android_kernel_xiaomi_sm8350/drivers/media/platform/msm/cvp/msm_smem.c
Pulkit Singh Tak 3dc3967bb4 msm: cvp: Support handling cp camera buffer
Adding support for cp camera buffer mapping and
new hfi for chroma buffer.

Change-Id: Iadce59b596447c0bbdf4985bdb8c9209df517bae
Signed-off-by: Pulkit Singh Tak <ptak@codeaurora.org>
2021-01-22 20:38:29 +05:30

519 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
*/
#include <linux/dma-buf.h>
#include <linux/dma-direction.h>
#include <linux/iommu.h>
#include <linux/msm_dma_iommu_mapping.h>
#include <linux/ion.h>
#include <linux/msm_ion.h>
#include <linux/slab.h>
#include <linux/types.h>
#include "msm_cvp_core.h"
#include "msm_cvp_debug.h"
#include "msm_cvp_resources.h"
#include "cvp_core_hfi.h"
static int msm_dma_get_device_address(struct dma_buf *dbuf, u32 align,
dma_addr_t *iova, u32 flags, unsigned long ion_flags,
struct msm_cvp_platform_resources *res,
struct cvp_dma_mapping_info *mapping_info)
{
int rc = 0;
struct dma_buf_attachment *attach;
struct sg_table *table = NULL;
struct context_bank_info *cb = NULL;
if (!dbuf || !iova || !mapping_info) {
dprintk(CVP_ERR, "Invalid params: %pK, %pK, %pK\n",
dbuf, iova, mapping_info);
return -EINVAL;
}
if (is_iommu_present(res)) {
cb = msm_cvp_smem_get_context_bank((flags & SMEM_SECURE),
res, ion_flags);
if (!cb) {
dprintk(CVP_ERR,
"%s: Failed to get context bank device\n",
__func__);
rc = -EIO;
goto mem_map_failed;
}
/* Prepare a dma buf for dma on the given device */
attach = dma_buf_attach(dbuf, cb->dev);
if (IS_ERR_OR_NULL(attach)) {
rc = PTR_ERR(attach) ?: -ENOMEM;
dprintk(CVP_ERR, "Failed to attach dmabuf\n");
goto mem_buf_attach_failed;
}
/*
* Get the scatterlist for the given attachment
* Mapping of sg is taken care by map attachment
*/
attach->dma_map_attrs = DMA_ATTR_DELAYED_UNMAP;
/*
* We do not need dma_map function to perform cache operations
* on the whole buffer size and hence pass skip sync flag.
* We do the required cache operations separately for the
* required buffer size
*/
attach->dma_map_attrs |= DMA_ATTR_SKIP_CPU_SYNC;
if (res->sys_cache_present)
attach->dma_map_attrs |=
DMA_ATTR_IOMMU_USE_UPSTREAM_HINT;
table = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
if (IS_ERR_OR_NULL(table)) {
rc = PTR_ERR(table) ?: -ENOMEM;
dprintk(CVP_ERR, "Failed to map table\n");
goto mem_map_table_failed;
}
if (table->sgl) {
if (ion_flags & ION_FLAG_CP_CAMERA) {
*iova = sg_phys(table->sgl);
} else {
*iova = table->sgl->dma_address;
}
} else {
dprintk(CVP_ERR, "sgl is NULL\n");
rc = -ENOMEM;
goto mem_map_sg_failed;
}
mapping_info->dev = cb->dev;
mapping_info->domain = cb->domain;
mapping_info->table = table;
mapping_info->attach = attach;
mapping_info->buf = dbuf;
mapping_info->cb_info = (void *)cb;
} else {
dprintk(CVP_MEM, "iommu not present, use phys mem addr\n");
}
return 0;
mem_map_sg_failed:
dma_buf_unmap_attachment(attach, table, DMA_BIDIRECTIONAL);
mem_map_table_failed:
