/* * drivers/net/phy/phy.c * * Framework for configuring and reading PHY devices * Based on code in sungem_phy.c and gianfar_phy.c * * Author: Andy Fleming * * Copyright (c) 2004 Freescale Semiconductor, Inc. * Copyright (c) 2006 Maciej W. Rozycki * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * */ #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/unistd.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/mii.h> #include <linux/ethtool.h> #include <linux/phy.h> #include <linux/timer.h> #include <linux/workqueue.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/uaccess.h> /* Convenience function to print out the current phy status */ void phy_print_status(struct phy_device *phydev) { pr_info("PHY: %s - Link is %s", phydev->dev.bus_id, phydev->link ? "Up" : "Down"); if (phydev->link) printk(" - %d/%s", phydev->speed, DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); printk("\n"); } EXPORT_SYMBOL(phy_print_status); /* Convenience functions for reading/writing a given PHY * register. They MUST NOT be called from interrupt context, * because the bus read/write functions may wait for an interrupt * to conclude the operation. */ int phy_read(struct phy_device *phydev, u16 regnum) { int retval; struct mii_bus *bus = phydev->bus; spin_lock_bh(&bus->mdio_lock); retval = bus->read(bus, phydev->addr, regnum); spin_unlock_bh(&bus->mdio_lock); return retval; } EXPORT_SYMBOL(phy_read); int phy_write(struct phy_device *phydev, u16 regnum, u16 val) { int err; struct mii_bus *bus = phydev->bus; spin_lock_bh(&bus->mdio_lock); err = bus->write(bus, phydev->addr, regnum, val); spin_unlock_bh(&bus->mdio_lock); return err; } EXPORT_SYMBOL(phy_write); int phy_clear_interrupt(struct phy_device *phydev) { int err = 0; if (phydev->drv->ack_interrupt) err = phydev->drv->ack_interrupt(phydev); return err; } int phy_config_interrupt(struct phy_device *phydev, u32 interrupts) { int err = 0; phydev->interrupts = interrupts; if (phydev->drv->config_intr) err = phydev->drv->config_intr(phydev); return err; } /* phy_aneg_done * * description: Reads the status register and returns 0 either if * auto-negotiation is incomplete, or if there was an error. * Returns BMSR_ANEGCOMPLETE if auto-negotiation is done. */ static inline int phy_aneg_done(struct phy_device *phydev) { int retval; retval = phy_read(phydev, MII_BMSR); return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); } /* A structure for mapping a particular speed and duplex * combination to a particular SUPPORTED and ADVERTISED value */ struct phy_setting { int speed; int duplex; u32 setting; }; /* A mapping of all SUPPORTED settings to speed/duplex */ static const struct phy_setting settings[] = { { .speed = 10000, .duplex = DUPLEX_FULL, .setting = SUPPORTED_10000baseT_Full, }, { .speed = SPEED_1000, .duplex = DUPLEX_FULL, .setting = SUPPORTED_1000baseT_Full, }, { .speed = SPEED_1000, .duplex = DUPLEX_HALF, .setting = SUPPORTED_1000baseT_Half, }, { .speed = SPEED_100, .duplex = DUPLEX_FULL, .setting = SUPPORTED_100baseT_Full, }, { .speed = SPEED_100, .duplex = DUPLEX_HALF, .setting = SUPPORTED_100baseT_Half, }, { .speed = SPEED_10, .duplex = DUPLEX_FULL, .setting = SUPPORTED_10baseT_Full, }, { .speed = SPEED_10, .duplex = DUPLEX_HALF, .setting = SUPPORTED_10baseT_Half, }, }; #define MAX_NUM_SETTINGS (sizeof(settings)/sizeof(struct phy_setting)) /* phy_find_setting * * description: Searches the settings array for the setting which * matches the desired speed and duplex, and returns the index * of that setting. Returns the index of the last setting if * none of the others match. */ static inline int phy_find_setting(int speed, int