android_kernel_xiaomi_sm8350/kernel/sched/rt.c
Michael Bestas a8a0447e0d
Merge tag 'ASB-2023-06-05_11-5.4' of https://android.googlesource.com/kernel/common into android13-5.4-lahaina
https://source.android.com/docs/security/bulletin/2023-06-01

* tag 'ASB-2023-06-05_11-5.4' of https://android.googlesource.com/kernel/common:
  UPSTREAM: io_uring: have io_kill_timeout() honor the request references
  UPSTREAM: io_uring: don't drop completion lock before timer is fully initialized
  UPSTREAM: io_uring: always grab lock in io_cancel_async_work()
  UPSTREAM: net: cdc_ncm: Deal with too low values of dwNtbOutMaxSize
  UPSTREAM: cdc_ncm: Fix the build warning
  UPSTREAM: cdc_ncm: Implement the 32-bit version of NCM Transfer Block
  UPSTREAM: ext4: avoid a potential slab-out-of-bounds in ext4_group_desc_csum
  UPSTREAM: ext4: fix invalid free tracking in ext4_xattr_move_to_block()
  Revert "Revert "mm/rmap: Fix anon_vma->degree ambiguity leading to double-reuse""
  FROMLIST: binder: fix UAF caused by faulty buffer cleanup
  Linux 5.4.242
  ASN.1: Fix check for strdup() success
  iio: adc: at91-sama5d2_adc: fix an error code in at91_adc_allocate_trigger()
  pwm: meson: Explicitly set .polarity in .get_state()
  xfs: fix forkoff miscalculation related to XFS_LITINO(mp)
  sctp: Call inet6_destroy_sock() via sk->sk_destruct().
  dccp: Call inet6_destroy_sock() via sk->sk_destruct().
  inet6: Remove inet6_destroy_sock() in sk->sk_prot->destroy().
  tcp/udp: Call inet6_destroy_sock() in IPv6 sk->sk_destruct().
  udp: Call inet6_destroy_sock() in setsockopt(IPV6_ADDRFORM).
  ext4: fix use-after-free in ext4_xattr_set_entry
  ext4: remove duplicate definition of ext4_xattr_ibody_inline_set()
  Revert "ext4: fix use-after-free in ext4_xattr_set_entry"
  x86/purgatory: Don't generate debug info for purgatory.ro
  MIPS: Define RUNTIME_DISCARD_EXIT in LD script
  mmc: sdhci_am654: Set HIGH_SPEED_ENA for SDR12 and SDR25
  memstick: fix memory leak if card device is never registered
  nilfs2: initialize unused bytes in segment summary blocks
  iio: light: tsl2772: fix reading proximity-diodes from device tree
  xen/netback: use same error messages for same errors
  nvme-tcp: fix a possible UAF when failing to allocate an io queue
  s390/ptrace: fix PTRACE_GET_LAST_BREAK error handling
  net: dsa: b53: mmap: add phy ops
  scsi: core: Improve scsi_vpd_inquiry() checks
  scsi: megaraid_sas: Fix fw_crash_buffer_show()
  selftests: sigaltstack: fix -Wuninitialized
  Input: i8042 - add quirk for Fujitsu Lifebook A574/H
  f2fs: Fix f2fs_truncate_partial_nodes ftrace event
  e1000e: Disable TSO on i219-LM card to increase speed
  bpf: Fix incorrect verifier pruning due to missing register precision taints
  mlxfw: fix null-ptr-deref in mlxfw_mfa2_tlv_next()
  i40e: fix i40e_setup_misc_vector() error handling
  i40e: fix accessing vsi->active_filters without holding lock
  netfilter: nf_tables: fix ifdef to also consider nf_tables=m
  virtio_net: bugfix overflow inside xdp_linearize_page()
  net: sched: sch_qfq: prevent slab-out-of-bounds in qfq_activate_agg
  regulator: fan53555: Explicitly include bits header
  netfilter: br_netfilter: fix recent physdev match breakage
  arm64: dts: meson-g12-common: specify full DMC range
  ARM: dts: rockchip: fix a typo error for rk3288 spdif node
  Linux 5.4.241
  xfs: force log and push AIL to clear pinned inodes when aborting mount
  xfs: don't reuse busy extents on extent trim
  xfs: consider shutdown in bmapbt cursor delete assert
  xfs: shut down the filesystem if we screw up quota reservation
  xfs: report corruption only as a regular error
  xfs: set inode size after creating symlink
  xfs: fix up non-directory creation in SGID directories
  xfs: remove the di_version field from struct icdinode
  xfs: simplify a check in xfs_ioctl_setattr_check_cowextsize
  xfs: simplify di_flags2 inheritance in xfs_ialloc
  xfs: only check the superblock version for dinode size calculation
  xfs: add a new xfs_sb_version_has_v3inode helper
  xfs: remove the kuid/kgid conversion wrappers
  xfs: remove the icdinode di_uid/di_gid members
  xfs: ensure that the inode uid/gid match values match the icdinode ones
  xfs: merge the projid fields in struct xfs_icdinode
  xfs: show the proper user quota options
  coresight-etm4: Fix for() loop drvdata->nr_addr_cmp range bug
  watchdog: sbsa_wdog: Make sure the timeout programming is within the limits
  i2c: ocores: generate stop condition after timeout in polling mode
  ubi: Fix deadlock caused by recursively holding work_sem
  mtd: ubi: wl: Fix a couple of kernel-doc issues
  ubi: Fix failure attaching when vid_hdr offset equals to (sub)page size
  asymmetric_keys: log on fatal failures in PE/pkcs7
  verify_pefile: relax wrapper length check
  drm: panel-orientation-quirks: Add quirk for Lenovo Yoga Book X90F
  efi: sysfb_efi: Add quirk for Lenovo Yoga Book X91F/L
  i2c: imx-lpi2c: clean rx/tx buffers upon new message
  power: supply: cros_usbpd: reclassify "default case!" as debug
  net: macb: fix a memory corruption in extended buffer descriptor mode
  udp6: fix potential access to stale information
  RDMA/core: Fix GID entry ref leak when create_ah fails
  sctp: fix a potential overflow in sctp_ifwdtsn_skip
  qlcnic: check pci_reset_function result
  niu: Fix missing unwind goto in niu_alloc_channels()
  9p/xen : Fix use after free bug in xen_9pfs_front_remove due to race condition
  mtd: rawnand: stm32_fmc2: remove unsupported EDO mode
  mtd: rawnand: meson: fix bitmask for length in command word
  mtdblock: tolerate corrected bit-flips
  btrfs: fix fast csum implementation detection
  btrfs: print checksum type and implementation at mount time
  Bluetooth: Fix race condition in hidp_session_thread
  Bluetooth: L2CAP: Fix use-after-free in l2cap_disconnect_{req,rsp}
  ALSA: hda/sigmatel: fix S/PDIF out on Intel D*45* motherboards
  ALSA: firewire-tascam: add missing unwind goto in snd_tscm_stream_start_duplex()
  ALSA: i2c/cs8427: fix iec958 mixer control deactivation
  ALSA: hda/sigmatel: add pin overrides for Intel DP45SG motherboard
  ALSA: emu10k1: fix capture interrupt handler unlinking
  Revert "pinctrl: amd: Disable and mask interrupts on resume"
  irqdomain: Fix mapping-creation race
  irqdomain: Refactor __irq_domain_alloc_irqs()
  irqdomain: Look for existing mapping only once
  mm/swap: fix swap_info_struct race between swapoff and get_swap_pages()
  ring-buffer: Fix race while reader and writer are on the same page
  drm/panfrost: Fix the panfrost_mmu_map_fault_addr() error path
  net_sched: prevent NULL dereference if default qdisc setup failed
  tracing: Free error logs of tracing instances
  can: j1939: j1939_tp_tx_dat_new(): fix out-of-bounds memory access
  ftrace: Mark get_lock_parent_ip() __always_inline
  perf/core: Fix the same task check in perf_event_set_output
  ALSA: hda/realtek: Add quirk for Clevo X370SNW
  nilfs2: fix sysfs interface lifetime
  nilfs2: fix potential UAF of struct nilfs_sc_info in nilfs_segctor_thread()
  tty: serial: fsl_lpuart: avoid checking for transfer complete when UARTCTRL_SBK is asserted in lpuart32_tx_empty
  tty: serial: sh-sci: Fix Rx on RZ/G2L SCI
  tty: serial: sh-sci: Fix transmit end interrupt handler
  iio: dac: cio-dac: Fix max DAC write value check for 12-bit
  iio: adc: ti-ads7950: Set `can_sleep` flag for GPIO chip
  USB: serial: option: add Quectel RM500U-CN modem
  USB: serial: option: add Telit FE990 compositions
  usb: typec: altmodes/displayport: Fix configure initial pin assignment
  USB: serial: cp210x: add Silicon Labs IFS-USB-DATACABLE IDs
  xhci: also avoid the XHCI_ZERO_64B_REGS quirk with a passthrough iommu
  NFSD: callback request does not use correct credential for AUTH_SYS
  sunrpc: only free unix grouplist after RCU settles
  gpio: davinci: Add irq chip flag to skip set wake
  ipv6: Fix an uninit variable access bug in __ip6_make_skb()
  sctp: check send stream number after wait_for_sndbuf
  net: don't let netpoll invoke NAPI if in xmit context
  icmp: guard against too small mtu
  wifi: mac80211: fix invalid drv_sta_pre_rcu_remove calls for non-uploaded sta
  pwm: sprd: Explicitly set .polarity in .get_state()
  pwm: cros-ec: Explicitly set .polarity in .get_state()
  pinctrl: amd: Disable and mask interrupts on resume
  pinctrl: amd: disable and mask interrupts on probe
  pinctrl: amd: Use irqchip template
  smb3: fix problem with null cifs super block with previous patch
  treewide: Replace DECLARE_TASKLET() with DECLARE_TASKLET_OLD()
  Revert "treewide: Replace DECLARE_TASKLET() with DECLARE_TASKLET_OLD()"
  cgroup/cpuset: Wake up cpuset_attach_wq tasks in cpuset_cancel_attach()
  x86/PCI: Add quirk for AMD XHCI controller that loses MSI-X state in D3hot
  scsi: ses: Handle enclosure with just a primary component gracefully
  Linux 5.4.240
  gfs2: Always check inode size of inline inodes
  firmware: arm_scmi: Fix device node validation for mailbox transport
  net: sched: fix race condition in qdisc_graft()
  net_sched: add __rcu annotation to netdev->qdisc
  ext4: fix kernel BUG in 'ext4_write_inline_data_end()'
  btrfs: scan device in non-exclusive mode
  s390/uaccess: add missing earlyclobber annotations to __clear_user()
  drm/etnaviv: fix reference leak when mmaping imported buffer
  ALSA: usb-audio: Fix regression on detection of Roland VS-100
  ALSA: hda/conexant: Partial revert of a quirk for Lenovo
  NFSv4: Fix hangs when recovering open state after a server reboot
  pinctrl: at91-pio4: fix domain name assignment
  xen/netback: don't do grant copy across page boundary
  Input: goodix - add Lenovo Yoga Book X90F to nine_bytes_report DMI table
  cifs: fix DFS traversal oops without CONFIG_CIFS_DFS_UPCALL
  cifs: prevent infinite recursion in CIFSGetDFSRefer()
  Input: focaltech - use explicitly signed char type
  Input: alps - fix compatibility with -funsigned-char
  pinctrl: ocelot: Fix alt mode for ocelot
  net: mvneta: make tx buffer array agnostic
  net: dsa: mv88e6xxx: Enable IGMP snooping on user ports only
  bnxt_en: Fix typo in PCI id to device description string mapping
  i40e: fix registers dump after run ethtool adapter self test
  s390/vfio-ap: fix memory leak in vfio_ap device driver
  can: bcm: bcm_tx_setup(): fix KMSAN uninit-value in vfs_write
  net/net_failover: fix txq exceeding warning
  regulator: Handle deferred clk
  regulator: fix spelling mistake "Cant" -> "Can't"
  ptp_qoriq: fix memory leak in probe()
  scsi: megaraid_sas: Fix crash after a double completion
  mtd: rawnand: meson: invalidate cache on polling ECC bit
  mips: bmips: BCM6358: disable RAC flush for TP1
  dma-mapping: drop the dev argument to arch_sync_dma_for_*
  ca8210: Fix unsigned mac_len comparison with zero in ca8210_skb_tx()
  fbdev: au1200fb: Fix potential divide by zero
  fbdev: lxfb: Fix potential divide by zero
  fbdev: intelfb: Fix potential divide by zero
  fbdev: nvidia: Fix potential divide by zero
  sched_getaffinity: don't assume 'cpumask_size()' is fully initialized
  fbdev: tgafb: Fix potential divide by zero
  ALSA: hda/ca0132: fixup buffer overrun at tuning_ctl_set()
  ALSA: asihpi: check pao in control_message()
  md: avoid signed overflow in slot_store()
  bus: imx-weim: fix branch condition evaluates to a garbage value
  fsverity: don't drop pagecache at end of FS_IOC_ENABLE_VERITY
  ocfs2: fix data corruption after failed write
  tun: avoid double free in tun_free_netdev
  sched/fair: Sanitize vruntime of entity being migrated
  sched/fair: sanitize vruntime of entity being placed
  dm crypt: add cond_resched() to dmcrypt_write()
  dm stats: check for and propagate alloc_percpu failure
  i2c: xgene-slimpro: Fix out-of-bounds bug in xgene_slimpro_i2c_xfer()
  nilfs2: fix kernel-infoleak in nilfs_ioctl_wrap_copy()
  wifi: mac80211: fix qos on mesh interfaces
  usb: chipidea: core: fix possible concurrent when switch role
  usb: chipdea: core: fix return -EINVAL if request role is the same with current role
  usb: cdns3: Fix issue with using incorrect PCI device function
  dm thin: fix deadlock when swapping to thin device
  igb: revert rtnl_lock() that causes deadlock
  fsverity: Remove WQ_UNBOUND from fsverity read workqueue
  usb: gadget: u_audio: don't let userspace block driver unbind
  scsi: core: Add BLIST_SKIP_VPD_PAGES for SKhynix H28U74301AMR
  cifs: empty interface list when server doesn't support query interfaces
  sh: sanitize the flags on sigreturn
  net: usb: qmi_wwan: add Telit 0x1080 composition
  net: usb: cdc_mbim: avoid altsetting toggling for Telit FE990
  scsi: lpfc: Avoid usage of list iterator variable after loop
  scsi: ufs: core: Add soft dependency on governor_simpleondemand
  scsi: target: iscsi: Fix an error message in iscsi_check_key()
  selftests/bpf: check that modifier resolves after pointer
  m68k: Only force 030 bus error if PC not in exception table
  ca8210: fix mac_len negative array access
  riscv: Bump COMMAND_LINE_SIZE value to 1024
  thunderbolt: Use const qualifier for `ring_interrupt_index`
  uas: Add US_FL_NO_REPORT_OPCODES for JMicron JMS583Gen 2
  scsi: qla2xxx: Perform lockless command completion in abort path
  hwmon (it87): Fix voltage scaling for chips with 10.9mV ADCs
  platform/chrome: cros_ec_chardev: fix kernel data leak from ioctl
  Bluetooth: btsdio: fix use after free bug in btsdio_remove due to unfinished work
  Bluetooth: btqcomsmd: Fix command timeout after setting BD address
  net: mdio: thunder: Add missing fwnode_handle_put()
