partid = remote_rp->partid; part = &xpc_partitions[partid]; /* pull over the cross partition variables */ ret = xpc_get_remote_vars(remote_vars_pa, remote_vars); if (ret != xpcSuccess) { dev_dbg(xpc_part, "unable to get XPC variables " "from nasid %d, reason=%d\n", nasid, ret); XPC_DEACTIVATE_PARTITION(part, ret); continue; } if (part->act_state != XPC_P_INACTIVE) { dev_dbg(xpc_part, "partition %d on nasid %d is " "already activating\n", partid, nasid); break; } /* * Register the remote partition's AMOs with SAL so it * can handle and cleanup errors within that address * range should the remote partition go down. We don't * unregister this range because it is difficult to * tell when outstanding writes to the remote partition * are finished and thus when it is thus safe to * unregister. This should not result in wasted space * in the SAL xp_addr_region table because we should * get the same page for remote_act_amos_pa after * module reloads and system reboots. */ if (sn_register_xp_addr_region( remote_vars->amos_page_pa, PAGE_SIZE, 1) < 0) { dev_dbg(xpc_part, "partition %d failed to " "register xp_addr region 0x%016lx\n", partid, remote_vars->amos_page_pa); XPC_SET_REASON(part, xpcPhysAddrRegFailed, __LINE__); break; } /* * The remote nasid is valid and available. * Send an interrupt to that nasid to notify * it that we are ready to begin activation. */ dev_dbg(xpc_part, "sending an interrupt to AMO 0x%lx, " "nasid %d, phys_cpuid 0x%x\n", remote_vars->amos_page_pa, remote_vars->act_nasid, remote_vars->act_phys_cpuid); xpc_IPI_send_activate(remote_vars); } } kfree(discovered_nasids); kfree(remote_rp_base); } /* * Given a partid, get the nasids owned by that partition from the * remote partitions reserved page. */ enum xpc_retval xpc_initiate_partid_to_nasids(partid_t partid, void *nasid_mask) { struct xpc_partition *part; u64 part_nasid_pa; int bte_res; part = &xpc_partitions[partid]; if (part->remote_rp_pa == 0) { return xpcPartitionDown; } part_nasid_pa = part->remote_rp_pa + (u64) &((struct xpc_rsvd_page *) 0)->part_nasids; bte_res = xp_bte_copy(part_nasid_pa, ia64_tpa((u64) nasid_mask), L1_CACHE_ALIGN(XP_NASID_MASK_BYTES), (BTE_NOTIFY | BTE_WACQUIRE), NULL); return xpc_map_bte_errors(bte_res); }