/* * linux/fs/proc/proc_misc.c * * linux/fs/proc/array.c * Copyright (C) 1992 by Linus Torvalds * based on ideas by Darren Senn * * This used to be the part of array.c. See the rest of history and credits * there. I took this into a separate file and switched the thing to generic * proc_file_inode_operations, leaving in array.c only per-process stuff. * Inumbers allocation made dynamic (via create_proc_entry()). AV, May 1999. * * Changes: * Fulton Green : Encapsulated position metric calculations. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #define LOAD_INT(x) ((x) >> FSHIFT) #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) /* * Warning: stuff below (imported functions) assumes that its output will fit * into one page. For some of those functions it may be wrong. Moreover, we * have a way to deal with that gracefully. Right now I used straightforward * wrappers, but this needs further analysis wrt potential overflows. */ extern int get_hardware_list(char *); extern int get_stram_list(char *); extern int get_filesystem_list(char *); extern int get_exec_domain_list(char *); extern int get_dma_list(char *); extern int get_locks_status (char *, char **, off_t, int); static int proc_calc_metrics(char *page, char **start, off_t off, int count, int *eof, int len) { if (len <= off+count) *eof = 1; *start = page + off; len -= off; if (len>count) len = count; if (len<0) len = 0; return len; } static int loadavg_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { int a, b, c; int len; a = avenrun[0] + (FIXED_1/200); b = avenrun[1] + (FIXED_1/200); c = avenrun[2] + (FIXED_1/200); len = sprintf(page,"%d.%02d %d.%02d %d.%02d %ld/%d %d\n", LOAD_INT(a), LOAD_FRAC(a), LOAD_INT(b), LOAD_FRAC(b), LOAD_INT(c), LOAD_FRAC(c), nr_running(), nr_threads, last_pid); return proc_calc_metrics(page, start, off, count, eof, len); } static int uptime_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { struct timespec uptime; struct timespec idle; int len; cputime_t idletime = cputime_add(init_task.utime, init_task.stime); do_posix_clock_monotonic_gettime(&uptime); cputime_to_timespec(idletime, &idle); len = sprintf(page,"%lu.%02lu %lu.%02lu\n", (unsigned long) uptime.tv_sec, (uptime.tv_nsec / (NSEC_PER_SEC / 100)), (unsigned long) idle.tv_sec, (idle.tv_nsec / (NSEC_PER_SEC / 100))); return proc_calc_metrics(page, start, off, count, eof, len); } static int meminfo_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { struct sysinfo i; int len; struct page_state ps; unsigned long inactive; unsigned long active; unsigned long free; unsigned long committed; unsigned long allowed; struct vmalloc_info vmi; long cached; get_page_state(&ps); get_zone_counts(&active, &inactive, &free); /* * display in kilobytes. */ #define K(x) ((x) << (PAGE_SHIFT - 10)) si_meminfo(&i); si_swapinfo(&i); committed = atomic_read(&vm_committed_space); allowed = ((totalram_pages - hugetlb_total_pages()) * sysctl_overcommit_ratio / 100) + total_swap_pages; cached = get_page_cache_size() - total_swapcache_pages - i.bufferram; if (cached < 0) cached = 0; get_vmalloc_info(&vmi); /* * Tagged format, for easy grepping and expansion. */ len = sprintf(page, "MemTotal: %8lu kB\n" "MemFree: %8lu kB\n" "Buffers: %8lu kB\n" "Cached: %8lu kB\n" "SwapCached: %8lu kB\n" "Active: %8lu kB\n" "Inactive: %8lu kB\n" "HighTotal: %8lu kB\n" "HighFree: %8lu kB\n" "LowTotal: %8lu kB\n" "LowFree: %8lu kB\n" "SwapTotal: %8lu kB\n" "SwapFree: %8lu kB\n" "Dirty: %8lu kB\n" "Writeback: %8lu kB\n" "Mapped: %8lu kB\n" "Slab: %8lu kB\n" "CommitLimit: %8lu kB\n" "Committed_AS: %8lu kB\n" "PageTables: %8lu kB\n" "VmallocTotal: %8lu kB\n" "VmallocUsed: %8lu kB\n" "VmallocChunk: %8lu kB\n", K(i.totalram), K(i.freeram), K(i.bufferram), K(cached), K(total_swapcache_pages), K(active), K(inactive), K(i.totalhigh), K(i.freehigh), K(i.totalram-i.totalhigh), K(i.freeram-i.freehigh), K(i.totalswap), K(i.freeswap), K(ps.nr_dirty), K(ps.nr_writeback), K(ps.nr_mapped), K(ps.nr_slab), K(allowed), K(committed), K(ps.nr_page_table_pages), (unsigned long)VMALLOC_TOTAL >> 10, vmi.used >> 10, vmi.largest_chunk >> 10 ); len += hugetlb_report_meminfo(page + len); return proc_calc_metrics(page, start, off, count, eof, len); #undef K } extern struct seq_operations fragmentation_op; static int fragmentation_open(struct inode *inode, struct file *file) { (void)inode; return seq_open(file, &fragmentation_op); } static struct file_operations fragmentation_file_operations = { .open = fragmentation_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; extern struct seq_operations zoneinfo_op; static int zoneinfo_open(struct inode *inode, struct file *file) { return seq_open(file, &zoneinfo_op); } static struct file_operations proc_zoneinfo_file_operations = { .open = zoneinfo_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static int version_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { int len; strcpy(page, linux_banner); len = strlen(page); return proc_calc_metrics(page, start, off, count, eof, len); } extern struct seq_operations cpuinfo_op; static int cpuinfo_open(struct inode *inode, struct file *file) { return seq_open(file, &cpuinfo_op); } enum devinfo_states { CHR_HDR, CHR_LIST, BLK_HDR, BLK_LIST, DEVINFO_DONE }; struct devinfo_state { void *chrdev; void *blkdev; unsigned int num_records; unsigned int cur_record; enum devinfo_states state; }; static void *devinfo_start(struct seq_file *f, loff_t *pos) { struct devinfo_state *info = f->private; if (*pos) { if ((info) && (*pos <= info->num_records)) return info; return NULL; } info = kmalloc(sizeof(*info), GFP_KERNEL); f->private = info; info->chrdev = acquire_chrdev_list(); info->blkdev = acquire_blkdev_list(); info->state = CHR_HDR; info->num_records = count_chrdev_list(); info->num_records += count_blkdev_list(); info->num_records += 2; /* Character and Block headers */ *pos = 1; info->cur_record = *pos; return info; } static void *devinfo_next(struct seq_file *f, void *v, loff_t *pos) { int idummy; char *ndummy; struct devinfo_state *info = f->private; switch (info->state) { case CHR_HDR: info->state = CHR_LIST; (*pos)++; /*fallthrough*/ case CHR_LIST: if (get_chrdev_info(info->chrdev,&idummy,&ndummy)) { /* * The character dev list is complete */ info->state = BLK_HDR; } else { info->chrdev = get_next_chrdev(info->chrdev); } (*pos)++; break; case BLK_HDR: info->state = BLK_LIST; (*pos)++; /*fallthrough*/ case BLK_LIST: if (get_blkdev_info(info->blkdev,&idummy,&ndummy)) { /* * The block dev list is complete */ info->state = DEVINFO_DONE; } else { info->blkdev = get_next_blkdev(info->blkdev); } (*pos)++; break; case DEVINFO_DONE: (*pos)++; info->cur_record = *pos; info = NULL; break; default: break; } if (info) info->cur_record = *pos; return info; } static void devinfo_stop(struct seq_file *f, void *v) { struct devinfo_state *info = f->private; if (info) { release_chrdev_list(info->chrdev); release_blkdev_list(info->blkdev); f->private = NULL; kfree(info); } } static int devinfo_show(struct seq_file *f, void *arg) { int major; char *name; struct devinfo_state *info = f->private; switch(info->state) { case CHR_HDR: seq_printf(f,"Character devices:\n"); /* fallthrough */ case CHR_LIST: if (!get_chrdev_info(info->chrdev,&major,&name)) seq_printf(f,"%3d %s\n",major,name); break; case BLK_HDR: seq_printf(f,"\nBlock devices:\n"); /* fallthrough */ case BLK_LIST: if (!get_blkdev_info(info->blkdev,&major,&name)) seq_printf(f,"%3d %s\n",major,name); break; default: break; } return 0; } static struct seq_operations devinfo_op = { .start = devinfo_start, .next = devinfo_next, .stop = devinfo_stop, .show = devinfo_show, }; static int devinfo_open(struct inode *inode, struct file *file) { return seq_open(file, &devinfo_op); } static struct file_operations proc_devinfo_operations = { .open = devinfo_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static struct file_operations proc_cpuinfo_operations = { .open = cpuinfo_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; extern struct seq_operations vmstat_op; static int vmstat_open(struct inode *inode, struct file *file) { return seq_open(file, &vmstat_op); } static struct file_operations proc_vmstat_file_operations = { .open = vmstat_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; #ifdef CONFIG_PROC_HARDWARE static int hardware_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { int len = get_hardware_list(page); return proc_calc_metrics(page, start, off, count, eof, len); } #endif #ifdef CONFIG_STRAM_PROC static int stram_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { int len = get_stram_list(page); return proc_calc_metrics(page, start, off, count, eof, len); } #endif extern struct seq_operations partitions_op; static int partitions_open(struct inode *inode, struct file *file) { return seq_open(file, &partitions_op); } static struct file_operations proc_partitions_operations = { .open = partitions_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; extern struct seq_operations diskstats_op; static int diskstats_open(struct inode *inode, struct file *file) { return seq_open(file, &diskstats_op); } static struct file_operations proc_diskstats_operations = { .open = diskstats_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; #ifdef CONFIG_MODULES extern struct seq_operations modules_op; static int modules_open(struct inode *inode, struct file *file) { return seq_open(file, &modules_op); } static struct file_operations proc_modules_operations = { .open = modules_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; #endif #ifdef CONFIG_SLAB extern struct seq_operations slabinfo_op; extern ssize_t slabinfo_write(struct file *, const char __user *, size_t, loff_t *); static int slabinfo_open(struct inode *inode, struct file *file) { return seq_open(file, &slabinfo_op); } static struct file_operations proc_slabinfo_operations = { .open = slabinfo_open, .read = seq_read, .write = slabinfo_write, .llseek = seq_lseek, .release = seq_release, }; #ifdef CONFIG_DEBUG_SLAB_LEAK extern struct seq_operations slabstats_op; static int slabstats_open(struct inode *inode, struct file *file) { unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); int ret = -ENOMEM; if (n) { ret = seq_open(file, &slabstats_op); if (!ret) { struct seq_file *m = file->private_data; *n = PAGE_SIZE / (2 * sizeof(unsigned long)); m->private = n; n = NULL; } kfree(n); } return ret; } static int slabstats_release(struct inode *inode, struct file *file) { struct seq_file *m = file->private_data; kfree(m->private); return seq_release(inode, file); } static struct file_operations proc_slabstats_operations = { .open = slabstats_open, .read = seq_read, .llseek = seq_lseek, .release = slabstats_release, }; #endif #endif static int show_stat(struct seq_file *p, void *v) { int i; unsigned long jif; cputime64_t user, nice, system, idle, iowait, irq, softirq, steal; u64 sum = 0; user = nice = system = idle = iowait = irq = softirq = steal = cputime64_zero; jif = - wall_to_monotonic.tv_sec; if (wall_to_monotonic.tv_nsec) --jif; for_each_possible_cpu(i) { int j; user = cputime64_add(user, kstat_cpu(i).cpustat.user); nice = cputime64_add(nice, kstat_cpu(i).cpustat.nice); system = cputime64_add(system, kstat_cpu(i).cpustat.system); idle = cputime64_add(idle, kstat_cpu(i).cpustat.idle); iowait = cputime64_add(iowait, kstat_cpu(i).cpustat.iowait); irq = cputime64_add(irq, kstat_cpu(i).cpustat.irq); softirq = cputime64_add(softirq, kstat_cpu(i).cpustat.softirq); steal = cputime64_add(steal, kstat_cpu(i).cpustat.steal); for (j = 0 ; j < NR_IRQS ; j++) sum += kstat_cpu(i).irqs[j]; } seq_printf(p, "cpu %llu %llu %llu %llu %llu %llu %llu %llu\n", (unsigned long long)cputime64_to_clock_t(user), (unsigned long long)cputime64_to_clock_t(nice), (unsigned long long)cputime64_to_clock_t(system), (unsigned long long)cputime64_to_clock_t(idle), (unsigned long long)cputime64_to_clock_t(iowait), (unsigned long long)cputime64_to_clock_t(irq), (unsigned long long)cputime64_to_clock_t(softirq), (unsigned long long)cputime64_to_clock_t(steal)); for_each_online_cpu(i) { /* Copy values here to work around gcc-2.95.3, gcc-2.96 */ user = kstat_cpu(i).cpustat.user; nice = kstat_cpu(i).cpustat.nice; system = kstat_cpu(i).cpustat.system; idle = kstat_cpu(i).cpustat.idle; iowait = kstat_cpu(i).cpustat.iowait; irq = kstat_cpu(i).cpustat.irq; softirq = kstat_cpu(i).cpustat.softirq; steal = kstat_cpu(i).cpustat.steal; seq_printf(p, "cpu%d %llu %llu %llu %llu %llu %llu %llu %llu\n", i, (unsigned long long)cputime64_to_clock_t(user), (unsigned long long)cputime64_to_clock_t(nice), (unsigned long long)cputime64_to_clock_t(system), (unsigned long long)cputime64_to_clock_t(idle), (unsigned long long)cputime64_to_clock_t(iowait), (unsigned long long)cputime64_to_clock_t(irq), (unsigned long long)cputime64_to_clock_t(softirq), (unsigned long long)cputime64_to_clock_t(steal)); } seq_printf(p, "intr %llu", (unsigned long long)sum); #if !defined(CONFIG_PPC64) && !defined(CONFIG_ALPHA) && !defined(CONFIG_IA64) for (i = 0; i < NR_IRQS; i++) seq_printf(p, " %u", kstat_irqs(i)); #endif seq_printf(p, "\nctxt %llu\n" "btime %lu\n" "processes %lu\n" "procs_running %lu\n" "procs_blocked %lu\n", nr_context_switches(), (unsigned long)jif, total_forks, nr_running(), nr_iowait()); return 0; } static int stat_open(struct inode *inode, struct file *file) { unsigned size = 4096 * (1 + num_possible_cpus() / 32); char *buf; struct seq_file *m; int res; /* don't ask for more than the kmalloc() max size, currently 128 KB */ if (size > 128 * 1024) size = 128 * 1024; buf = kmalloc(size, GFP_KERNEL); if (!buf) return -ENOMEM; res = single_open(file, show_stat, NULL); if (!res) { m = file->private_data; m->buf = buf; m->size = size; } else kfree(buf); return res; } static struct file_operations proc_stat_operations = { .open = stat_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; /* * /proc/interrupts */ static void *int_seq_start(struct seq_file *f, loff_t *pos) { return (*pos <= NR_IRQS) ? pos : NULL; } static void *int_seq_next(struct seq_file *f, void *v, loff_t *pos) { (*pos)++; if (*pos > NR_IRQS) return NULL; return pos; } static void int_seq_stop(struct seq_file *f, void *v) { /* Nothing to do */ } extern int show_interrupts(struct seq_file *f, void *v); /* In arch code */ static struct seq_operations int_seq_ops = { .start = int_seq_start, .next = int_seq_next, .stop = int_seq_stop, .show = show_interrupts }; static int interrupts_open(struct inode *inode, struct file *filp) { return seq_open(filp, &int_seq_ops); } static struct file_operations proc_interrupts_operations = { .open = interrupts_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static int