dma_buf_detach(dbuf, attach);
mem_buf_attach_failed:
mem_map_failed:
return rc;
}
static int msm_dma_put_device_address(u32 flags,
struct cvp_dma_mapping_info *mapping_info)
{
int rc = 0;
if (!mapping_info) {
dprintk(CVP_WARN, "Invalid mapping_info\n");
return -EINVAL;
}
if (!mapping_info->dev || !mapping_info->table ||
!mapping_info->buf || !mapping_info->attach ||
!mapping_info->cb_info) {
dprintk(CVP_WARN, "Invalid params\n");
return -EINVAL;
}
dma_buf_unmap_attachment(mapping_info->attach,
mapping_info->table, DMA_BIDIRECTIONAL);
dma_buf_detach(mapping_info->buf, mapping_info->attach);
mapping_info->dev = NULL;
mapping_info->domain = NULL;
mapping_info->table = NULL;
mapping_info->attach = NULL;
mapping_info->buf = NULL;
mapping_info->cb_info = NULL;
return rc;
}
struct dma_buf *msm_cvp_smem_get_dma_buf(int fd)
{
struct dma_buf *dma_buf;
dma_buf = dma_buf_get(fd);
if (IS_ERR_OR_NULL(dma_buf)) {
dprintk(CVP_ERR, "Failed to get dma_buf for %d, error %ld\n",
fd, PTR_ERR(dma_buf));
dma_buf = NULL;
}
return dma_buf;
}
void msm_cvp_smem_put_dma_buf(void *dma_buf)
{
if (!dma_buf) {
dprintk(CVP_ERR, "%s: NULL dma_buf\n", __func__);
return;
}
dma_buf_put((struct dma_buf *)dma_buf);
}
int msm_cvp_map_smem(struct msm_cvp_inst *inst,
struct msm_cvp_smem *smem,
const char *str)
{
int rc = 0;
dma_addr_t iova = 0;
u32 temp = 0;
u32 align = SZ_4K;
struct dma_buf *dma_buf;
unsigned long ion_flags = 0;
if (!inst || !smem) {
dprintk(CVP_ERR, "%s: Invalid params: %pK %pK\n",
__func__, inst, smem);
return -EINVAL;
}
dma_buf = smem->dma_buf;
rc = dma_buf_get_flags(dma_buf, &ion_flags);
if (rc) {
dprintk(CVP_ERR, "Failed to get dma buf flags: %d\n", rc);
goto exit;
}
if (ion_flags & ION_FLAG_CACHED)
smem->flags |= SMEM_CACHED;
if (ion_flags & ION_FLAG_SECURE)
smem->flags |= SMEM_SECURE;
rc = msm_dma_get_device_address(dma_buf, align, &iova, smem->flags,
ion_flags, &(inst->core->resources),
&smem->mapping_info);
if (rc) {
dprintk(CVP_ERR, "Failed to get device address: %d\n", rc);
goto exit;
}
temp = (u32)iova;
if ((dma_addr_t)temp != iova) {
dprintk(CVP_ERR, "iova(%pa) truncated to %#x", &iova, temp);
rc = -EINVAL;
goto exit;
}
smem->size = dma_buf->size;
smem->device_addr = (u32)iova;
print_smem(CVP_MEM, str, inst, smem);
return rc;
exit:
smem->device_addr = 0x0;
return rc;
}
int msm_cvp_unmap_smem(struct msm_cvp_inst *inst,
struct msm_cvp_smem *smem,
const char *str)
{
int rc = 0;
if (!smem) {
dprintk(CVP_ERR, "%s: Invalid params: %pK\n", __func__, smem);
rc = -EINVAL;
goto exit;
}
print_smem(CVP_MEM, str, inst, smem);
rc = msm_dma_put_device_address(smem->flags, &smem->mapping_info);
if (rc) {
dprintk(CVP_ERR, "Failed to put device address: %d\n", rc);
goto exit;
}
smem->device_addr = 0x0;
exit:
return rc;
}
static int alloc_dma_mem(size_t size, u32 align, u32 flags, int map_kernel,
struct msm_cvp_platform_resources *res, struct msm_cvp_smem *mem)
{
dma_addr_t iova = 0;