  hvc/xen: prevent concurrent accesses to the shared ring
  nvme-tcp: fix nvme_tcp_term_pdu to match spec
  net/sonic: use dma_mapping_error() for error check
  erspan: do not use skb_mac_header() in ndo_start_xmit()
  atm: idt77252: fix kmemleak when rmmod idt77252
  net/mlx5: Read the TC mapping of all priorities on ETS query
  bpf: Adjust insufficient default bpf_jit_limit
  keys: Do not cache key in task struct if key is requested from kernel thread
  net/ps3_gelic_net: Use dma_mapping_error
  net/ps3_gelic_net: Fix RX sk_buff length
  net: qcom/emac: Fix use after free bug in emac_remove due to race condition
  xirc2ps_cs: Fix use after free bug in xirc2ps_detach
  qed/qed_sriov: guard against NULL derefs from qed_iov_get_vf_info
  net: usb: smsc95xx: Limit packet length to skb->len
  scsi: scsi_dh_alua: Fix memleak for 'qdata' in alua_activate()
  i2c: imx-lpi2c: check only for enabled interrupt flags
  igbvf: Regard vf reset nack as success
  intel/igbvf: free irq on the error path in igbvf_request_msix()
  iavf: fix non-tunneled IPv6 UDP packet type and hashing
  iavf: fix inverted Rx hash condition leading to disabled hash
  power: supply: da9150: Fix use after free bug in da9150_charger_remove due to race condition
  net: tls: fix possible race condition between do_tls_getsockopt_conf() and do_tls_setsockopt_conf()
  Linux 5.4.239
  selftests: Fix the executable permissions for fib_tests.sh
  BACKPORT: mac80211_hwsim: notify wmediumd of used MAC addresses
  FROMGIT: mac80211_hwsim: add concurrent channels scanning support over virtio
  Revert "HID: core: Provide new max_buffer_size attribute to over-ride the default"
  Revert "HID: uhid: Over-ride the default maximum data buffer value with our own"
  Linux 5.4.238
  HID: uhid: Over-ride the default maximum data buffer value with our own
  HID: core: Provide new max_buffer_size attribute to over-ride the default
  PCI: Unify delay handling for reset and resume
  s390/ipl: add missing intersection check to ipl_report handling
  serial: 8250_em: Fix UART port type
  drm/i915: Don't use stolen memory for ring buffers with LLC
  x86/mm: Fix use of uninitialized buffer in sme_enable()
  fbdev: stifb: Provide valid pixelclock and add fb_check_var() checks
  ftrace: Fix invalid address access in lookup_rec() when index is 0
  KVM: nVMX: add missing consistency checks for CR0 and CR4
  tracing: Make tracepoint lockdep check actually test something
  tracing: Check field value in hist_field_name()
  interconnect: fix mem leak when freeing nodes
  tty: serial: fsl_lpuart: skip waiting for transmission complete when UARTCTRL_SBK is asserted
  ext4: fix possible double unlock when moving a directory
  sh: intc: Avoid spurious sizeof-pointer-div warning
  drm/amdkfd: Fix an illegal memory access
  ext4: fix task hung in ext4_xattr_delete_inode
  ext4: fail ext4_iget if special inode unallocated
  jffs2: correct logic when creating a hole in jffs2_write_begin
  mmc: atmel-mci: fix race between stop command and start of next command
  media: m5mols: fix off-by-one loop termination error
  hwmon: (ina3221) return prober error code
  hwmon: (xgene) Fix use after free bug in xgene_hwmon_remove due to race condition
  hwmon: (adt7475) Fix masking of hysteresis registers
  hwmon: (adt7475) Display smoothing attributes in correct order
  ethernet: sun: add check for the mdesc_grab()
  net/iucv: Fix size of interrupt data
  net: usb: smsc75xx: Move packet length check to prevent kernel panic in skb_pull
  ipv4: Fix incorrect table ID in IOCTL path
  block: sunvdc: add check for mdesc_grab() returning NULL
  nvmet: avoid potential UAF in nvmet_req_complete()
  net: usb: smsc75xx: Limit packet length to skb->len
  nfc: st-nci: Fix use after free bug in ndlc_remove due to race condition
  net: phy: smsc: bail out in lan87xx_read_status if genphy_read_status fails
  net: tunnels: annotate lockless accesses to dev->needed_headroom
  qed/qed_dev: guard against a possible division by zero
  i40e: Fix kernel crash during reboot when adapter is in recovery mode
  ipvlan: Make skb->skb_iif track skb->dev for l3s mode
  nfc: pn533: initialize struct pn533_out_arg properly
  tcp: tcp_make_synack() can be called from process context
  scsi: core: Fix a procfs host directory removal regression
  scsi: core: Fix a comment in function scsi_host_dev_release()
  netfilter: nft_redir: correct value of inet type `.maxattrs`
  ALSA: hda: Match only Intel devices with CONTROLLER_IN_GPU()
  ALSA: hda: Add Intel DG2 PCI ID and HDMI codec vid
  ALSA: hda: Add Alderlake-S PCI ID and HDMI codec vid
  ALSA: hda - controller is in GPU on the DG1
  ALSA: hda - add Intel DG1 PCI and HDMI ids
  scsi: mpt3sas: Fix NULL pointer access in mpt3sas_transport_port_add()
  docs: Correct missing "d_" prefix for dentry_operations member d_weak_revalidate
  clk: HI655X: select REGMAP instead of depending on it
  drm/meson: fix 1px pink line on GXM when scaling video overlay
  cifs: Move the in_send statistic to __smb_send_rqst()
  drm/panfrost: Don't sync rpm suspension after mmu flushing
  xfrm: Allow transport-mode states with AF_UNSPEC selector
  ext4: fix cgroup writeback accounting with fs-layer encryption
  ANDROID: preserve CRC for __irq_domain_add()
  Revert "drm/exynos: Don't reset bridge->next"
  Revert "drm/bridge: Rename bridge helpers targeting a bridge chain"
  Revert "drm/bridge: Introduce drm_bridge_get_next_bridge()"
  Revert "drm: Initialize struct drm_crtc_state.no_vblank from device settings"
  Revert "drm/msm/mdp5: Add check for kzalloc"
  Linux 5.4.237
  s390/dasd: add missing discipline function
  UML: define RUNTIME_DISCARD_EXIT
  sh: define RUNTIME_DISCARD_EXIT
  s390: define RUNTIME_DISCARD_EXIT to fix link error with GNU ld < 2.36
  powerpc/vmlinux.lds: Don't discard .rela* for relocatable builds
  powerpc/vmlinux.lds: Define RUNTIME_DISCARD_EXIT
  arch: fix broken BuildID for arm64 and riscv
  x86, vmlinux.lds: Add RUNTIME_DISCARD_EXIT to generic DISCARDS
  drm/i915: Don't use BAR mappings for ring buffers with LLC
  ipmi:watchdog: Set panic count to proper value on a panic
  ipmi/watchdog: replace atomic_add() and atomic_sub()
  media: ov5640: Fix analogue gain control
  PCI: Add SolidRun vendor ID
  macintosh: windfarm: Use unsigned type for 1-bit bitfields
  alpha: fix R_ALPHA_LITERAL reloc for large modules
  MIPS: Fix a compilation issue
  ext4: Fix deadlock during directory rename
  riscv: Use READ_ONCE_NOCHECK in imprecise unwinding stack mode
  net/smc: fix fallback failed while sendmsg with fastopen
  scsi: megaraid_sas: Update max supported LD IDs to 240
  btf: fix resolving BTF_KIND_VAR after ARRAY, STRUCT, UNION, PTR
  netfilter: tproxy: fix deadlock due to missing BH disable
  bnxt_en: Avoid order-5 memory allocation for TPA data
  net: caif: Fix use-after-free in cfusbl_device_notify()
  net: lan78xx: fix accessing the LAN7800's internal phy specific registers from the MAC driver
  net: usb: lan78xx: Remove lots of set but unused 'ret' variables
  selftests: nft_nat: ensuring the listening side is up before starting the client
  ila: do not generate empty messages in ila_xlat_nl_cmd_get_mapping()
  nfc: fdp: add null check of devm_kmalloc_array in fdp_nci_i2c_read_device_properties
  drm/msm/a5xx: fix setting of the CP_PREEMPT_ENABLE_LOCAL register
  ext4: Fix possible corruption when moving a directory
  scsi: core: Remove the /proc/scsi/${proc_name} directory earlier
  cifs: Fix uninitialized memory read in smb3_qfs_tcon()
  SMB3: Backup intent flag missing from some more ops
  iommu/vt-d: Fix PASID directory pointer coherency
  irqdomain: Fix domain registration race
  irqdomain: Change the type of 'size' in __irq_domain_add() to be consistent
  ipmi:ssif: Add a timer between request retries
  ipmi:ssif: Increase the message retry time
  ipmi:ssif: Remove rtc_us_timer
  ipmi:ssif: resend_msg() cannot fail
  ipmi:ssif: make ssif_i2c_send() void
  iommu/amd: Add a length limitation for the ivrs_acpihid command-line parameter
  iommu/amd: Fix ill-formed ivrs_ioapic, ivrs_hpet and ivrs_acpihid options
  iommu/amd: Add PCI segment support for ivrs_[ioapic/hpet/acpihid] commands
  nfc: change order inside nfc_se_io error path
  ext4: zero i_disksize when initializing the bootloader inode
  ext4: fix WARNING in ext4_update_inline_data
  ext4: move where set the MAY_INLINE_DATA flag is set
  ext4: fix another off-by-one fsmap error on 1k block filesystems
  ext4: fix RENAME_WHITEOUT handling for inline directories
  drm/connector: print max_requested_bpc in state debugfs
  x86/CPU/AMD: Disable XSAVES on AMD family 0x17
  fs: prevent out-of-bounds array speculation when closing a file descriptor
  Linux 5.4.236
  staging: rtl8192e: Remove call_usermodehelper starting RadioPower.sh
  staging: rtl8192e: Remove function ..dm_check_ac_dc_power calling a script
  wifi: cfg80211: Partial revert "wifi: cfg80211: Fix use after free for wext"
  Linux 5.4.235
  dt-bindings: rtc: sun6i-a31-rtc: Loosen the requirements on the clocks
  media: uvcvideo: Fix race condition with usb_kill_urb
  media: uvcvideo: Provide sync and async uvc_ctrl_status_event
  tcp: Fix listen() regression in 5.4.229.
  Bluetooth: hci_sock: purge socket queues in the destruct() callback
  x86/resctl: fix scheduler confusion with 'current'
  x86/resctrl: Apply READ_ONCE/WRITE_ONCE to task_struct.{rmid,closid}
  net: tls: avoid hanging tasks on the tx_lock
  phy: rockchip-typec: Fix unsigned comparison with less than zero
  PCI: Add ACS quirk for Wangxun NICs
  kernel/fail_function: fix memory leak with using debugfs_lookup()
  usb: uvc: Enumerate valid values for color matching
  USB: ene_usb6250: Allocate enough memory for full object
  usb: host: xhci: mvebu: Iterate over array indexes instead of using pointer math
  iio: accel: mma9551_core: Prevent uninitialized variable in mma9551_read_config_word()
  iio: accel: mma9551_core: Prevent uninitialized variable in mma9551_read_status_word()
  tools/iio/iio_utils:fix memory leak
  mei: bus-fixup:upon error print return values of send and receive
  tty: serial: fsl_lpuart: disable the CTS when send break signal
  tty: fix out-of-bounds access in tty_driver_lookup_tty()
  staging: emxx_udc: Add checks for dma_alloc_coherent()
  media: uvcvideo: Silence memcpy() run-time false positive warnings
  media: uvcvideo: Quirk for autosuspend in Logitech B910 and C910
  media: uvcvideo: Handle errors from calls to usb_string
  media: uvcvideo: Handle cameras with invalid descriptors
  mfd: arizona: Use pm_runtime_resume_and_get() to prevent refcnt leak
  firmware/efi sysfb_efi: Add quirk for Lenovo IdeaPad Duet 3
  tracing: Add NULL checks for buffer in ring_buffer_free_read_page()
  thermal: intel: BXT_PMIC: select REGMAP instead of depending on it
  thermal: intel: quark_dts: fix error pointer dereference
  scsi: ipr: Work around fortify-string warning
  rtc: sun6i: Always export the internal oscillator
  rtc: sun6i: Make external 32k oscillator optional
  vc_screen: modify vcs_size() handling in vcs_read()
  tcp: tcp_check_req() can be called from process context
  ARM: dts: spear320-hmi: correct STMPE GPIO compatible
  net/sched: act_sample: fix action bind logic
  nfc: fix memory leak of se_io context in nfc_genl_se_io
  net/mlx5: Geneve, Fix handling of Geneve object id as error code
  9p/rdma: unmap receive dma buffer in rdma_request()/post_recv()
  9p/xen: fix connection sequence
  9p/xen: fix version parsing
  net: fix __dev_kfree_skb_any() vs drop monitor
  sctp: add a refcnt in sctp_stream_priorities to avoid a nested loop
  ipv6: Add lwtunnel encap size of all siblings in nexthop calculation
  netfilter: ctnetlink: fix possible refcount leak in ctnetlink_create_conntrack()
  watchdog: pcwd_usb: Fix attempting to access uninitialized memory
  watchdog: Fix kmemleak in watchdog_cdev_register
  watchdog: at91sam9_wdt: use devm_request_irq to avoid missing free_irq() in error path
  x86: um: vdso: Add '%rcx' and '%r11' to the syscall clobber list
  ubi: ubi_wl_put_peb: Fix infinite loop when wear-leveling work failed
  ubi: Fix UAF wear-leveling entry in eraseblk_count_seq_show()
  ubifs: ubifs_writepage: Mark page dirty after writing inode failed
  ubifs: dirty_cow_znode: Fix memleak in error handling path
  ubifs: Re-statistic cleaned znode count if commit failed
  ubi: Fix possible null-ptr-deref in ubi_free_volume()
  ubifs: Fix memory leak in alloc_wbufs()
  ubi: Fix unreferenced object reported by kmemleak in ubi_resize_volume()
  ubi: Fix use-after-free when volume resizing failed
  ubifs: Reserve one leb for each journal head while doing budget
  ubifs: do_rename: Fix wrong space budget when target inode's nlink > 1
  ubifs: Fix wrong dirty space budget for dirty inode
  ubifs: Rectify space budget for ubifs_xrename()
  ubifs: Rectify space budget for ubifs_symlink() if symlink is encrypted
  ubifs: Fix build errors as symbol undefined
  ubi: ensure that VID header offset + VID header size <= alloc, size
  um: vector: Fix memory leak in vector_config
  fs: f2fs: initialize fsdata in pagecache_write()
  f2fs: use memcpy_{to,from}_page() where possible
  pwm: stm32-lp: fix the check on arr and cmp registers update
  pwm: sifive: Always let the first pwm_apply_state succeed
  pwm: sifive: Reduce time the controller lock is held
  fs/jfs: fix shift exponent db_agl2size negative
  net/sched: Retire tcindex classifier
  kbuild: Port silent mode detection to future gnu make.