filesystems_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { int len = get_filesystem_list(page); return proc_calc_metrics(page, start, off, count, eof, len); } static int cmdline_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { int len; len = sprintf(page, "%s\n", saved_command_line); return proc_calc_metrics(page, start, off, count, eof, len); } static int locks_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { int len = get_locks_status(page, start, off, count); if (len < count) *eof = 1; return len; } static int execdomains_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { int len = get_exec_domain_list(page); return proc_calc_metrics(page, start, off, count, eof, len); } #ifdef CONFIG_MAGIC_SYSRQ /* * writing 'C' to /proc/sysrq-trigger is like sysrq-C */ static ssize_t write_sysrq_trigger(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { if (count) { char c; if (get_user(c, buf)) return -EFAULT; __handle_sysrq(c, NULL, NULL, 0); } return count; } static struct file_operations proc_sysrq_trigger_operations = { .write = write_sysrq_trigger, }; #endif struct proc_dir_entry *proc_root_kcore; void create_seq_entry(char *name, mode_t mode, struct file_operations *f) { struct proc_dir_entry *entry; entry = create_proc_entry(name, mode, NULL); if (entry) entry->proc_fops = f; } void __init proc_misc_init(void) { struct proc_dir_entry *entry; static struct { char *name; int (*read_proc)(char*,char**,off_t,int,int*,void*); } *p, simple_ones[] = { {"loadavg", loadavg_read_proc}, {"uptime", uptime_read_proc}, {"meminfo", meminfo_read_proc}, {"version", version_read_proc}, #ifdef CONFIG_PROC_HARDWARE {"hardware", hardware_read_proc}, #endif #ifdef CONFIG_STRAM_PROC {"stram", stram_read_proc}, #endif {"filesystems", filesystems_read_proc}, {"cmdline", cmdline_read_proc}, {"locks", locks_read_proc}, {"execdomains", execdomains_read_proc}, {NULL,} }; for (p = simple_ones; p->name; p++) create_proc_read_entry(p->name, 0, NULL, p->read_proc, NULL); proc_symlink("mounts", NULL, "self/mounts"); /* And now for trickier ones */ entry = create_proc_entry("kmsg", S_IRUSR, &proc_root); if (entry) entry->proc_fops = &proc_kmsg_operations; create_seq_entry("devices", 0, &proc_devinfo_operations); create_seq_entry("cpuinfo", 0, &proc_cpuinfo_operations); create_seq_entry("partitions", 0, &proc_partitions_operations); create_seq_entry("stat", 0, &proc_stat_operations); create_seq_entry("interrupts", 0, &proc_interrupts_operations); #ifdef CONFIG_SLAB create_seq_entry("slabinfo",S_IWUSR|S_IRUGO,&proc_slabinfo_operations); #ifdef CONFIG_DEBUG_SLAB_LEAK create_seq_entry("slab_allocators", 0 ,&proc_slabstats_operations); #endif #endif create_seq_entry("buddyinfo",S_IRUGO, &fragmentation_file_operations); create_seq_entry("vmstat",S_IRUGO, &proc_vmstat_file_operations); create_seq_entry("zoneinfo",S_IRUGO, &proc_zoneinfo_file_operations); create_seq_entry("diskstats", 0, &proc_diskstats_operations); #ifdef CONFIG_MODULES create_seq_entry("modules", 0, &proc_modules_operations); #endif #ifdef CONFIG_SCHEDSTATS create_seq_entry("schedstat", 0, &proc_schedstat_operations); #endif #ifdef CONFIG_PROC_KCORE proc_root_kcore = create_proc_entry("kcore", S_IRUSR, NULL); if (proc_root_kcore) { proc_root_kcore->proc_fops = &proc_kcore_operations; proc_root_kcore->size = (size_t)high_memory - PAGE_OFFSET + PAGE_SIZE; } #endif #ifdef CONFIG_PROC_VMCORE proc_vmcore = create_proc_entry("vmcore", S_IRUSR, NULL); if (proc_vmcore) proc_vmcore->proc_fops = &proc_vmcore_operations; #endif #ifdef CONFIG_MAGIC_SYSRQ entry = create_proc_entry("sysrq-trigger", S_IWUSR, NULL); if (entry) entry->proc_fops = &proc_sysrq_trigger_operations; #endif }