unsigned long heap_mask = 0;
int rc = 0;
int ion_flags = 0;
struct dma_buf *dbuf = NULL;
if (!res) {
dprintk(CVP_ERR, "%s: NULL res\n", __func__);
return -EINVAL;
}
align = ALIGN(align, SZ_4K);
size = ALIGN(size, SZ_4K);
if (is_iommu_present(res)) {
if (flags & SMEM_ADSP) {
dprintk(CVP_MEM, "Allocating from ADSP heap\n");
heap_mask = ION_HEAP(ION_ADSP_HEAP_ID);
} else {
heap_mask = ION_HEAP(ION_SYSTEM_HEAP_ID);
}
} else {
dprintk(CVP_MEM,
"allocate shared memory from adsp heap size %zx align %d\n",
size, align);
heap_mask = ION_HEAP(ION_ADSP_HEAP_ID);
}
if (flags & SMEM_CACHED)
ion_flags |= ION_FLAG_CACHED;
if (flags & SMEM_NON_PIXEL)
ion_flags |= ION_FLAG_CP_NON_PIXEL;
if (flags & SMEM_SECURE) {
ion_flags |= ION_FLAG_SECURE;
heap_mask = ION_HEAP(ION_SECURE_HEAP_ID);
}
dbuf = ion_alloc(size, heap_mask, ion_flags);
if (IS_ERR_OR_NULL(dbuf)) {
dprintk(CVP_ERR,
"Failed to allocate shared memory = %x bytes, %llx, %x\n",
size, heap_mask, ion_flags);
rc = -ENOMEM;
goto fail_shared_mem_alloc;
}
mem->flags = flags;
mem->ion_flags = ion_flags;
mem->size = size;
mem->dma_buf = dbuf;
mem->kvaddr = NULL;
rc = msm_dma_get_device_address(dbuf, align, &iova, flags,
ion_flags, res, &mem->mapping_info);
if (rc) {
dprintk(CVP_ERR, "Failed to get device address: %d\n",
rc);
goto fail_device_address;
}
mem->device_addr = (u32)iova;
if ((dma_addr_t)mem->device_addr != iova) {
dprintk(CVP_ERR, "iova(%pa) truncated to %#x",
&iova, mem->device_addr);
goto fail_device_address;
}
if (map_kernel) {
dma_buf_begin_cpu_access(dbuf, DMA_BIDIRECTIONAL);
mem->kvaddr = dma_buf_vmap(dbuf);
if (!mem->kvaddr) {
dprintk(CVP_ERR,
"Failed to map shared mem in kernel\n");
rc = -EIO;
goto fail_map;
}
}
dprintk(CVP_MEM,
"%s: dma_buf = %pK, device_addr = %x, size = %d, kvaddr = %pK, ion_flags = %#x, flags = %#lx\n",
__func__, mem->dma_buf, mem->device_addr, mem->size,
mem->kvaddr, mem->ion_flags, mem->flags);
return rc;
fail_map:
if (map_kernel)
dma_buf_end_cpu_access(dbuf, DMA_BIDIRECTIONAL);
fail_device_address:
dma_buf_put(dbuf);
fail_shared_mem_alloc:
return rc;
}
static int free_dma_mem(struct msm_cvp_smem *mem)
{
dprintk(CVP_MEM,
"%s: dma_buf = %pK, device_addr = %x, size = %d, kvaddr = %pK, ion_flags = %#x\n",
__func__, mem->dma_buf, mem->device_addr, mem->size,
mem->kvaddr, mem->ion_flags);
if (mem->device_addr) {
msm_dma_put_device_address(mem->flags, &mem->mapping_info);
mem->device_addr = 0x0;
}
if (mem->kvaddr) {
dma_buf_vunmap(mem->dma_buf, mem->kvaddr);
mem->kvaddr = NULL;
dma_buf_end_cpu_access(mem->dma_buf, DMA_BIDIRECTIONAL);
}
if (mem->dma_buf) {
dma_buf_put(mem->dma_buf);
mem->dma_buf = NULL;
}
return 0;
}
int msm_cvp_smem_alloc(size_t size, u32 align, u32 flags, int map_kernel,
void *res, struct msm_cvp_smem *smem)
{
int rc = 0;
if (!smem || !size) {
dprintk(CVP_ERR, "%s: NULL smem or %d size\n",
__func__, (u32)size);
return -EINVAL;
}
rc = alloc_dma_mem(size, align, flags, map_kernel,
(struct msm_cvp_platform_resources *)res,