  wifi: ath9k: use proper statements in conditionals
  drm/radeon: Fix eDP for single-display iMac11,2
  drm/i915/quirks: Add inverted backlight quirk for HP 14-r206nv
  PCI: Avoid FLR for AMD FCH AHCI adapters
  PCI: hotplug: Allow marking devices as disconnected during bind/unbind
  PCI/PM: Observe reset delay irrespective of bridge_d3
  scsi: ses: Fix slab-out-of-bounds in ses_intf_remove()
  scsi: ses: Fix possible desc_ptr out-of-bounds accesses
  scsi: ses: Fix possible addl_desc_ptr out-of-bounds accesses
  scsi: ses: Fix slab-out-of-bounds in ses_enclosure_data_process()
  scsi: ses: Don't attach if enclosure has no components
  scsi: qla2xxx: Fix erroneous link down
  scsi: qla2xxx: Fix DMA-API call trace on NVMe LS requests
  scsi: qla2xxx: Fix link failure in NPIV environment
  ktest.pl: Add RUN_TIMEOUT option with default unlimited
  ktest.pl: Fix missing "end_monitor" when machine check fails
  ktest.pl: Give back console on Ctrt^C on monitor
  mm/thp: check and bail out if page in deferred queue already
  mm: memcontrol: deprecate charge moving
  media: ipu3-cio2: Fix PM runtime usage_count in driver unbind
  mips: fix syscall_get_nr
  alpha: fix FEN fault handling
  rbd: avoid use-after-free in do_rbd_add() when rbd_dev_create() fails
  ARM: dts: exynos: correct TMU phandle in Odroid XU
  ARM: dts: exynos: correct TMU phandle in Exynos4
  dm flakey: don't corrupt the zero page
  dm flakey: fix logic when corrupting a bio
  thermal: intel: powerclamp: Fix cur_state for multi package system
  wifi: cfg80211: Fix use after free for wext
  wifi: rtl8xxxu: Use a longer retry limit of 48
  ext4: refuse to create ea block when umounted
  ext4: optimize ea_inode block expansion
  ALSA: hda/realtek: Add quirk for HP EliteDesk 800 G6 Tower PC
  ALSA: ice1712: Do not left ice->gpio_mutex locked in aureon_add_controls()
  irqdomain: Drop bogus fwspec-mapping error handling
  irqdomain: Fix disassociation race
  irqdomain: Fix association race
  ima: Align ima_file_mmap() parameters with mmap_file LSM hook
  Documentation/hw-vuln: Document the interaction between IBRS and STIBP
  x86/speculation: Allow enabling STIBP with legacy IBRS
  x86/microcode/AMD: Fix mixed steppings support
  x86/microcode/AMD: Add a @cpu parameter to the reloading functions
  x86/microcode/amd: Remove load_microcode_amd()'s bsp parameter
  x86/kprobes: Fix arch_check_optimized_kprobe check within optimized_kprobe range
  x86/kprobes: Fix __recover_optprobed_insn check optimizing logic
  x86/reboot: Disable SVM, not just VMX, when stopping CPUs
  x86/reboot: Disable virtualization in an emergency if SVM is supported
  x86/crash: Disable virt in core NMI crash handler to avoid double shootdown
  x86/virt: Force GIF=1 prior to disabling SVM (for reboot flows)
  KVM: s390: disable migration mode when dirty tracking is disabled
  KVM: Destroy target device if coalesced MMIO unregistration fails
  udf: Fix file corruption when appending just after end of preallocated extent
  udf: Detect system inodes linked into directory hierarchy
  udf: Preserve link count of system files
  udf: Do not update file length for failed writes to inline files
  udf: Do not bother merging very long extents
  udf: Truncate added extents on failed expansion
  ocfs2: fix non-auto defrag path not working issue
  ocfs2: fix defrag path triggering jbd2 ASSERT
  f2fs: fix cgroup writeback accounting with fs-layer encryption
  f2fs: fix information leak in f2fs_move_inline_dirents()
  fs: hfsplus: fix UAF issue in hfsplus_put_super
  hfs: fix missing hfs_bnode_get() in __hfs_bnode_create
  ARM: dts: exynos: correct HDMI phy compatible in Exynos4
  s390/kprobes: fix current_kprobe never cleared after kprobes reenter
  s390/kprobes: fix irq mask clobbering on kprobe reenter from post_handler
  s390: discard .interp section
  ipmi_ssif: Rename idle state and check
  rtc: pm8xxx: fix set-alarm race
  firmware: coreboot: framebuffer: Ignore reserved pixel color bits
  wifi: rtl8xxxu: fixing transmisison failure for rtl8192eu
  nfsd: zero out pointers after putting nfsd_files on COPY setup error
  dm cache: add cond_resched() to various workqueue loops
  dm thin: add cond_resched() to various workqueue loops
  drm: panel-orientation-quirks: Add quirk for Lenovo IdeaPad Duet 3 10IGL5
  pinctrl: at91: use devm_kasprintf() to avoid potential leaks
  hwmon: (coretemp) Simplify platform device handling
  regulator: s5m8767: Bounds check id indexing into arrays
  regulator: max77802: Bounds check regulator id against opmode
  ASoC: kirkwood: Iterate over array indexes instead of using pointer math
  docs/scripts/gdb: add necessary make scripts_gdb step
  drm/msm/dsi: Add missing check for alloc_ordered_workqueue
  drm/radeon: free iio for atombios when driver shutdown
  HID: Add Mapping for System Microphone Mute
  drm/omap: dsi: Fix excessive stack usage
  drm/amd/display: Fix potential null-deref in dm_resume
  uaccess: Add minimum bounds check on kernel buffer size
  coda: Avoid partial allocation of sig_inputArgs
  net/mlx5: fw_tracer: Fix debug print
  ACPI: video: Fix Lenovo Ideapad Z570 DMI match
  wifi: mt76: dma: free rx_head in mt76_dma_rx_cleanup
  m68k: Check syscall_trace_enter() return code
  net: bcmgenet: Add a check for oversized packets
  ACPI: Don't build ACPICA with '-Os'
  ice: add missing checks for PF vsi type
  inet: fix fast path in __inet_hash_connect()
  wifi: mt7601u: fix an integer underflow
  wifi: brcmfmac: ensure CLM version is null-terminated to prevent stack-out-of-bounds
  x86/bugs: Reset speculation control settings on init
  timers: Prevent union confusion from unexpected restart_syscall()
  thermal: intel: Fix unsigned comparison with less than zero
  rcu: Suppress smp_processor_id() complaint in synchronize_rcu_expedited_wait()
  wifi: brcmfmac: Fix potential stack-out-of-bounds in brcmf_c_preinit_dcmds()
  blk-iocost: fix divide by 0 error in calc_lcoefs()
  ARM: dts: exynos: Use Exynos5420 compatible for the MIPI video phy
  udf: Define EFSCORRUPTED error code
  rpmsg: glink: Avoid infinite loop on intent for missing channel
  media: usb: siano: Fix use after free bugs caused by do_submit_urb
  media: i2c: ov7670: 0 instead of -EINVAL was returned
  media: rc: Fix use-after-free bugs caused by ene_tx_irqsim()
  media: i2c: ov772x: Fix memleak in ov772x_probe()
  media: ov5675: Fix memleak in ov5675_init_controls()
  powerpc: Remove linker flag from KBUILD_AFLAGS
  media: platform: ti: Add missing check for devm_regulator_get
  remoteproc: qcom_q6v5_mss: Use a carveout to authenticate modem headers
  MIPS: vpe-mt: drop physical_memsize
  MIPS: SMP-CPS: fix build error when HOTPLUG_CPU not set
  powerpc/eeh: Set channel state after notifying the drivers
  powerpc/eeh: Small refactor of eeh_handle_normal_event()
  powerpc/rtas: ensure 4KB alignment for rtas_data_buf
  powerpc/rtas: make all exports GPL
  powerpc/pseries/lparcfg: add missing RTAS retry status handling
  powerpc/pseries/lpar: add missing RTAS retry status handling
  clk: Honor CLK_OPS_PARENT_ENABLE in clk_core_is_enabled()
  powerpc/powernv/ioda: Skip unallocated resources when mapping to PE
  clk: qcom: gpucc-sdm845: fix clk_dis_wait being programmed for CX GDSC
  Input: ads7846 - don't check penirq immediately for 7845
  Input: ads7846 - don't report pressure for ads7845
  clk: renesas: cpg-mssr: Remove superfluous check in resume code
  clk: renesas: cpg-mssr: Use enum clk_reg_layout instead of a boolean flag
  clk: renesas: cpg-mssr: Fix use after free if cpg_mssr_common_init() failed
  mtd: rawnand: sunxi: Fix the size of the last OOB region
  clk: qcom: gcc-qcs404: fix names of the DSI clocks used as parents
  clk: qcom: gcc-qcs404: disable gpll[04]_out_aux parents
  mfd: pcf50633-adc: Fix potential memleak in pcf50633_adc_async_read()
  selftests/ftrace: Fix bash specific "==" operator
  sparc: allow PM configs for sparc32 COMPILE_TEST
  perf tools: Fix auto-complete on aarch64
  perf llvm: Fix inadvertent file creation
  gfs2: jdata writepage fix
  cifs: Fix warning and UAF when destroy the MR list
  cifs: Fix lost destroy smbd connection when MR allocate failed
  nfsd: fix race to check ls_layouts
  hid: bigben_probe(): validate report count
  HID: asus: Fix mute and touchpad-toggle keys on Medion Akoya E1239T
  HID: asus: Add support for multi-touch touchpad on Medion Akoya E1239T
  HID: asus: Add report_size to struct asus_touchpad_info
  HID: asus: Only set EV_REP if we are adding a mapping
  HID: bigben: use spinlock to safely schedule workers
  HID: bigben_worker() remove unneeded check on report_field
  HID: bigben: use spinlock to protect concurrent accesses
  ASoC: soc-dapm.h: fixup warning struct snd_pcm_substream not declared
  ASoC: dapm: declare missing structure prototypes
  spi: synquacer: Fix timeout handling in synquacer_spi_transfer_one()
  dm: remove flush_scheduled_work() during local_exit()
  hwmon: (mlxreg-fan) Return zero speed for broken fan
  spi: bcm63xx-hsspi: Fix multi-bit mode setting
  spi: bcm63xx-hsspi: fix pm_runtime
  scsi: aic94xx: Add missing check for dma_map_single()
  hwmon: (ltc2945) Handle error case in ltc2945_value_store
  gpio: vf610: connect GPIO label to dev name
  ASoC: soc-compress.c: fixup private_data on snd_soc_new_compress()
  drm/mediatek: Clean dangling pointer on bind error path
  drm/mediatek: Drop unbalanced obj unref
  drm/mediatek: Use NULL instead of 0 for NULL pointer
  drm/mediatek: remove cast to pointers passed to kfree
  gpu: host1x: Don't skip assigning syncpoints to channels
  drm/msm/mdp5: Add check for kzalloc
  drm: Initialize struct drm_crtc_state.no_vblank from device settings
  drm/bridge: Introduce drm_bridge_get_next_bridge()
  drm/bridge: Rename bridge helpers targeting a bridge chain
  drm/exynos: Don't reset bridge->next
  drm/msm/dpu: Add check for pstates
  drm/msm/dpu: Add check for cstate
  drm/msm: use strscpy instead of strncpy
  drm/mipi-dsi: Fix byte order of 16-bit DCS set/get brightness
  ALSA: hda/ca0132: minor fix for allocation size
  ASoC: fsl_sai: initialize is_dsp_mode flag
  pinctrl: stm32: Fix refcount leak in stm32_pctrl_get_irq_domain
  drm/msm/hdmi: Add missing check for alloc_ordered_workqueue
  gpu: ipu-v3: common: Add of_node_put() for reference returned by of_graph_get_port_by_id()
  drm/vc4: dpi: Fix format mapping for RGB565
  drm/vc4: dpi: Add option for inverting pixel clock and output enable
  drm/bridge: megachips: Fix error handling in i2c_register_driver()
  drm: mxsfb: DRM_MXSFB should depend on ARCH_MXS || ARCH_MXC
  drm/fourcc: Add missing big-endian XRGB1555 and RGB565 formats
  selftest: fib_tests: Always cleanup before exit
  selftests/net: Interpret UDP_GRO cmsg data as an int value
  irqchip/irq-bcm7120-l2: Set IRQ_LEVEL for level triggered interrupts
  irqchip/irq-brcmstb-l2: Set IRQ_LEVEL for level triggered interrupts
  can: esd_usb: Move mislocated storage of SJA1000_ECC_SEG bits in case of a bus error
  thermal/drivers/hisi: Drop second sensor hi3660
  wifi: mac80211: make rate u32 in sta_set_rate_info_rx()
  crypto: crypto4xx - Call dma_unmap_page when done
  wifi: mwifiex: fix loop iterator in mwifiex_update_ampdu_txwinsize()
  wifi: iwl4965: Add missing check for create_singlethread_workqueue()
  wifi: iwl3945: Add missing check for create_singlethread_workqueue
  treewide: Replace DECLARE_TASKLET() with DECLARE_TASKLET_OLD()
  usb: gadget: udc: Avoid tasklet passing a global
  RISC-V: time: initialize hrtimer based broadcast clock event device
  m68k: /proc/hardware should depend on PROC_FS
  crypto: rsa-pkcs1pad - Use akcipher_request_complete
  rds: rds_rm_zerocopy_callback() correct order for list_add_tail()
  libbpf: Fix alen calculation in libbpf_nla_dump_errormsg()
  Bluetooth: L2CAP: Fix potential user-after-free
  OPP: fix error checking in opp_migrate_dentry()
  tap: tap_open(): correctly initialize socket uid