duplex) { int idx = 0; while (idx < ARRAY_SIZE(settings) && (settings[idx].speed != speed || settings[idx].duplex != duplex)) idx++; return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; } /* phy_find_valid * idx: The first index in settings[] to search * features: A mask of the valid settings * * description: Returns the index of the first valid setting less * than or equal to the one pointed to by idx, as determined by * the mask in features. Returns the index of the last setting * if nothing else matches. */ static inline int phy_find_valid(int idx, u32 features) { while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features)) idx++; return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1; } /* phy_sanitize_settings * * description: Make sure the PHY is set to supported speeds and * duplexes. Drop down by one in this order: 1000/FULL, * 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF */ void phy_sanitize_settings(struct phy_device *phydev) { u32 features = phydev->supported; int idx; /* Sanitize settings based on PHY capabilities */ if ((features & SUPPORTED_Autoneg) == 0) phydev->autoneg = 0; idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex), features); phydev->speed = settings[idx].speed; phydev->duplex = settings[idx].duplex; } EXPORT_SYMBOL(phy_sanitize_settings); /* phy_ethtool_sset: * A generic ethtool sset function. Handles all the details * * A few notes about parameter checking: * - We don't set port or transceiver, so we don't care what they * were set to. * - phy_start_aneg() will make sure forced settings are sane, and * choose the next best ones from the ones selected, so we don't * care if ethtool tries to give us bad values * */ int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd) { if (cmd->phy_address != phydev->addr) return -EINVAL; /* We make sure that we don't pass unsupported * values in to the PHY */ cmd->advertising &= phydev->supported; /* Verify the settings we care about. */ if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE) return -EINVAL; if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0) return -EINVAL; if (cmd->autoneg == AUTONEG_DISABLE && ((cmd->speed != SPEED_1000 && cmd->speed != SPEED_100 && cmd->speed != SPEED_10) || (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL))) return -EINVAL; phydev->autoneg = cmd->autoneg; phydev->speed = cmd->speed; phydev->advertising = cmd->advertising; if (AUTONEG_ENABLE == cmd->autoneg) phydev->advertising |= ADVERTISED_Autoneg; else phydev->advertising &= ~ADVERTISED_Autoneg; phydev->duplex = cmd->duplex; /* Restart the PHY */ phy_start_aneg(phydev); return 0; } EXPORT_SYMBOL(phy_ethtool_sset); int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd) { cmd->supported = phydev->supported; cmd->advertising = phydev->advertising; cmd->speed = phydev->speed; cmd->duplex = phydev->duplex; cmd->port = PORT_MII; cmd->phy_address = phydev->addr; cmd->transceiver = XCVR_EXTERNAL; cmd->autoneg = phydev->autoneg; return 0; } EXPORT_SYMBOL(phy_ethtool_gset); /* Note that this function is currently incompatible with the * PHYCONTROL layer. It changes registers without regard to * current state. Use at own risk */ int phy_mii_ioctl(struct phy_device *phydev, struct mii_ioctl_data *mii_data, int cmd) { u16 val = mii_data->val_in; switch (cmd) { case SIOCGMIIPHY: mii_data->phy_id = phydev->addr; break; case SIOCGMIIREG: mii_data->val_out = phy_read(phydev, mii_data->reg_num); break; case SIOCSMIIREG: if (!capable(CAP_NET_ADMIN)) return -EPERM; if (mii_data->phy_id == phydev->addr) { switch(mii_data->reg_num) { case MII_BMCR: if (val & (BMCR_RESET|BMCR_ANENABLE)) phydev->autoneg = AUTONEG_DISABLE; else phydev->autoneg = AUTONEG_ENABLE; if ((!phydev->autoneg) && (val & BMCR_FULLDPLX)) phydev->duplex = DUPLEX_FULL; else phydev->duplex = DUPLEX_HALF; break; case MII_ADVERTISE: phydev->advertising = val; break; default: /* do nothing */ break; } } phy_write(phydev, mii_data->reg_num, val); if (mii_data->reg_num == MII_BMCR && val & BMCR_RESET && phydev->drv->config_init) phydev->drv->config_init(phydev); break; } return 0; } /* phy_start_aneg * * description: Sanitizes the settings (if we're not * autonegotiating them), and then calls the driver's * config_aneg function. If the PHYCONTROL Layer is operating, * we change the state to reflect the beginning of * Auto-negotiation or forcing. */ int phy_start_aneg(struct phy_device *phydev) { int err; spin_lock(&phydev->lock); if (AUTONEG_DISABLE == phydev->autoneg) phy_sanitize_settings(phydev); err = phydev->drv->config_aneg(phydev); if (err < 0) goto out_unlock; if (phydev->state != PHY_HALTED) { if (AUTONEG_ENABLE == phydev->autoneg) { phydev->state = PHY_AN; phydev->link_timeout = PHY_AN_TIMEOUT; } else { phydev->state = PHY_FORCING; phydev->link_timeout = PHY_FORCE_TIMEOUT; } } out_unlock: spin_unlock(&phydev->lock); return err; } EXPORT_SYMBOL(phy_start_aneg); static void phy_change(struct work_struct *work); static void phy_timer(unsigned long data); /* phy_start_machine: * * description: The PHY infrastructure can run a state machine * which tracks whether the PHY is starting up, negotiating, * etc. This function starts the timer which tracks the state * of the PHY. If you want to be notified when the state * changes, pass in the callback, otherwise, pass NULL. If you * want to maintain your own state machine, do not call this * function. */ void phy_start_machine(struct phy_device *phydev, void (*handler)(struct net_device *)) { phydev->adjust_state = handler; init_timer(&phydev->phy_timer); phydev->phy_timer.function = &phy_timer; phydev->phy_timer.data = (unsigned long) phydev; mod_timer(&phydev->phy_timer, jiffies + HZ); } /* phy_stop_machine * * description: Stops the state machine timer, sets the state to UP * (unless it wasn't up yet). This function must be called BEFORE * phy_detach. */ void phy_stop_machine(struct phy_device *phydev) { del_timer_sync(&phydev->phy_timer); spin_lock(&phydev->lock); if (phydev->state > PHY_UP) phydev->state = PHY_UP; spin_unlock(&phydev->lock); phydev->adjust_state = NULL; } /* phy_force_reduction * * description: Reduces the speed/duplex settings by * one notch. The order is so: * 1000/FULL, 1000/HALF, 100/FULL, 100/HALF, * 10/FULL, 10/HALF. The function bottoms out at 10/HALF. */ static void phy_force_reduction(struct phy_device *phydev) { int idx; idx = phy_find_setting(phydev->speed, phydev->duplex); idx++; idx = phy_find_valid(idx, phydev->supported); phydev->speed = settings[idx].speed; phydev->duplex = settings[idx].duplex; pr_info("Trying %d/%s\n", phydev->speed, DUPLEX_FULL == phydev->duplex ? "FULL" : "HALF"); } /* phy_error: * * Moves the PHY to the HALTED state in response to a read * or write error, and tells the controller the link is down. * Must not be called from interrupt context, or while the * phydev->lock is held. */ void phy_error(struct phy_device *phydev) { spin_lock(&phydev->lock); phydev->state = PHY_HALTED; spin_unlock(&phydev->lock); } /* phy_interrupt * * description: When a PHY interrupt occurs, the handler disables * interrupts, and schedules a work task to clear the interrupt. */ static irqreturn_t phy_interrupt(int irq, void *phy_dat) { struct phy_device *phydev = phy_dat; if (PHY_HALTED == phydev->state) return IRQ_NONE; /* It can't