smem);
return rc;
}
int msm_cvp_smem_free(struct msm_cvp_smem *smem)
{
int rc = 0;
if (!smem) {
dprintk(CVP_ERR, "NULL smem passed\n");
return -EINVAL;
}
rc = free_dma_mem(smem);
return rc;
};
int msm_cvp_smem_cache_operations(struct dma_buf *dbuf,
enum smem_cache_ops cache_op, unsigned long offset, unsigned long size)
{
int rc = 0;
unsigned long flags = 0;
if (!dbuf) {
dprintk(CVP_ERR, "%s: Invalid params\n", __func__);
return -EINVAL;
}
/* Return if buffer doesn't support caching */
rc = dma_buf_get_flags(dbuf, &flags);
if (rc) {
dprintk(CVP_ERR, "%s: dma_buf_get_flags failed, err %d\n",
__func__, rc);
return rc;
} else if (!(flags & ION_FLAG_CACHED)) {
return rc;
}
switch (cache_op) {
case SMEM_CACHE_CLEAN:
case SMEM_CACHE_CLEAN_INVALIDATE:
rc = dma_buf_begin_cpu_access_partial(dbuf, DMA_BIDIRECTIONAL,
offset, size);
if (rc)
break;
rc = dma_buf_end_cpu_access_partial(dbuf, DMA_BIDIRECTIONAL,
offset, size);
break;
case SMEM_CACHE_INVALIDATE:
rc = dma_buf_begin_cpu_access_partial(dbuf, DMA_TO_DEVICE,
offset, size);
if (rc)
break;
rc = dma_buf_end_cpu_access_partial(dbuf, DMA_FROM_DEVICE,
offset, size);
break;
default:
dprintk(CVP_ERR, "%s: cache (%d) operation not supported\n",
__func__, cache_op);
rc = -EINVAL;
break;
}
return rc;
}
struct context_bank_info *msm_cvp_smem_get_context_bank(bool is_secure,
struct msm_cvp_platform_resources *res, unsigned long ion_flags)
{
struct context_bank_info *cb = NULL, *match = NULL;
char *search_str;
char *non_secure_cb = "cvp_hlos";
char *secure_nonpixel_cb = "cvp_sec_nonpixel";
char *secure_pixel_cb = "cvp_sec_pixel";
if (ion_flags & ION_FLAG_CP_PIXEL)
search_str = secure_pixel_cb;
else if (ion_flags & ION_FLAG_CP_NON_PIXEL)
search_str = secure_nonpixel_cb;
else if (ion_flags & ION_FLAG_CP_CAMERA)
search_str = secure_pixel_cb;
else
search_str = non_secure_cb;
list_for_each_entry(cb, &res->context_banks, list) {
if (cb->is_secure == is_secure &&
!strcmp(search_str, cb->name)) {
match = cb;
break;
}
}
if (!match)
dprintk(CVP_ERR,
"%s: cb not found for ion_flags %x, is_secure %d\n",
__func__, ion_flags, is_secure);
return match;
}
int msm_cvp_map_ipcc_regs(u32 *iova)
{
struct context_bank_info *cb;
struct msm_cvp_core *core;
struct cvp_hfi_device *hfi_ops;
struct iris_hfi_device *dev = NULL;
phys_addr_t paddr;
u32 size;
core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
if (core) {
hfi_ops = core->device;
if (hfi_ops)
dev = hfi_ops->hfi_device_data;
}
if (!dev)
return -EINVAL;
paddr = dev->res->ipcc_reg_base;
size = dev->res->ipcc_reg_size;
if (!paddr || !size)
return -EINVAL;
cb = msm_cvp_smem_get_context_bank(false, dev->res, 0);
if (!cb) {
dprintk(CVP_ERR, "%s: fail to get context bank\n", __func__);
return -EINVAL;
}
*iova = dma_map_resource(cb->dev, paddr, size, DMA_BIDIRECTIONAL, 0);
if (*iova == DMA_MAPPING_ERROR) {
dprintk(CVP_WARN, "%s: fail to map IPCC regs\n", __func__);
return -EFAULT;
}
return 0;
}