  tun: tun_chr_open(): correctly initialize socket uid
  net: add sock_init_data_uid()
  mptcp: add sk_stop_timer_sync helper
  irqchip/ti-sci: Fix refcount leak in ti_sci_intr_irq_domain_probe
  irqchip/irq-mvebu-gicp: Fix refcount leak in mvebu_gicp_probe
  irqchip/alpine-msi: Fix refcount leak in alpine_msix_init_domains
  net/mlx5: Enhance debug print in page allocation failure
  powercap: fix possible name leak in powercap_register_zone()
  crypto: seqiv - Handle EBUSY correctly
  crypto: essiv - Handle EBUSY correctly
  crypto: essiv - remove redundant null pointer check before kfree
  crypto: ccp - Failure on re-initialization due to duplicate sysfs filename
  ACPI: battery: Fix missing NUL-termination with large strings
  wifi: ath9k: Fix potential stack-out-of-bounds write in ath9k_wmi_rsp_callback()
  wifi: ath9k: hif_usb: clean up skbs if ath9k_hif_usb_rx_stream() fails
  ath9k: htc: clean up statistics macros
  ath9k: hif_usb: simplify if-if to if-else
  wifi: ath9k: htc_hst: free skb in ath9k_htc_rx_msg() if there is no callback function
  wifi: orinoco: check return value of hermes_write_wordrec()
  ACPICA: nsrepair: handle cases without a return value correctly
  lib/mpi: Fix buffer overrun when SG is too long
  genirq: Fix the return type of kstat_cpu_irqs_sum()
  ACPICA: Drop port I/O validation for some regions
  crypto: x86/ghash - fix unaligned access in ghash_setkey()
  wifi: wl3501_cs: don't call kfree_skb() under spin_lock_irqsave()
  wifi: libertas: cmdresp: don't call kfree_skb() under spin_lock_irqsave()
  wifi: libertas: main: don't call kfree_skb() under spin_lock_irqsave()
  wifi: libertas: if_usb: don't call kfree_skb() under spin_lock_irqsave()
  wifi: libertas_tf: don't call kfree_skb() under spin_lock_irqsave()
  wifi: brcmfmac: unmap dma buffer in brcmf_msgbuf_alloc_pktid()
  wifi: brcmfmac: fix potential memory leak in brcmf_netdev_start_xmit()
  wifi: wilc1000: fix potential memory leak in wilc_mac_xmit()
  wilc1000: let wilc_mac_xmit() return NETDEV_TX_OK
  wifi: ipw2200: fix memory leak in ipw_wdev_init()
  wifi: ipw2x00: don't call dev_kfree_skb() under spin_lock_irqsave()
  ipw2x00: switch from 'pci_' to 'dma_' API
  wifi: rtlwifi: Fix global-out-of-bounds bug in _rtl8812ae_phy_set_txpower_limit()
  rtlwifi: fix -Wpointer-sign warning
  wifi: rtl8xxxu: don't call dev_kfree_skb() under spin_lock_irqsave()
  wifi: libertas: fix memory leak in lbs_init_adapter()
  wifi: iwlegacy: common: don't call dev_kfree_skb() under spin_lock_irqsave()
  net/wireless: Delete unnecessary checks before the macro call “dev_kfree_skb”
  wifi: rsi: Fix memory leak in rsi_coex_attach()
  block: bio-integrity: Copy flags when bio_integrity_payload is cloned
  sched/rt: pick_next_rt_entity(): check list_entry
  sched/deadline,rt: Remove unused parameter from pick_next_[rt|dl]_entity()
  s390/dasd: Fix potential memleak in dasd_eckd_init()
  s390/dasd: Prepare for additional path event handling
  blk-mq: correct stale comment of .get_budget
  blk-mq: wait on correct sbitmap_queue in blk_mq_mark_tag_wait
  blk-mq: remove stale comment for blk_mq_sched_mark_restart_hctx
  block: Limit number of items taken from the I/O scheduler in one go
  Revert "scsi: core: run queue if SCSI device queue isn't ready and queue is idle"
  arm64: dts: mediatek: mt7622: Add missing pwm-cells to pwm node
  ARM: dts: imx7s: correct iomuxc gpr mux controller cells
  arm64: dts: amlogic: meson-gxl-s905d-phicomm-n1: fix led node name
  arm64: dts: amlogic: meson-gxl: add missing unit address to eth-phy-mux node name
  arm64: dts: amlogic: meson-gx: add missing unit address to rng node name
  arm64: dts: amlogic: meson-gx: add missing SCPI sensors compatible
  arm64: dts: amlogic: meson-axg: fix SCPI clock dvfs node name
  arm64: dts: amlogic: meson-gx: fix SCPI clock dvfs node name
  ARM: imx: Call ida_simple_remove() for ida_simple_get
  ARM: dts: exynos: correct wr-active property in Exynos3250 Rinato
  ARM: OMAP1: call platform_device_put() in error case in omap1_dm_timer_init()
  arm64: dts: meson: remove CPU opps below 1GHz for G12A boards
  arm64: dts: meson-gx: Fix the SCPI DVFS node name and unit address
  arm64: dts: meson-g12a: Fix internal Ethernet PHY unit name
  arm64: dts: meson-gx: Fix Ethernet MAC address unit name
  ARM: zynq: Fix refcount leak in zynq_early_slcr_init
  arm64: dts: qcom: qcs404: use symbol names for PCIe resets
  ARM: OMAP2+: Fix memory leak in realtime_counter_init()
  HID: asus: use spinlock to safely schedule workers
  HID: asus: use spinlock to protect concurrent accesses
  HID: asus: Remove check for same LED brightness on set
  Linux 5.4.234
  USB: core: Don't hold device lock while reading the "descriptors" sysfs file
  USB: serial: option: add support for VW/Skoda "Carstick LTE"
  dmaengine: sh: rcar-dmac: Check for error num after dma_set_max_seg_size
  vc_screen: don't clobber return value in vcs_read
  net: Remove WARN_ON_ONCE(sk->sk_forward_alloc) from sk_stream_kill_queues().
  bpf: bpf_fib_lookup should not return neigh in NUD_FAILED state
  HID: core: Fix deadloop in hid_apply_multiplier.
  neigh: make sure used and confirmed times are valid
  IB/hfi1: Assign npages earlier
  btrfs: send: limit number of clones and allocated memory size
  ACPI: NFIT: fix a potential deadlock during NFIT teardown
  ARM: dts: rockchip: add power-domains property to dp node on rk3288
  arm64: dts: rockchip: drop unused LED mode property from rk3328-roc-cc

 Conflicts:
	Documentation/devicetree/bindings/rtc/allwinner,sun6i-a31-rtc.yaml
	Documentation/devicetree/bindings~HEAD
	arch/arm/mm/dma-mapping.c
	drivers/clk/qcom/gcc-qcs404.c
	drivers/iommu/dma-iommu.c
	drivers/mtd/ubi/wl.c
	kernel/dma/direct.c

Change-Id: I804ccb5552f305c49ec17b323c6c933cc99e6d39
2023-06-08 12:00:01 +03:00

3155 lines
74 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
* policies)
*/
#include "sched.h"
#include "pelt.h"
#include <linux/interrupt.h>
#include <trace/events/sched.h>
#include "walt/walt.h"
#include <trace/hooks/sched.h>
int sched_rr_timeslice = RR_TIMESLICE;
int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
/* More than 4 hours if BW_SHIFT equals 20. */
static const u64 max_rt_runtime = MAX_BW;
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
struct rt_bandwidth def_rt_bandwidth;
static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
struct rt_bandwidth *rt_b =
container_of(timer, struct rt_bandwidth, rt_period_timer);
int idle = 0;
int overrun;
raw_spin_lock(&rt_b->rt_runtime_lock);
for (;;) {
overrun = hrtimer_forward_now(timer, rt_b->rt_period);
if (!overrun)
break;
raw_spin_unlock(&rt_b->rt_runtime_lock);
idle = do_sched_rt_period_timer(rt_b, overrun);
raw_spin_lock(&rt_b->rt_runtime_lock);
}
if (idle)
rt_b->rt_period_active = 0;
raw_spin_unlock(&rt_b->rt_runtime_lock);
return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
rt_b->rt_period = ns_to_ktime(period);
rt_b->rt_runtime = runtime;
raw_spin_lock_init(&rt_b->rt_runtime_lock);
hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL_HARD);
rt_b->rt_period_timer.function = sched_rt_period_timer;
}
static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
raw_spin_lock(&rt_b->rt_runtime_lock);
if (!rt_b->rt_period_active) {
rt_b->rt_period_active = 1;
/*
* SCHED_DEADLINE updates the bandwidth, as a run away
* RT task with a DL task could hog a CPU. But DL does
* not reset the period. If a deadline task was running
* without an RT task running, it can cause RT tasks to
* throttle when they start up. Kick the timer right away
* to update the period.
*/
hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
hrtimer_start_expires(&rt_b->rt_period_timer,
HRTIMER_MODE_ABS_PINNED_HARD);
}
raw_spin_unlock(&rt_b->rt_runtime_lock);
}
static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
return;
do_start_rt_bandwidth(rt_b);
}
void init_rt_rq(struct rt_rq *rt_rq)
{
struct rt_prio_array *array;
int i;
array = &rt_rq->active;
for (i = 0; i < MAX_RT_PRIO; i++) {
INIT_LIST_HEAD(array->queue + i);
__clear_bit(i, array->bitmap);
}
/* delimiter for bitsearch: */
__set_bit(MAX_RT_PRIO, array->bitmap);
#if defined CONFIG_SMP
rt_rq->highest_prio.curr = MAX_RT_PRIO;
rt_rq->highest_prio.next = MAX_RT_PRIO;
rt_rq->rt_nr_migratory = 0;
rt_rq->overloaded = 0;
plist_head_init(&rt_rq->pushable_tasks);
#endif /* CONFIG_SMP */
/* We start is dequeued state, because no RT tasks are queued */
rt_rq->rt_queued = 0;
rt_rq->rt_time = 0;
rt_rq->rt_throttled = 0;
rt_rq->rt_runtime = 0;
raw_spin_lock_init(&rt_rq->rt_runtime_lock);
}
#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
hrtimer_cancel(&rt_b->rt_period_timer);
}
#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
#ifdef CONFIG_SCHED_DEBUG
WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
return container_of(rt_se, struct task_struct, rt);
}
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
return rt_rq->rq;
}
static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
return rt_se->rt_rq;
}
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
{
struct rt_rq *rt_rq = rt_se->rt_rq;
return rt_rq->rq;
}
void free_rt_sched_group(struct task_group *tg)
{
int i;
if (tg->rt_se)
destroy_rt_bandwidth(&tg->rt_bandwidth);
for_each_possible_cpu(i) {
if (tg->rt_rq)
kfree(tg->rt_rq[i]);
if (tg->rt_se)
kfree(tg->rt_se[i]);
}
kfree(tg->rt_rq);
kfree(tg->rt_se);
}
void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
struct sched_rt_entity *rt_se, int cpu,
struct sched_rt_entity *parent)
{
struct rq *rq = cpu_rq(cpu);
rt_rq->highest_prio.curr = MAX_RT_PRIO;
rt_rq->rt_nr_boosted = 0;
rt_rq->rq = rq;
rt_rq->tg = tg;
tg->rt_rq[cpu] = rt_rq;
tg->rt_se[cpu] = rt_se;
if (!rt_se)
return;
if (!parent)
rt_se->rt_rq = &rq->rt;
else
rt_se->rt_rq = parent->my_q;
rt_se->my_q = rt_rq;
rt_se->parent = parent;
INIT_LIST_HEAD(&rt_se->run_list);
}
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
struct rt_rq *rt_rq;
struct sched_rt_entity *rt_se;
int i;
tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
if (!tg->rt_rq)
goto err;
tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
if (!tg->rt_se)
goto err;
init_rt_bandwidth(&tg->rt_bandwidth,
ktime_to_ns(def_rt_bandwidth.rt_period), 0);
for_each_possible_cpu(i) {
rt_rq = kzalloc_node(sizeof(struct rt_rq),
GFP_KERNEL, cpu_to_node(i));
if (!rt_rq)
goto err;
rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
GFP_KERNEL, cpu_to_node(i));
if (!rt_se)
goto err_free_rq;
init_rt_rq(rt_rq);
rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
}
return 1;
err_free_rq:
kfree(rt_rq);
err:
return 0;
}
#else /* CONFIG_RT_GROUP_SCHED */
#define rt_entity_is_task(rt_se) (1)
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
return container_of(rt_se, struct task_struct, rt);
}
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
return container_of(rt_rq, struct rq, rt);
}
static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
{
struct task_struct *p = rt_task_of(rt_se);
return task_rq(p);
}
static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
struct rq *rq = rq_of_rt_se(rt_se);
return &rq->rt;
}
void free_rt_sched_group(struct task_group *tg) { }
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
return 1;
}
#endif /* CONFIG_RT_GROUP_SCHED */
#ifdef CONFIG_SMP
static void pull_rt_task(struct rq *this_rq);
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
{
/*
* Try to pull RT tasks here if we lower this rq's prio and cpu is not
* isolated
*/
return rq->rt.highest_prio.curr > prev->prio &&
!cpu_isolated(cpu_of(rq));
}
static inline int rt_overloaded(struct rq *rq)
{
return atomic_read(&rq->rd->rto_count);
}
static inline void rt_set_overload(struct rq *rq)
{
if (!rq->online)
return;
cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
/*
* Make sure the mask is visible before we set
* the overload count. That is checked to determine
* if we should look at the mask. It would be a shame
* if we looked at the mask, but the mask was not
* updated yet.