be ours. */ /* The MDIO bus is not allowed to be written in interrupt * context, so we need to disable the irq here. A work * queue will write the PHY to disable and clear the * interrupt, and then reenable the irq line. */ disable_irq_nosync(irq); schedule_work(&phydev->phy_queue); return IRQ_HANDLED; } /* Enable the interrupts from the PHY side */ int phy_enable_interrupts(struct phy_device *phydev) { int err; err = phy_clear_interrupt(phydev); if (err < 0) return err; err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED); return err; } EXPORT_SYMBOL(phy_enable_interrupts); /* Disable the PHY interrupts from the PHY side */ int phy_disable_interrupts(struct phy_device *phydev) { int err; /* Disable PHY interrupts */ err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); if (err) goto phy_err; /* Clear the interrupt */ err = phy_clear_interrupt(phydev); if (err) goto phy_err; return 0; phy_err: phy_error(phydev); return err; } EXPORT_SYMBOL(phy_disable_interrupts); /* phy_start_interrupts * * description: Request the interrupt for the given PHY. If * this fails, then we set irq to PHY_POLL. * Otherwise, we enable the interrupts in the PHY. * Returns 0 on success. * This should only be called with a valid IRQ number. */ int phy_start_interrupts(struct phy_device *phydev) { int err = 0; INIT_WORK(&phydev->phy_queue, phy_change); if (request_irq(phydev->irq, phy_interrupt, IRQF_SHARED, "phy_interrupt", phydev) < 0) { printk(KERN_WARNING "%s: Can't get IRQ %d (PHY)\n", phydev->bus->name, phydev->irq); phydev->irq = PHY_POLL; return 0; } err = phy_enable_interrupts(phydev); return err; } EXPORT_SYMBOL(phy_start_interrupts); int phy_stop_interrupts(struct phy_device *phydev) { int err; err = phy_disable_interrupts(phydev); if (err) phy_error(phydev); /* * Finish any pending work; we might have been scheduled * to be called from keventd ourselves, though. */ run_scheduled_work(&phydev->phy_queue); free_irq(phydev->irq, phydev); return err; } EXPORT_SYMBOL(phy_stop_interrupts); /* Scheduled by the phy_interrupt/timer to handle PHY changes */ static void phy_change(struct work_struct *work) { int err; struct phy_device *phydev = container_of(work, struct phy_device, phy_queue); err = phy_disable_interrupts(phydev); if (err) goto phy_err; spin_lock(&phydev->lock); if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state)) phydev->state = PHY_CHANGELINK; spin_unlock(&phydev->lock); enable_irq(phydev->irq); /* Reenable interrupts */ if (PHY_HALTED != phydev->state) err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED); if (err) goto irq_enable_err; return; irq_enable_err: disable_irq(phydev->irq); phy_err: phy_error(phydev); } /* Bring down the PHY link, and stop checking the status. */ void phy_stop(struct phy_device *phydev) { spin_lock(&phydev->lock); if (PHY_HALTED == phydev->state) goto out_unlock; phydev->state = PHY_HALTED; if (phydev->irq != PHY_POLL) { /* Disable PHY Interrupts */ phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED); /* Clear any pending interrupts */ phy_clear_interrupt(phydev); } out_unlock: spin_unlock(&phydev->lock); /* * Cannot call flush_scheduled_work() here as desired because * of rtnl_lock(), but PHY_HALTED shall guarantee phy_change() * will not reenable interrupts. */ } /* phy_start * * description: Indicates the attached device's readiness to * handle PHY-related work. Used during startup to start the * PHY, and after a call to phy_stop() to resume operation. * Also used to indicate the MDIO bus has cleared an error * condition. */ void phy_start(struct phy_device *phydev) { spin_lock(&phydev->lock); switch (phydev->state) { case