/* $Id: pbm.h,v 1.27 2001/08/12 13:18:23 davem Exp $ * pbm.h: UltraSparc PCI controller software state. * * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com) */ #ifndef __SPARC64_PBM_H #define __SPARC64_PBM_H #include <linux/types.h> #include <linux/pci.h> #include <linux/ioport.h> #include <linux/spinlock.h> #include <asm/io.h> #include <asm/page.h> #include <asm/oplib.h> #include <asm/prom.h> #include <asm/of_device.h> #include <asm/iommu.h> /* The abstraction used here is that there are PCI controllers, * each with one (Sabre) or two (PSYCHO/SCHIZO) PCI bus modules * underneath. Each PCI bus module uses an IOMMU (shared by both * PBMs of a controller, or per-PBM), and if a streaming buffer * is present, each PCI bus module has it's own. (ie. the IOMMU * might be shared between PBMs, the STC is never shared) * Furthermore, each PCI bus module controls it's own autonomous * PCI bus. */ struct pci_controller_info; /* This contains the software state necessary to drive a PCI * controller's IOMMU. */ struct pci_iommu_arena { unsigned long *map; unsigned int hint; unsigned int limit; }; struct pci_iommu { /* This protects the controller's IOMMU and all * streaming buffers underneath. */ spinlock_t lock; struct pci_iommu_arena arena; /* IOMMU page table, a linear array of ioptes. */ iopte_t *page_table; /* The page table itself. */ /* Base PCI memory space address where IOMMU mappings * begin. */ u32 page_table_map_base; /* IOMMU Controller Registers */ unsigned long iommu_control; /* IOMMU control register */ unsigned long iommu_tsbbase; /* IOMMU page table base register */ unsigned long iommu_flush; /* IOMMU page flush register */ unsigned long iommu_ctxflush; /* IOMMU context flush register */ /* This is a register in the PCI controller, which if * read will have no side-effects but will guarantee * completion of all previous writes into IOMMU/STC. */ unsigned long write_complete_reg; /* In order to deal with some buggy third-party PCI bridges that * do wrong prefetching, we never mark valid mappings as invalid. * Instead we point them at this dummy page. */ unsigned long dummy_page; unsigned long dummy_page_pa; /* CTX allocation. */ unsigned long ctx_lowest_free; unsigned long ctx_bitmap[IOMMU_NUM_CTXS / (sizeof(unsigned long) * 8)]; /* Here a PCI controller driver describes the areas of * PCI memory space where DMA to/from physical memory * are addressed. Drivers interrogate the PCI layer * if their device has addressing limitations. They * do so via pci_dma_supported, and pass in a mask of * DMA address bits their device can actually drive. * * The test for being usable is: * (device_mask & dma_addr_mask) == dma_addr_mask */ u32 dma_addr_mask; }; extern void pci_iommu_table_init(struct pci_iommu *iommu, int tsbsize, u32 dma_offset, u32 dma_addr_mask); /* This describes a PCI bus module's streaming buffer. */ struct pci_strbuf { int strbuf_enabled; /* Present and using it? */ /* Streaming Buffer Control Registers */ unsigned long strbuf_control; /* STC control register */ unsigned long strbuf_pflush; /* STC page flush register */ unsigned long strbuf_fsync; /* STC flush synchronization reg */ unsigned long strbuf_ctxflush; /* STC context flush register */ unsigned long strbuf_ctxmatch_base; /* STC context flush match reg */ unsigned long strbuf_flushflag_pa; /* Physical address of flush flag */ volatile unsigned long *strbuf_flushflag; /* The flush flag itself */ /* And this is the actual flush flag area. * We allocate extra because the chips require * a 64-byte aligned area. */ volatile unsigned long __flushflag_buf[(64 + (64 - 1)) / sizeof(long)]; }; #define PCI_STC_FLUSHFLAG_INIT(STC) \ (*((STC)->strbuf_flushflag) = 0UL) #define PCI_STC_FLUSHFLAG_SET(STC) \ (*((STC)->strbuf_flushflag) != 0UL) /* There can be quite a few ranges and interrupt maps on a PCI * segment. Thus... */ #define PROM_PCIRNG_MAX 64 #define PROM_PCIIMAP_MAX 64 struct pci_pbm_info { /* PCI controller we sit under. */ struct pci_controller_info *parent; /* Physical address base of controller registers. */ unsigned long controller_regs; /* Physical address base of PBM registers. */ unsigned long pbm_regs; /* Physical address of DMA sync register, if any. */ unsigned long sync_reg; /* Opaque 32-bit system bus Port ID. */ u32 portid; /* Opaque 32-bit handle used for hypervisor calls. */ u32 devhandle; /* Chipset version information. */ int chip_type; #define PBM_CHIP_TYPE_SABRE 1 #define PBM_CHIP_TYPE_PSYCHO 2 #define PBM_CHIP_TYPE_SCHIZO 3 #define PBM_CHIP_TYPE_SCHIZO_PLUS 4 #define PBM_CHIP_TYPE_TOMATILLO 5 int chip_version; int chip_revision; /* Name used for top-level resources. */ char *name; /* OBP specific information. */ struct device_node *prom_node; struct linux_prom_pci_ranges *pbm_ranges; int num_pbm_ranges; struct linux_prom_pci_intmap *pbm_intmap; int num_pbm_intmap; struct linux_prom_pci_intmask *pbm_intmask; u64 ino_bitmap; /* PBM I/O and Memory space resources. */ struct resource io_space; struct resource mem_space; /* Base of PCI Config space, can be per-PBM or shared. */ unsigned long config_space; /* State of 66MHz capabilities on this PBM. */ int is_66mhz_capable; int all_devs_66mhz; /* This PBM's streaming buffer. */ struct pci_strbuf stc; /* IOMMU state, potentially shared by both PBM segments. */ struct pci_iommu *iommu; /* PCI slot mapping. */ unsigned int pci_first_slot; /* Now things for the actual PCI bus probes. */ unsigned int pci_first_busno; unsigned int pci_last_busno; struct pci_bus *pci_bus; }; struct pci_controller_info { /* List of all PCI controllers. */ struct pci_controller_info *next; /* Each controller gets a unique index, used mostly for * error logging purposes. */ int index; /* Do the PBMs both exist in the same PCI domain? */ int pbms_same_domain; /* The PCI bus modules controlled by us. */ struct pci_pbm_info pbm_A; struct pci_pbm_info pbm_B; /* Operations which are controller specific. */ void (*scan_bus)(struct pci_controller_info *); void (*base_address_update)(struct pci_dev *, int); void (*resource_adjust)(struct pci_dev *, struct resource *, struct resource *); /* Now things for the actual PCI bus probes. */ struct pci_ops *pci_ops; unsigned int pci_first_busno; unsigned int pci_last_busno; }; /* PCI devices which are not bridges have this placed in their pci_dev * sysdata member. This makes OBP aware PCI device drivers easier to * code. */ struct pcidev_cookie { struct pci_pbm_info *pbm; struct device_node *prom_node; struct of_device *op; struct linux_prom_pci_registers prom_regs[PROMREG_MAX]; int num_prom_regs; struct linux_prom_pci_registers prom_assignments[PROMREG_MAX]; int num_prom_assignments; }; /* Currently these are the same across all PCI controllers * we support. Someday they may not be... */ #define PCI_IRQ_IGN 0x000007c0 /* Interrupt Group Number */ #define PCI_IRQ_INO 0x0000003f /* Interrupt Number */ #endif /* !(__SPARC64_PBM_H) */