*
* Matched by the barrier in pull_rt_task().
*/
smp_wmb();
atomic_inc(&rq->rd->rto_count);
}
static inline void rt_clear_overload(struct rq *rq)
{
if (!rq->online)
return;
/* the order here really doesn't matter */
atomic_dec(&rq->rd->rto_count);
cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
}
static void update_rt_migration(struct rt_rq *rt_rq)
{
if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
if (!rt_rq->overloaded) {
rt_set_overload(rq_of_rt_rq(rt_rq));
rt_rq->overloaded = 1;
}
} else if (rt_rq->overloaded) {
rt_clear_overload(rq_of_rt_rq(rt_rq));
rt_rq->overloaded = 0;
}
}
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
struct task_struct *p;
if (!rt_entity_is_task(rt_se))
return;
p = rt_task_of(rt_se);
rt_rq = &rq_of_rt_rq(rt_rq)->rt;
rt_rq->rt_nr_total++;
if (p->nr_cpus_allowed > 1)
rt_rq->rt_nr_migratory++;
update_rt_migration(rt_rq);
}
static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
struct task_struct *p;
if (!rt_entity_is_task(rt_se))
return;
p = rt_task_of(rt_se);
rt_rq = &rq_of_rt_rq(rt_rq)->rt;
rt_rq->rt_nr_total--;
if (p->nr_cpus_allowed > 1)
rt_rq->rt_nr_migratory--;
update_rt_migration(rt_rq);
}
static inline int has_pushable_tasks(struct rq *rq)
{
return !plist_head_empty(&rq->rt.pushable_tasks);
}
static DEFINE_PER_CPU(struct callback_head, rt_push_head);
static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
static void push_rt_tasks(struct rq *);
static void pull_rt_task(struct rq *);
static inline void rt_queue_push_tasks(struct rq *rq)
{
if (!has_pushable_tasks(rq))
return;
queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
}
static inline void rt_queue_pull_task(struct rq *rq)
{
queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
}
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
plist_node_init(&p->pushable_tasks, p->prio);
plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
/* Update the highest prio pushable task */
if (p->prio < rq->rt.highest_prio.next)
rq->rt.highest_prio.next = p->prio;
}
static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
/* Update the new highest prio pushable task */
if (has_pushable_tasks(rq)) {
p = plist_first_entry(&rq->rt.pushable_tasks,
struct task_struct, pushable_tasks);
rq->rt.highest_prio.next = p->prio;
} else
rq->rt.highest_prio.next = MAX_RT_PRIO;
}
#else
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
}
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}
static inline
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
static inline
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
{
return false;
}
static inline void pull_rt_task(struct rq *this_rq)
{
}
static inline void rt_queue_push_tasks(struct rq *rq)
{
}
#endif /* CONFIG_SMP */
static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
return rt_se->on_rq;
}
#ifdef CONFIG_UCLAMP_TASK
/*
* Verify the fitness of task @p to run on @cpu taking into account the uclamp
* settings.
*
* This check is only important for heterogeneous systems where uclamp_min value
* is higher than the capacity of a @cpu. For non-heterogeneous system this
* function will always return true.
*
* The function will return true if the capacity of the @cpu is >= the
* uclamp_min and false otherwise.
*
* Note that uclamp_min will be clamped to uclamp_max if uclamp_min
* > uclamp_max.
*/
static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
{
unsigned int min_cap;
unsigned int max_cap;
unsigned int cpu_cap;
/* Only heterogeneous systems can benefit from this check */
if (!static_branch_unlikely(&sched_asym_cpucapacity))
return true;
min_cap = uclamp_eff_value(p, UCLAMP_MIN);
max_cap = uclamp_eff_value(p, UCLAMP_MAX);
cpu_cap = capacity_orig_of(cpu);
return cpu_cap >= min(min_cap, max_cap);
}
#else
static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
{
return true;
}
#endif
#ifdef CONFIG_RT_GROUP_SCHED
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
if (!rt_rq->tg)
return RUNTIME_INF;
return rt_rq->rt_runtime;
}
static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
}
typedef struct task_group *rt_rq_iter_t;
static inline struct task_group *next_task_group(struct task_group *tg)
{
do {
tg = list_entry_rcu(tg->list.next,
typeof(struct task_group), list);
} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
if (&tg->list == &task_groups)
tg = NULL;
return tg;
}
#define for_each_rt_rq(rt_rq, iter, rq) \
for (iter = container_of(&task_groups, typeof(*iter), list); \
(iter = next_task_group(iter)) && \
(rt_rq = iter->rt_rq[cpu_of(rq)]);)
#define for_each_sched_rt_entity(rt_se) \
for (; rt_se; rt_se = rt_se->parent)
static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
return rt_se->my_q;
}
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
{
struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
struct rq *rq = rq_of_rt_rq(rt_rq);
struct sched_rt_entity *rt_se;
int cpu = cpu_of(rq);
rt_se = rt_rq->tg->rt_se[cpu];
if (rt_rq->rt_nr_running) {
if (!rt_se)
enqueue_top_rt_rq(rt_rq);
else if (!on_rt_rq(rt_se))
enqueue_rt_entity(rt_se, 0);
if (rt_rq->highest_prio.curr < curr->prio)
resched_curr(rq);
}
}
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
{
struct sched_rt_entity *rt_se;
int cpu = cpu_of(rq_of_rt_rq(rt_rq));
rt_se = rt_rq->tg->rt_se[cpu];
if (!rt_se) {
dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
}
else if (on_rt_rq(rt_se))
dequeue_rt_entity(rt_se, 0);
}
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}
static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
struct rt_rq *rt_rq = group_rt_rq(rt_se);
struct task_struct *p;
if (rt_rq)
return !!rt_rq->rt_nr_boosted;
p = rt_task_of(rt_se);
return p->prio != p->normal_prio;
}
#ifdef CONFIG_SMP
static inline const struct cpumask *sched_rt_period_mask(void)
{
return this_rq()->rd->span;
}
#else
static inline const struct cpumask *sched_rt_period_mask(void)
{
return cpu_online_mask;
}
#endif
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
return &rt_rq->tg->rt_bandwidth;
}
#else /* !CONFIG_RT_GROUP_SCHED */
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
return rt_rq->rt_runtime;
}
static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
return ktime_to_ns(def_rt_bandwidth.rt_period);
}
typedef struct rt_rq *rt_rq_iter_t;
#define for_each_rt_rq(rt_rq, iter, rq) \
for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
#define for_each_sched_rt_entity(rt_se) \
for (; rt_se; rt_se = NULL)
static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
return NULL;
}
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
{
struct rq *rq = rq_of_rt_rq(rt_rq);
if (!rt_rq->rt_nr_running)
return;
enqueue_top_rt_rq(rt_rq);
resched_curr(rq);
}
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
{
dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
}
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
return rt_rq->rt_throttled;
}
static inline const struct cpumask *sched_rt_period_mask(void)
{
return cpu_online_mask;
}
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
return &cpu_rq(cpu)->rt;
}
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
return &def_rt_bandwidth;
}
#endif /* CONFIG_RT_GROUP_SCHED */
bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
{
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
return (hrtimer_active(&rt_b->rt_period_timer) ||
rt_rq->rt_time < rt_b->rt_runtime);
}
#ifdef CONFIG_SMP
/*
* We ran out of runtime, see if we can borrow some from our neighbours.
*/
static void do_balance_runtime(struct rt_rq *rt_rq)
{
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
int i, weight;
u64 rt_period;
weight = cpumask_weight(rd->span);
raw_spin_lock(&rt_b->rt_runtime_lock);
rt_period = ktime_to_ns(rt_b->rt_period);
for_each_cpu(i, rd->span) {
struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
s64 diff;
if (iter == rt_rq)
continue;
raw_spin_lock(&iter->rt_runtime_lock);
/*
* Either all rqs have inf runtime and there's nothing to steal
* or __disable_runtime() below sets a specific rq to inf to
* indicate its been disabled and disalow stealing.
*/
if (iter->rt_runtime == RUNTIME_INF)
goto next;
/*
* From runqueues with spare time, take 1/n part of their
* spare time, but no more than our period.
*/
diff = iter->rt_runtime - iter->rt_time;
if (diff > 0) {
diff = div_u64((u64)diff, weight);
if (rt_rq->rt_runtime + diff > rt_period)
diff = rt_period - rt_rq->rt_runtime;
iter->rt_runtime -= diff;
rt_rq->rt_runtime += diff;
if (rt_rq->rt_runtime == rt_period) {
raw_spin_unlock(&iter->rt_runtime_lock);
break;
}
}
next:
raw_spin_unlock(&iter->rt_runtime_lock);
}
raw_spin_unlock(&rt_b->rt_runtime_lock);
}
/*
* Ensure this RQ takes back all the runtime it lend to its neighbours.
*/
static void __disable_runtime(struct rq *rq)
{
struct root_domain *rd = rq->rd;
rt_rq_iter_t iter;
struct rt_rq *rt_rq;
if (unlikely(!scheduler_running))
return;
for_each_rt_rq(rt_rq, iter, rq) {
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
s64 want;
int i;
raw_spin_lock(&rt_b->rt_runtime_lock);
raw_spin_lock(&rt_rq->rt_runtime_lock);
/*
* Either we're all inf and nobody needs to borrow, or we're
* already disabled and thus have nothing to do, or we have
* exactly the right amount of runtime to take out.
*/
if (rt_rq->rt_runtime == RUNTIME_INF ||
rt_rq->rt_runtime == rt_b->rt_runtime)
goto balanced;
raw_spin_unlock(&rt_rq->rt_runtime_lock);
/*
* Calculate the difference between what we started out with
* and what we current have, that's the amount of runtime
* we lend and now have to reclaim.
*/
want = rt_b->rt_runtime - rt_rq->rt_runtime;
/*
* Greedy reclaim, take back as much as we can.
*/
for_each_cpu(i, rd->span) {
struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
s64 diff;
/*
* Can't reclaim from ourselves or disabled runqueues.
*/
if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
continue;
raw_spin_lock(&iter->rt_runtime_lock);
if (want > 0) {
diff = min_t(s64, iter->rt_runtime, want);
iter->rt_runtime -= diff;
want -= diff;
} else {
iter->rt_runtime -= want;
want -= want;
}
raw_spin_unlock(&iter->rt_runtime_lock);
if (!want)
break;
}
raw_spin_lock(&rt_rq->rt_runtime_lock);
/*
* We cannot be left wanting - that would mean some runtime
* leaked out of the system.
*/
BUG_ON(want);
balanced:
/*
* Disable all the borrow logic by pretending we have inf
* runtime - in which case borrowing doesn't make sense.
*/
rt_rq->rt_runtime = RUNTIME_INF;
rt_rq->rt_throttled = 0;
raw_spin_unlock(&rt_rq->rt_runtime_lock);
raw_spin_unlock(&rt_b->rt_runtime_lock);
/* Make rt_rq available for pick_next_task() */
sched_rt_rq_enqueue(rt_rq);
}
}
static void __enable_runtime(struct rq *rq)
{
rt_rq_iter_t iter;
struct rt_rq *rt_rq;
if (unlikely(!scheduler_running))
return;
/*
* Reset each runqueue's bandwidth settings
*/
for_each_rt_rq(rt_rq, iter, rq) {
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
raw_spin_lock(&rt_b->rt_runtime_lock);
raw_spin_lock(&rt_rq->rt_runtime_lock);
rt_rq->rt_runtime = rt_b->rt_runtime;
rt_rq->rt_time = 0;
rt_rq->rt_throttled = 0;
raw_spin_unlock(&rt_rq->rt_runtime_lock);
raw_spin_unlock(&rt_b->rt_runtime_lock);
}
}
static void balance_runtime(struct rt_rq *rt_rq)
{
if (!sched_feat(RT_RUNTIME_SHARE))
return;
if (rt_rq->rt_time > rt_rq->rt_runtime) {
raw_spin_unlock(&rt_rq->rt_runtime_lock);
do_balance_runtime(rt_rq);
raw_spin_lock(&rt_rq->rt_runtime_lock);
}
}
#else /* !CONFIG_SMP */
static inline void balance_runtime(struct rt_rq *rt_rq) {}
#endif /* CONFIG_SMP */
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
int i, idle = 1, throttled = 0;
const struct cpumask *span;
span = sched_rt_period_mask();
#ifdef CONFIG_RT_GROUP_SCHED
/*
* FIXME: isolated CPUs should really leave the root task group,
* whether they are isolcpus or were isolated via cpusets, lest
* the timer run on a CPU which does not service all runqueues,
* potentially leaving other CPUs indefinitely throttled. If
* isolation is really required, the user will turn the throttle
* off to kill the perturbations it causes anyway. Meanwhile,
* this maintains functionality for boot and/or troubleshooting.
*/
if (rt_b == &root_task_group.rt_bandwidth)
span = cpu_online_mask;
#endif
for_each_cpu(i, span) {
int enqueue = 0;
struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
struct rq *rq = rq_of_rt_rq(rt_rq);
int skip;
/*
* When span == cpu_online_mask, taking each rq->lock
* can be time-consuming. Try to avoid it when possible.
*/
raw_spin_lock(&rt_rq->rt_runtime_lock);
if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
rt_rq->rt_runtime = rt_b->rt_runtime;
skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
raw_spin_unlock(&rt_rq->rt_runtime_lock);
if (skip)
continue;
raw_spin_lock(&rq->lock);
update_rq_clock(rq);
if (rt_rq->rt_time) {
u64 runtime;
raw_spin_lock(&rt_rq->rt_runtime_lock);
if (rt_rq->rt_throttled)
balance_runtime(rt_rq);
runtime = rt_rq->rt_runtime;
rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
rt_rq->rt_throttled = 0;
enqueue = 1;
/*
* When we're idle and a woken (rt) task is
* throttled check_preempt_curr() will set
* skip_update and the time between the wakeup
* and this unthrottle will get accounted as
* 'runtime'.