PHY_STARTING: phydev->state = PHY_PENDING; break; case PHY_READY: phydev->state = PHY_UP; break; case PHY_HALTED: phydev->state = PHY_RESUMING; default: break; } spin_unlock(&phydev->lock); } EXPORT_SYMBOL(phy_stop); EXPORT_SYMBOL(phy_start); /* PHY timer which handles the state machine */ static void phy_timer(unsigned long data) { struct phy_device *phydev = (struct phy_device *)data; int needs_aneg = 0; int err = 0; spin_lock(&phydev->lock); if (phydev->adjust_state) phydev->adjust_state(phydev->attached_dev); switch(phydev->state) { case PHY_DOWN: case PHY_STARTING: case PHY_READY: case PHY_PENDING: break; case PHY_UP: needs_aneg = 1; phydev->link_timeout = PHY_AN_TIMEOUT; break; case PHY_AN: err = phy_read_status(phydev); if (err < 0) break; /* If the link is down, give up on * negotiation for now */ if (!phydev->link) { phydev->state = PHY_NOLINK; netif_carrier_off(phydev->attached_dev); phydev->adjust_link(phydev->attached_dev); break; } /* Check if negotiation is done. Break * if there's an error */ err = phy_aneg_done(phydev); if (err < 0) break; /* If AN is done, we're running */ if (err > 0) { phydev->state = PHY_RUNNING; netif_carrier_on(phydev->attached_dev); phydev->adjust_link(phydev->attached_dev); } else if (0 == phydev->link_timeout--) { int idx; needs_aneg = 1; /* If we have the magic_aneg bit, * we try again */ if (phydev->drv->flags & PHY_HAS_MAGICANEG) break; /* The timer expired, and we still * don't have a setting, so we try * forcing it until we find one that * works, starting from the fastest speed, * and working our way down */ idx = phy_find_valid(0, phydev->supported); phydev->speed = settings[idx].speed; phydev->duplex = settings[idx].duplex; phydev->autoneg = AUTONEG_DISABLE; pr_info("Trying %d/%s\n", phydev->speed, DUPLEX_FULL == phydev->duplex ? "FULL" : "HALF"); } break; case PHY_NOLINK: err = phy_read_status(phydev); if (err) break; if (phydev->link) { phydev->state = PHY_RUNNING; netif_carrier_on(phydev->attached_dev); phydev->adjust_link(phydev->attached_dev); } break; case PHY_FORCING: err = genphy_update_link(phydev); if (err) break; if (phydev->link) { phydev->state = PHY_RUNNING; netif_carrier_on(phydev->attached_dev); } else { if (0 == phydev->link_timeout--) { phy_force_reduction(phydev); needs_aneg = 1; } } phydev->adjust_link(phydev->attached_dev); break; case PHY_RUNNING: /* Only register a CHANGE if we are * polling */ if (PHY_POLL == phydev->irq) phydev->state = PHY_CHANGELINK; break; case PHY_CHANGELINK: err = phy_read_status(phydev); if (err) break; if (phydev->link) { phydev->state = PHY_RUNNING; netif_carrier_on(phydev->attached_dev); } else { phydev->state = PHY_NOLINK; netif_carrier_off(phydev->attached_dev); } phydev->adjust_link(phydev->attached_dev); if (PHY_POLL != phydev->irq) err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED); break; case PHY_HALTED: if (phydev->link) { phydev->link = 0; netif_carrier_off(phydev->attached_dev); phydev->adjust_link(phydev->attached_dev); } break; case PHY_RESUMING: err = phy_clear_interrupt(phydev); if (err) break; err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED); if (err) break; if (AUTONEG_ENABLE == phydev->autoneg) { err = phy_aneg_done(phydev); if (err < 0) break; /* err > 0 if AN is done. * Otherwise, it's 0, and we're * still waiting for AN */ if (err > 0) { phydev->state = PHY_RUNNING; } else { phydev->state = PHY_AN; phydev->link_timeout = PHY_AN_TIMEOUT; } } else phydev->state = PHY_RUNNING; break; } spin_unlock(&phydev->lock); if (needs_aneg) err = phy_start_aneg(phydev); if (err < 0) phy_error(phydev); mod_timer(&phydev->phy_timer, jiffies + PHY_STATE_TIME * HZ); }