*/
if (rt_rq->rt_nr_running && rq->curr == rq->idle)
rq_clock_cancel_skipupdate(rq);
}
if (rt_rq->rt_time || rt_rq->rt_nr_running)
idle = 0;
raw_spin_unlock(&rt_rq->rt_runtime_lock);
} else if (rt_rq->rt_nr_running) {
idle = 0;
if (!rt_rq_throttled(rt_rq))
enqueue = 1;
}
if (rt_rq->rt_throttled)
throttled = 1;
if (enqueue)
sched_rt_rq_enqueue(rt_rq);
raw_spin_unlock(&rq->lock);
}
if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
return 1;
return idle;
}
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
#ifdef CONFIG_RT_GROUP_SCHED
struct rt_rq *rt_rq = group_rt_rq(rt_se);
if (rt_rq)
return rt_rq->highest_prio.curr;
#endif
return rt_task_of(rt_se)->prio;
}
static void dump_throttled_rt_tasks(struct rt_rq *rt_rq)
{
struct rt_prio_array *array = &rt_rq->active;
struct sched_rt_entity *rt_se;
char buf[500];
char *pos = buf;
char *end = buf + sizeof(buf);
int idx;
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
pos += snprintf(pos, sizeof(buf),
"sched: RT throttling activated for rt_rq %pK (cpu %d)\n",
rt_rq, cpu_of(rq_of_rt_rq(rt_rq)));
pos += snprintf(pos, end - pos,
"rt_period_timer: expires=%lld now=%llu runtime=%llu period=%llu\n",
hrtimer_get_expires_ns(&rt_b->rt_period_timer),
ktime_get_ns(), sched_rt_runtime(rt_rq),
sched_rt_period(rt_rq));
if (bitmap_empty(array->bitmap, MAX_RT_PRIO))
goto out;
pos += snprintf(pos, end - pos, "potential CPU hogs:\n");
#ifdef CONFIG_SCHED_INFO
if (sched_info_on())
pos += snprintf(pos, end - pos,
"current %s (%d) is running for %llu nsec\n",
current->comm, current->pid,
rq_clock(rq_of_rt_rq(rt_rq)) -
current->sched_info.last_arrival);
#endif
idx = sched_find_first_bit(array->bitmap);
while (idx < MAX_RT_PRIO) {
list_for_each_entry(rt_se, array->queue + idx, run_list) {
struct task_struct *p;
if (!rt_entity_is_task(rt_se))
continue;
p = rt_task_of(rt_se);
if (pos < end)
pos += snprintf(pos, end - pos, "\t%s (%d)\n",
p->comm, p->pid);
}
idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx + 1);
}
out:
#ifdef CONFIG_PANIC_ON_RT_THROTTLING
/*
* Use pr_err() in the BUG() case since printk_sched() will
* not get flushed and deadlock is not a concern.
*/
pr_err("%s\n", buf);
BUG();
#else
printk_deferred("%s\n", buf);
#endif
}
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
{
u64 runtime = sched_rt_runtime(rt_rq);
if (rt_rq->rt_throttled)
return rt_rq_throttled(rt_rq);
if (runtime >= sched_rt_period(rt_rq))
return 0;
balance_runtime(rt_rq);
runtime = sched_rt_runtime(rt_rq);
if (runtime == RUNTIME_INF)
return 0;
if (rt_rq->rt_time > runtime) {
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
/*
* Don't actually throttle groups that have no runtime assigned
* but accrue some time due to boosting.
*/
if (likely(rt_b->rt_runtime)) {
static bool once;
rt_rq->rt_throttled = 1;
if (!once) {
once = true;
dump_throttled_rt_tasks(rt_rq);
}
} else {
/*
* In case we did anyway, make it go away,
* replenishment is a joke, since it will replenish us
* with exactly 0 ns.
*/
rt_rq->rt_time = 0;
}
if (rt_rq_throttled(rt_rq)) {
sched_rt_rq_dequeue(rt_rq);
return 1;
}
}
return 0;
}
/*
* Update the current task's runtime statistics. Skip current tasks that
* are not in our scheduling class.
*/
static void update_curr_rt(struct rq *rq)
{
struct task_struct *curr = rq->curr;
struct sched_rt_entity *rt_se = &curr->rt;
u64 delta_exec;
u64 now;
if (curr->sched_class != &rt_sched_class)
return;
now = rq_clock_task(rq);
delta_exec = now - curr->se.exec_start;
if (unlikely((s64)delta_exec <= 0))
return;
schedstat_set(curr->se.statistics.exec_max,
max(curr->se.statistics.exec_max, delta_exec));
curr->se.sum_exec_runtime += delta_exec;
account_group_exec_runtime(curr, delta_exec);
curr->se.exec_start = now;
cgroup_account_cputime(curr, delta_exec);
if (!rt_bandwidth_enabled())
return;
for_each_sched_rt_entity(rt_se) {
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
int exceeded;
if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
raw_spin_lock(&rt_rq->rt_runtime_lock);
rt_rq->rt_time += delta_exec;
exceeded = sched_rt_runtime_exceeded(rt_rq);
if (exceeded)
resched_curr(rq);
raw_spin_unlock(&rt_rq->rt_runtime_lock);
if (exceeded)
do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
}
}
}
static void
dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
{
struct rq *rq = rq_of_rt_rq(rt_rq);
BUG_ON(&rq->rt != rt_rq);
if (!rt_rq->rt_queued)
return;
BUG_ON(!rq->nr_running);
sub_nr_running(rq, count);
rt_rq->rt_queued = 0;
}
static void
enqueue_top_rt_rq(struct rt_rq *rt_rq)
{
struct rq *rq = rq_of_rt_rq(rt_rq);
BUG_ON(&rq->rt != rt_rq);
if (rt_rq->rt_queued)
return;
if (rt_rq_throttled(rt_rq))
return;
if (rt_rq->rt_nr_running) {
add_nr_running(rq, rt_rq->rt_nr_running);
rt_rq->rt_queued = 1;
}
/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
cpufreq_update_util(rq, 0);
}
#if defined CONFIG_SMP
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
struct rq *rq = rq_of_rt_rq(rt_rq);
#ifdef CONFIG_RT_GROUP_SCHED
/*
* Change rq's cpupri only if rt_rq is the top queue.
*/
if (&rq->rt != rt_rq)
return;
#endif
if (rq->online && prio < prev_prio)
cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
}
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
struct rq *rq = rq_of_rt_rq(rt_rq);
#ifdef CONFIG_RT_GROUP_SCHED
/*
* Change rq's cpupri only if rt_rq is the top queue.
*/
if (&rq->rt != rt_rq)
return;
#endif
if (rq->online && rt_rq->highest_prio.curr != prev_prio)
cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
}
#else /* CONFIG_SMP */
static inline
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
#endif /* CONFIG_SMP */
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
int prev_prio = rt_rq->highest_prio.curr;
if (prio < prev_prio)
rt_rq->highest_prio.curr = prio;
inc_rt_prio_smp(rt_rq, prio, prev_prio);
}
static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
int prev_prio = rt_rq->highest_prio.curr;
if (rt_rq->rt_nr_running) {
WARN_ON(prio < prev_prio);
/*
* This may have been our highest task, and therefore
* we may have some recomputation to do
*/
if (prio == prev_prio) {
struct rt_prio_array *array = &rt_rq->active;
rt_rq->highest_prio.curr =
sched_find_first_bit(array->bitmap);
}
} else
rt_rq->highest_prio.curr = MAX_RT_PRIO;
dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
#else
static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
#ifdef CONFIG_RT_GROUP_SCHED
static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
if (rt_se_boosted(rt_se))
rt_rq->rt_nr_boosted++;
if (rt_rq->tg)
start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}
static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
if (rt_se_boosted(rt_se))
rt_rq->rt_nr_boosted--;
WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
}
#else /* CONFIG_RT_GROUP_SCHED */
static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
start_rt_bandwidth(&def_rt_bandwidth);
}
static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
#endif /* CONFIG_RT_GROUP_SCHED */
static inline
unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
{
struct rt_rq *group_rq = group_rt_rq(rt_se);
if (group_rq)
return group_rq->rt_nr_running;
else
return 1;
}
static inline
unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
{
struct rt_rq *group_rq = group_rt_rq(rt_se);
struct task_struct *tsk;
if (group_rq)
return group_rq->rr_nr_running;
tsk = rt_task_of(rt_se);
return (tsk->policy == SCHED_RR) ? 1 : 0;
}
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
int prio = rt_se_prio(rt_se);
WARN_ON(!rt_prio(prio));
rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
inc_rt_prio(rt_rq, prio);
inc_rt_migration(rt_se, rt_rq);
inc_rt_group(rt_se, rt_rq);
}
static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
WARN_ON(!rt_prio(rt_se_prio(rt_se)));
WARN_ON(!rt_rq->rt_nr_running);
rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
dec_rt_prio(rt_rq, rt_se_prio(rt_se));
dec_rt_migration(rt_se, rt_rq);
dec_rt_group(rt_se, rt_rq);
}
/*
* Change rt_se->run_list location unless SAVE && !MOVE
*
* assumes ENQUEUE/DEQUEUE flags match
*/
static inline bool move_entity(unsigned int flags)
{
if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
return false;
return true;
}
static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
{
list_del_init(&rt_se->run_list);
if (list_empty(array->queue + rt_se_prio(rt_se)))
__clear_bit(rt_se_prio(rt_se), array->bitmap);
rt_se->on_list = 0;
}
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
{
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
struct rt_prio_array *array = &rt_rq->active;
struct rt_rq *group_rq = group_rt_rq(rt_se);
struct list_head *queue = array->queue + rt_se_prio(rt_se);
/*
* Don't enqueue the group if its throttled, or when empty.
* The latter is a consequence of the former when a child group
* get throttled and the current group doesn't have any other
* active members.
*/
if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
if (rt_se->on_list)
__delist_rt_entity(rt_se, array);
return;
}
if (move_entity(flags)) {
WARN_ON_ONCE(rt_se->on_list);
if (flags & ENQUEUE_HEAD)
list_add(&rt_se->run_list, queue);
else
list_add_tail(&rt_se->run_list, queue);
__set_bit(rt_se_prio(rt_se), array->bitmap);
rt_se->on_list = 1;
}
rt_se->on_rq = 1;
inc_rt_tasks(rt_se, rt_rq);
}
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
{
struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
struct rt_prio_array *array = &rt_rq->active;
if (move_entity(flags)) {
WARN_ON_ONCE(!rt_se->on_list);
__delist_rt_entity(rt_se, array);
}
rt_se->on_rq = 0;
dec_rt_tasks(rt_se, rt_rq);
}
/*
* Because the prio of an upper entry depends on the lower
* entries, we must remove entries top - down.
*/
static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
{
struct sched_rt_entity *back = NULL;
unsigned int rt_nr_running;
for_each_sched_rt_entity(rt_se) {
rt_se->back = back;
back = rt_se;
}
rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
for (rt_se = back; rt_se; rt_se = rt_se->back) {
if (on_rt_rq(rt_se))
__dequeue_rt_entity(rt_se, flags);
}
dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
}
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
{
struct rq *rq = rq_of_rt_se(rt_se);
dequeue_rt_stack(rt_se, flags);
for_each_sched_rt_entity(rt_se)
__enqueue_rt_entity(rt_se, flags);
enqueue_top_rt_rq(&rq->rt);
}
static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
{
struct rq *rq = rq_of_rt_se(rt_se);
dequeue_rt_stack(rt_se, flags);
for_each_sched_rt_entity(rt_se) {
struct rt_rq *rt_rq = group_rt_rq(rt_se);
if (rt_rq && rt_rq->rt_nr_running)
__enqueue_rt_entity(rt_se, flags);
}
enqueue_top_rt_rq(&rq->rt);
}
/*
* Adding/removing a task to/from a priority array:
*/
static void
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
{
struct sched_rt_entity *rt_se = &p->rt;
if (flags & ENQUEUE_WAKEUP)
rt_se->timeout = 0;
enqueue_rt_entity(rt_se, flags);
walt_inc_cumulative_runnable_avg(rq, p);
if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
enqueue_pushable_task(rq, p);
}
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
{
struct sched_rt_entity *rt_se = &p->rt;
update_curr_rt(rq);
dequeue_rt_entity(rt_se, flags);
walt_dec_cumulative_runnable_avg(rq, p);
dequeue_pushable_task(rq, p);
}
/*
* Put task to the head or the end of the run list without the overhead of
* dequeue followed by enqueue.
*/
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
{
if (on_rt_rq(rt_se)) {
struct rt_prio_array *array = &rt_rq->active;
struct list_head *queue = array->queue + rt_se_prio(rt_se);
if (head)
list_move(&rt_se->run_list, queue);
else
list_move_tail(&rt_se->run_list, queue);
}
}
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
{
struct sched_rt_entity *rt_se = &p->rt;
struct rt_rq *rt_rq;
for_each_sched_rt_entity(rt_se) {
rt_rq = rt_rq_of_se(rt_se);
requeue_rt_entity(rt_rq, rt_se, head);
}
}
static void yield_task_rt(struct rq *rq)
{
requeue_task_rt(rq, rq->curr, 0);
}
#ifdef CONFIG_SMP
static int find_lowest_rq(struct task_struct *task);
/*
* Return whether the task on the given cpu is currently non-preemptible
* while handling a potentially long softint, or if the task is likely
* to block preemptions soon because it is a ksoftirq thread that is
* handling slow softints.
*/
bool
task_may_not_preempt(struct task_struct *task, int cpu)
{
__u32 softirqs = per_cpu(active_softirqs, cpu) |
__IRQ_STAT(cpu, __softirq_pending);
struct task_struct *cpu_ksoftirqd = per_cpu(ksoftirqd, cpu);
return ((softirqs & LONG_SOFTIRQ_MASK) &&
(task == cpu_ksoftirqd ||
task_thread_info(task)->preempt_count & SOFTIRQ_MASK));
}
static int
#ifdef CONFIG_SCHED_WALT
select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags,
int sibling_count_hint)
#else
select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
#endif
{
struct task_struct *curr;
struct rq *rq;
bool may_not_preempt;
bool test;
int target_cpu = -1;
trace_android_rvh_select_task_rq_rt(p, cpu, sd_flag,
flags, &target_cpu);
if (target_cpu >= 0)
return target_cpu;
/* For anything but wake ups, just return the task_cpu */
if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
goto out;
rq = cpu_rq(cpu);
rcu_read_lock();
curr = READ_ONCE(rq->curr); /* unlocked access */
/*
* If the current task on @p's runqueue is a softirq task,
* it may run without preemption for a time that is
* ill-suited for a waiting RT task. Therefore, try to
* wake this RT task on another runqueue.
*
* Also, if the current task on @p's runqueue is an RT task, then
* it may run without preemption for a time that is
* ill-suited for a waiting RT task. Therefore, try to
* wake this RT task on another runqueue.
*
* Also, if the current task on @p's runqueue is an RT task, then
* try to see if we can wake this RT task up on another
* runqueue. Otherwise simply start this RT task
* on its current runqueue.
*
* We want to avoid overloading runqueues. If the woken
* task is a higher priority, then it will stay on this CPU
* and the lower prio task should be moved to another CPU.
* Even though this will probably make the lower prio task
* lose its cache, we do not want to bounce a higher task
* around just because it gave up its CPU, perhaps for a
* lock?
*
* For equal prio tasks, we just let the scheduler sort it out.
*
* Otherwise, just let it ride on the affined RQ and the
* post-schedule router will push the preempted task away
*
* This test is optimistic, if we get it wrong the load-balancer
* will have to sort it out.
*
* We take into account the capacity of the CPU to ensure it fits the
* requirement of the task - which is only important on heterogeneous
* systems like big.LITTLE.
*/
may_not_preempt = task_may_not_preempt(curr, cpu);
test = curr &&
unlikely(rt_task(curr)) &&
(curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
if (sched_energy_enabled() || may_not_preempt ||
test || !rt_task_fits_capacity(p, cpu)) {
int target = find_lowest_rq(p);
/*
* Bail out if we were forcing a migration to find a better
* fitting CPU but our search failed.
*/
if (!test && target != -1 && !rt_task_fits_capacity(p, target))
goto out_unlock;
/*
* If cpu is non-preemptible, prefer remote cpu
* even if it's running a higher-prio task.
* Otherwise: Don't bother moving it if the
* destination CPU is not running a lower priority task.
*/
if (target != -1 &&
(may_not_preempt ||
p->prio < cpu_rq(target)->rt.highest_prio.curr))
cpu = target;
}
out_unlock:
rcu_read_unlock();
out:
return cpu;
}
static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
/*
* Current can't be migrated, useless to reschedule,
* let's hope p can move out.
*/
if (rq->curr->nr_cpus_allowed == 1 ||
!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
return;
/*
* p is migratable, so let's not schedule it and
* see if it is pushed or pulled somewhere else.
*/
if (p->nr_cpus_allowed != 1 &&
cpupri_find(&rq->rd->cpupri, p, NULL))
return;
/*
* There appear to be other CPUs that can accept
* the current task but none can run 'p', so lets reschedule
* to try and push the current task away:
*/
requeue_task_rt(rq, p, 1);
resched_curr(rq);
}
#ifdef CONFIG_SCHED_WALT
#define WALT_RT_PULL_THRESHOLD_NS 250000
static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu);
static void try_pull_rt_task(struct rq *this_rq)
{
int i, this_cpu = this_rq->cpu, src_cpu = this_cpu;
struct rq *src_rq;
struct task_struct *p;
if (sched_rt_runnable(this_rq))
return;
for_each_possible_cpu(i) {
struct rq *rq = cpu_rq(i);
if (!has_pushable_tasks(rq))
continue;
src_cpu = i;
break;
}
if (src_cpu == this_cpu)
return;
src_rq = cpu_rq(src_cpu);
double_lock_balance(this_rq, src_rq);
/* lock is dropped, so check again */
if (sched_rt_runnable(this_rq))
goto unlock;
p = pick_highest_pushable_task(src_rq, this_cpu);
if (!p)
goto unlock;
if (sched_ktime_clock() - p->wts.last_wake_ts <
WALT_RT_PULL_THRESHOLD_NS)
goto unlock;
deactivate_task(src_rq, p, 0);
set_task_cpu(p, this_cpu);
activate_task(this_rq, p, 0);
unlock:
double_unlock_balance(this_rq, src_rq);
}
#endif
static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
{
if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
/*
* This is OK, because current is on_cpu, which avoids it being
* picked for load-balance and preemption/IRQs are still
* disabled avoiding further scheduler activity on it and we've
* not yet started the picking loop.
*/
rq_unpin_lock(rq, rf);
#ifndef CONFIG_SCHED_WALT
pull_rt_task(rq);
#else
if (rt_overloaded(rq))
pull_rt_task(rq);
else
try_pull_rt_task(rq);
#endif
rq_repin_lock(rq, rf);
}
return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
}
#endif /* CONFIG_SMP */
/*
* Preempt the current task with a newly woken task if needed:
*/
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
{
if (p->prio < rq->curr->prio) {
resched_curr(rq);
return;
}
#ifdef CONFIG_SMP
/*
* If:
*
* - the newly woken task is of equal priority to the current task
* - the newly woken task is non-migratable while current is migratable
* - current will be preempted on the next reschedule
*
* we should check to see if current can readily move to a different
* cpu. If so, we will reschedule to allow the push logic to try
* to move current somewhere else, making room for our non-migratable
* task.
*/
if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
check_preempt_equal_prio(rq, p);
#endif
}
static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
{
p->se.exec_start = rq_clock_task(rq);
/* The running task is never eligible for pushing */
dequeue_pushable_task(rq, p);
if (!first)
return;
/*
* If prev task was rt, put_prev_task() has already updated the
* utilization. We only care of the case where we start to schedule a
* rt task
*/
if (rq->curr->sched_class != &rt_sched_class)
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
rt_queue_push_tasks(rq);
}
static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
{
struct rt_prio_array *array = &rt_rq->active;
struct sched_rt_entity *next = NULL;
struct list_head *queue;
int idx;
idx = sched_find_first_bit(array->bitmap);
BUG_ON(idx >= MAX_RT_PRIO);
queue = array->queue + idx;
if (SCHED_WARN_ON(list_empty(queue)))
return NULL;
next = list_entry(queue->next, struct sched_rt_entity, run_list);
return next;
}
static struct task_struct *_pick_next_task_rt(struct rq *rq)
{
struct sched_rt_entity *rt_se;
struct rt_rq *rt_rq = &rq->rt;
do {
rt_se = pick_next_rt_entity(rt_rq);
if (unlikely(!rt_se))
return NULL;
rt_rq = group_rt_rq(rt_se);
} while (rt_rq);
return rt_task_of(rt_se);
}
static struct task_struct *
pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
struct task_struct *p;
WARN_ON_ONCE(prev || rf);
if (!sched_rt_runnable(rq))
return NULL;
p = _pick_next_task_rt(rq);
set_next_task_rt(rq, p, true);
return p;
}
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
{
update_curr_rt(rq);
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
/*
* The previous task needs to be made eligible for pushing
* if it is still active
*/
if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
enqueue_pushable_task(rq, p);
}
#ifdef CONFIG_SMP
/* Only try algorithms three times */
#define RT_MAX_TRIES 3
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
if (!task_running(rq, p) &&
cpumask_test_cpu(cpu, p->cpus_ptr))
return 1;
return 0;
}
/*
* Return the highest pushable rq's task, which is suitable to be executed
* on the CPU, NULL otherwise
*/
static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
{
struct plist_head *head = &rq->rt.pushable_tasks;
struct task_struct *p;
if (!has_pushable_tasks(rq))
return NULL;
plist_for_each_entry(p, head, pushable_tasks) {
if (pick_rt_task(rq, p, cpu))
return p;
}
return NULL;
}
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
#ifdef CONFIG_SCHED_WALT
static int rt_energy_aware_wake_cpu(struct task_struct *task)
{
struct sched_domain *sd;
struct sched_group *sg;
struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
int cpu, best_cpu = -1;
unsigned long best_capacity = ULONG_MAX;
unsigned long util, best_cpu_util = ULONG_MAX;
unsigned long best_cpu_util_cum = ULONG_MAX;
unsigned long util_cum;
unsigned long tutil = task_util(task);
int best_cpu_idle_idx = INT_MAX;
int cpu_idle_idx = -1;
bool boost_on_big = rt_boost_on_big();
bool best_cpu_lt = true;
rcu_read_lock();
cpu = cpu_rq(smp_processor_id())->rd->wrd.min_cap_orig_cpu;
if (cpu < 0)
goto unlock;
sd = rcu_dereference(*per_cpu_ptr(&sd_asym_cpucapacity, cpu));
if (!sd)
goto unlock;
retry:
sg = sd->groups;
do {
int fcpu = group_first_cpu(sg);
int capacity_orig = capacity_orig_of(fcpu);
if (boost_on_big) {
if (is_min_capacity_cpu(fcpu))
continue;
} else {
if (capacity_orig > best_capacity)
continue;
}
for_each_cpu_and(cpu, lowest_mask, sched_group_span(sg)) {
bool lt;
trace_sched_cpu_util(cpu);
if (cpu_isolated(cpu))
continue;
if (sched_cpu_high_irqload(cpu))
continue;
if (__cpu_overutilized(cpu, tutil))
continue;
util = cpu_util(cpu);
lt = (walt_low_latency_task(cpu_rq(cpu)->curr) ||
walt_nr_rtg_high_prio(cpu));
/*
* When the best is suitable and the current is not,
* skip it
*/
if (lt && !best_cpu_lt)
continue;
/*
* Either both are sutilable or unsuitable, load takes
* precedence.
*/
if (!(best_cpu_lt ^ lt) && (util > best_cpu_util))
continue;
/*
* If the previous CPU has same load, keep it as
* best_cpu.
*/
if (best_cpu_util == util && best_cpu == task_cpu(task))
continue;
/*
* If candidate CPU is the previous CPU, select it.
* Otherwise, if its load is same with best_cpu and in
* a shallower C-state, select it. If all above
* conditions are same, select the least cumulative
* window demand CPU.
*/
cpu_idle_idx = idle_get_state_idx(cpu_rq(cpu));
util_cum = cpu_util_cum(cpu, 0);
if (cpu != task_cpu(task) && best_cpu_util == util) {
if (best_cpu_idle_idx < cpu_idle_idx)
continue;
if (best_cpu_idle_idx == cpu_idle_idx &&
best_cpu_util_cum < util_cum)
continue;
}
best_cpu_idle_idx = cpu_idle_idx;
best_cpu_util_cum = util_cum;
best_cpu_util = util;
best_cpu = cpu;
best_capacity = capacity_orig;
best_cpu_lt = lt;
}
} while (sg = sg->next, sg != sd->groups);
if (unlikely(boost_on_big) && best_cpu == -1) {
boost_on_big = false;
goto retry;
}
unlock:
rcu_read_unlock();
return best_cpu;
}
#else
static inline int rt_energy_aware_wake_cpu(struct task_struct *task)
{
return -1;
}
#endif
static int find_lowest_rq(struct task_struct *task)
{
struct sched_domain *sd;
struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
int this_cpu = smp_processor_id();
int cpu = -1;
int ret;
int lowest_cpu = -1;
trace_android_rvh_find_lowest_rq(task, lowest_mask, &lowest_cpu);
if (lowest_cpu >= 0)
return lowest_cpu;
/* Make sure the mask is initialized first */
if (unlikely(!lowest_mask))
return -1;
if (task->nr_cpus_allowed == 1)
return -1; /* No other targets possible */
/*
* If we're on asym system ensure we consider the different capacities
* of the CPUs when searching for the lowest_mask.
*/
if (static_branch_unlikely(&sched_asym_cpucapacity)) {
ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
task, lowest_mask,
rt_task_fits_capacity);
} else {
ret = cpupri_find(&task_rq(task)->rd->cpupri,
task, lowest_mask);
}
if (!ret)
return -1; /* No targets found */
if (sched_energy_enabled())
cpu = rt_energy_aware_wake_cpu(task);
if (cpu == -1)
cpu = task_cpu(task);
/*
* At this point we have built a mask of CPUs representing the
* lowest priority tasks in the system. Now we want to elect
* the best one based on our affinity and topology.
*
* We prioritize the last CPU that the task executed on since
* it is most likely cache-hot in that location.
*/
if (cpumask_test_cpu(cpu, lowest_mask))
return cpu;
/*
* Otherwise, we consult the sched_domains span maps to figure
* out which CPU is logically closest to our hot cache data.
*/
if (!cpumask_test_cpu(this_cpu, lowest_mask))
this_cpu = -1; /* Skip this_cpu opt if not among lowest */
rcu_read_lock();
for_each_domain(cpu, sd) {
if (sd->flags & SD_WAKE_AFFINE) {
int best_cpu;
/*
* "this_cpu" is cheaper to preempt than a
* remote processor.
*/
if (this_cpu != -1 &&
cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
rcu_read_unlock();
return this_cpu;
}
best_cpu = cpumask_first_and(lowest_mask,
sched_domain_span(sd));
if (best_cpu < nr_cpu_ids) {
rcu_read_unlock();
return best_cpu;
}
}
}
rcu_read_unlock();
/*
* And finally, if there were no matches within the domains
* just give the caller *something* to work with from the compatible
* locations.
*/
if (this_cpu != -1)
return this_cpu;
cpu = cpumask_any(lowest_mask);
if (cpu < nr_cpu_ids)
return cpu;
return -1;
}
/* Will lock the rq it finds */
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
{
struct rq *lowest_rq = NULL;
int tries;
int cpu;
for (tries = 0; tries < RT_MAX_TRIES; tries++) {
cpu = find_lowest_rq(task);
if ((cpu == -1) || (cpu == rq->cpu))
break;
lowest_rq = cpu_rq(cpu);
if (lowest_rq->rt.highest_prio.curr <= task->prio) {
/*
* Target rq has tasks of equal or higher priority,
* retrying does not release any lock and is unlikely
* to yield a different result.
*/
lowest_rq = NULL;
break;
}
/* if the prio of this runqueue changed, try again */
if (double_lock_balance(rq, lowest_rq)) {
/*
* We had to unlock the run queue. In
* the mean time, task could have
* migrated already or had its affinity changed.
* Also make sure that it wasn't scheduled on its rq.
*/
if (unlikely(task_rq(task) != rq ||
!cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
task_running(rq, task) ||
!rt_task(task) ||
!task_on_rq_queued(task))) {
double_unlock_balance(rq, lowest_rq);
lowest_rq = NULL;
break;
}
}
/* If this rq is still suitable use it. */
if (lowest_rq->rt.highest_prio.curr > task->prio)
break;
/* try again */
double_unlock_balance(rq, lowest_rq);
lowest_rq = NULL;
}
return lowest_rq;
}
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
struct task_struct *p;
if (!has_pushable_tasks(rq))
return NULL;
p = plist_first_entry(&rq->rt.pushable_tasks,
struct task_struct, pushable_tasks);
BUG_ON(rq->cpu != task_cpu(p));
BUG_ON(task_current(rq, p));
BUG_ON(p->nr_cpus_allowed <= 1);
BUG_ON(!task_on_rq_queued(p));
BUG_ON(!rt_task(p));
return p;
}
/*
* If the current CPU has more than one RT task, see if the non
* running task can migrate over to a CPU that is running a task
* of lesser priority.
*/
static int push_rt_task(struct rq *rq)
{
struct task_struct *next_task;
struct rq *lowest_rq;
int ret = 0;
if (!rq->rt.overloaded)
return 0;
next_task = pick_next_pushable_task(rq);
if (!next_task)
return 0;
retry:
if (WARN_ON(next_task == rq->curr))
return 0;
/*
* It's possible that the next_task slipped in of
* higher priority than current. If that's the case
* just reschedule current.
*/
if (unlikely(next_task->prio < rq->curr->prio)) {
resched_curr(rq);
return 0;
}
/* We might release rq lock */
get_task_struct(next_task);
/* find_lock_lowest_rq locks the rq if found */
lowest_rq = find_lock_lowest_rq(next_task, rq);
if (!lowest_rq) {
struct task_struct *task;
/*
* find_lock_lowest_rq releases rq->lock
* so it is possible that next_task has migrated.
*
* We need to make sure that the task is still on the same
* run-queue and is also still the next task eligible for
* pushing.
*/
task = pick_next_pushable_task(rq);
if (task == next_task) {
/*
* The task hasn't migrated, and is still the next
* eligible task, but we failed to find a run-queue
* to push it to. Do not retry in this case, since
* other CPUs will pull from us when ready.
*/
goto out;
}
if (!task)
/* No more tasks, just exit */
goto out;
/*
* Something has shifted, try again.
*/
put_task_struct(next_task);
next_task = task;
goto retry;
}
deactivate_task(rq, next_task, 0);
next_task->on_rq = TASK_ON_RQ_MIGRATING;
set_task_cpu(next_task, lowest_rq->cpu);
next_task->on_rq = TASK_ON_RQ_QUEUED;
activate_task(lowest_rq, next_task, 0);
ret = 1;
resched_curr(lowest_rq);
double_unlock_balance(rq, lowest_rq);
out:
put_task_struct(next_task);
return ret;
}
static void push_rt_tasks(struct rq *rq)
{
/* push_rt_task will return true if it moved an RT */
while (push_rt_task(rq))
;
}
#ifdef HAVE_RT_PUSH_IPI
/*
* When a high priority task schedules out from a CPU and a lower priority
* task is scheduled in, a check is made to see if there's any RT tasks
* on other CPUs that are waiting to run because a higher priority RT task
* is currently running on its CPU. In this case, the CPU with multiple RT
* tasks queued on it (overloaded) needs to be notified that a CPU has opened
* up that may be able to run one of its non-running queued RT tasks.
*
* All CPUs with overloaded RT tasks need to be notified as there is currently
* no way to know which of these CPUs have the highest priority task waiting
* to run. Instead of trying to take a spinlock on each of these CPUs,
* which has shown to cause large latency when done on machines with many
* CPUs, sending an IPI to the CPUs to have them push off the overloaded
* RT tasks waiting to run.
*
* Just sending an IPI to each of the CPUs is also an issue, as on large
* count CPU machines, this can cause an IPI storm on a CPU, especially
* if its the only CPU with multiple RT tasks queued, and a large number
* of CPUs scheduling a lower priority task at the same time.
*
* Each root domain has its own irq work function that can iterate over
* all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
* tassk must be checked if there's one or many CPUs that are lowering
* their priority, there's a single irq work iterator that will try to
* push off RT tasks that are waiting to run.
*
* When a CPU schedules a lower priority task, it will kick off the
* irq work iterator that will jump to each CPU with overloaded RT tasks.
* As it only takes the first CPU that schedules a lower priority task
* to start the process, the rto_start variable is incremented and if
* the atomic result is one, then that CPU will try to take the rto_lock.
* This prevents high contention on the lock as the process handles all
* CPUs scheduling lower priority tasks.
*
* All CPUs that are scheduling a lower priority task will increment the
* rt_loop_next variable. This will make sure that the irq work iterator
* checks all RT overloaded CPUs whenever a CPU schedules a new lower
* priority task, even if the iterator is in the middle of a scan. Incrementing
* the rt_loop_next will cause the iterator to perform another scan.
*
*/
static int rto_next_cpu(struct root_domain *rd)
{
int next;
int cpu;
/*
* When starting the IPI RT pushing, the rto_cpu is set to -1,
* rt_next_cpu() will simply return the first CPU found in
* the rto_mask.
*
* If rto_next_cpu() is called with rto_cpu is a valid CPU, it
* will return the next CPU found in the rto_mask.
*
* If there are no more CPUs left in the rto_mask, then a check is made
* against rto_loop and rto_loop_next. rto_loop is only updated with
* the rto_lock held, but any CPU may increment the rto_loop_next
* without any locking.
*/
for (;;) {
/* When rto_cpu is -1 this acts like cpumask_first() */
cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
rd->rto_cpu = cpu;
if (cpu < nr_cpu_ids)
return cpu;
rd->rto_cpu = -1;
/*
* ACQUIRE ensures we see the @rto_mask changes
* made prior to the @next value observed.
*
* Matches WMB in rt_set_overload().
*/
next = atomic_read_acquire(&rd->rto_loop_next);
if (rd->rto_loop == next)
break;
rd->rto_loop = next;
}
return -1;
}
static inline bool rto_start_trylock(atomic_t *v)
{
return !atomic_cmpxchg_acquire(v, 0, 1);
}
static inline void rto_start_unlock(atomic_t *v)
{
atomic_set_release(v, 0);
}
static void tell_cpu_to_push(struct rq *rq)
{
int cpu = -1;
/* Keep the loop going if the IPI is currently active */
atomic_inc(&rq->rd->rto_loop_next);
/* Only one CPU can initiate a loop at a time */
if (!rto_start_trylock(&rq->rd->rto_loop_start))
return;
raw_spin_lock(&rq->rd->rto_lock);
/*
* The rto_cpu is updated under the lock, if it has a valid CPU
* then the IPI is still running and will continue due to the
* update to loop_next, and nothing needs to be done here.
* Otherwise it is finishing up and an ipi needs to be sent.
*/
if (rq->rd->rto_cpu < 0)
cpu = rto_next_cpu(rq->rd);
raw_spin_unlock(&rq->rd->rto_lock);
rto_start_unlock(&rq->rd->rto_loop_start);
if (cpu >= 0) {
/* Make sure the rd does not get freed while pushing */
sched_get_rd(rq->rd);
irq_work_queue_on(&rq->rd->rto_push_work, cpu);
}
}
/* Called from hardirq context */
void rto_push_irq_work_func(struct irq_work *work)
{
struct root_domain *rd =
container_of(work, struct root_domain, rto_push_work);
struct rq *rq;
int cpu;
rq = this_rq();
/*
* We do not need to grab the lock to check for has_pushable_tasks.
* When it gets updated, a check is made if a push is possible.
*/
if (has_pushable_tasks(rq)) {
raw_spin_lock(&rq->lock);
push_rt_tasks(rq);
raw_spin_unlock(&rq->lock);
}
raw_spin_lock(&rd->rto_lock);
/* Pass the IPI to the next rt overloaded queue */
cpu = rto_next_cpu(rd);
raw_spin_unlock(&rd->rto_lock);
if (cpu < 0) {
sched_put_rd(rd);
return;
}
/* Try the next RT overloaded CPU */
irq_work_queue_on(&rd->rto_push_work, cpu);
}
#endif /* HAVE_RT_PUSH_IPI */
static void pull_rt_task(struct rq *this_rq)
{
int this_cpu = this_rq->cpu, cpu;
bool resched = false;
struct task_struct *p;
struct rq *src_rq;
int rt_overload_count = rt_overloaded(this_rq);
if (likely(!rt_overload_count))
return;
/*
* Match the barrier from rt_set_overloaded; this guarantees that if we
* see overloaded we must also see the rto_mask bit.
*/
smp_rmb();
/* If we are the only overloaded CPU do nothing */
if (rt_overload_count == 1 &&
cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
return;
#ifdef HAVE_RT_PUSH_IPI
if (sched_feat(RT_PUSH_IPI)) {
tell_cpu_to_push(this_rq);
return;
}
#endif
for_each_cpu(cpu, this_rq->rd->rto_mask) {
if (this_cpu == cpu)
continue;
src_rq = cpu_rq(cpu);
/*
* Don't bother taking the src_rq->lock if the next highest
* task is known to be lower-priority than our current task.
* This may look racy, but if this value is about to go
* logically higher, the src_rq will push this task away.
* And if its going logically lower, we do not care
*/
if (src_rq->rt.highest_prio.next >=
this_rq->rt.highest_prio.curr)
continue;
/*
* We can potentially drop this_rq's lock in
* double_lock_balance, and another CPU could
* alter this_rq
*/
double_lock_balance(this_rq, src_rq);
/*
* We can pull only a task, which is pushable
* on its rq, and no others.
*/
p = pick_highest_pushable_task(src_rq, this_cpu);
/*
* Do we have an RT task that preempts
* the to-be-scheduled task?
*/
if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
WARN_ON(p == src_rq->curr);
WARN_ON(!task_on_rq_queued(p));
/*
* There's a chance that p is higher in priority
* than what's currently running on its CPU.
* This is just that p is wakeing up and hasn't
* had a chance to schedule. We only pull
* p if it is lower in priority than the
* current task on the run queue
*/
if (p->prio < src_rq->curr->prio)
goto skip;
resched = true;
deactivate_task(src_rq, p, 0);
p->on_rq = TASK_ON_RQ_MIGRATING;
set_task_cpu(p, this_cpu);
p->on_rq = TASK_ON_RQ_QUEUED;
activate_task(this_rq, p, 0);
/*
* We continue with the search, just in
* case there's an even higher prio task
* in another runqueue. (low likelihood
* but possible)
*/
}
skip:
double_unlock_balance(this_rq, src_rq);
}
if (resched)
resched_curr(this_rq);
}
/*
* If we are not running and we are not going to reschedule soon, we should
* try to push tasks away now
*/
static void task_woken_rt(struct rq *rq, struct task_struct *p)
{
bool need_to_push = !task_running(rq, p) &&
!test_tsk_need_resched(rq->curr) &&
p->nr_cpus_allowed > 1 &&
(dl_task(rq->curr) || rt_task(rq->curr)) &&
(rq->curr->nr_cpus_allowed < 2 ||
rq->curr->prio <= p->prio);
if (need_to_push)
push_rt_tasks(rq);
}
/* Assumes rq->lock is held */
static void rq_online_rt(struct rq *rq)
{
if (rq->rt.overloaded)
rt_set_overload(rq);
__enable_runtime(rq);
cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
}
/* Assumes rq->lock is held */
static void rq_offline_rt(struct rq *rq)
{
if (rq->rt.overloaded)
rt_clear_overload(rq);
__disable_runtime(rq);
cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
}
/*
* When switch from the rt queue, we bring ourselves to a position
* that we might want to pull RT tasks from other runqueues.
*/
static void switched_from_rt(struct rq *rq, struct task_struct *p)
{
/*
* If there are other RT tasks then we will reschedule
* and the scheduling of the other RT tasks will handle
* the balancing. But if we are the last RT task
* we may need to handle the pulling of RT tasks
* now.
*/
if (!task_on_rq_queued(p) || rq->rt.rt_nr_running ||
cpu_isolated(cpu_of(rq)))
return;
rt_queue_pull_task(rq);
}
void __init init_sched_rt_class(void)
{
unsigned int i;
for_each_possible_cpu(i) {
zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
GFP_KERNEL, cpu_to_node(i));
}
}
#endif /* CONFIG_SMP */
/*
* When switching a task to RT, we may overload the runqueue
* with RT tasks. In this case we try to push them off to
* other runqueues.
*/
static void switched_to_rt(struct rq *rq, struct task_struct *p)
{
/*
* If we are running, update the avg_rt tracking, as the running time
* will now on be accounted into the latter.
*/
if (task_current(rq, p)) {
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
return;
}
/*
* If we are not running we may need to preempt the current
* running task. If that current running task is also an RT task
* then see if we can move to another run queue.
*/
if (task_on_rq_queued(p)) {
#ifdef CONFIG_SMP
if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
rt_queue_push_tasks(rq);
#endif /* CONFIG_SMP */
if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
resched_curr(rq);
}
}
/*
* Priority of the task has changed. This may cause
* us to initiate a push or pull.
*/
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
{
if (!task_on_rq_queued(p))
return;
if (rq->curr == p) {
#ifdef CONFIG_SMP
/*
* If our priority decreases while running, we
* may need to pull tasks to this runqueue.
*/
if (oldprio < p->prio)
rt_queue_pull_task(rq);
/*
* If there's a higher priority task waiting to run
* then reschedule.
*/
if (p->prio > rq->rt.highest_prio.curr)
resched_curr(rq);
#else
/* For UP simply resched on drop of prio */
if (oldprio < p->prio)
resched_curr(rq);
#endif /* CONFIG_SMP */
} else {
/*
* This task is not running, but if it is
* greater than the current running task
* then reschedule.
*/
if (p->prio < rq->curr->prio)
resched_curr(rq);
}
}
#ifdef CONFIG_POSIX_TIMERS
static void watchdog(struct rq *rq, struct task_struct *p)
{
unsigned long soft, hard;
/* max may change after cur was read, this will be fixed next tick */
soft = task_rlimit(p, RLIMIT_RTTIME);
hard = task_rlimit_max(p, RLIMIT_RTTIME);
if (soft != RLIM_INFINITY) {
unsigned long next;
if (p->rt.watchdog_stamp != jiffies) {
p->rt.timeout++;
p->rt.watchdog_stamp = jiffies;
}
next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
if (p->rt.timeout > next) {
posix_cputimers_rt_watchdog(&p->posix_cputimers,
p->se.sum_exec_runtime);
}
}
}
#else
static inline void watchdog(struct rq *rq, struct task_struct *p) { }
#endif
/*
* scheduler tick hitting a task of our scheduling class.
*
* NOTE: This function can be called remotely by the tick offload that
* goes along full dynticks. Therefore no local assumption can be made
* and everything must be accessed through the @rq and @curr passed in
* parameters.
*/
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
{
struct sched_rt_entity *rt_se = &p->rt;
update_curr_rt(rq);
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
watchdog(rq, p);
/*
* RR tasks need a special form of timeslice management.
* FIFO tasks have no timeslices.
*/
if (p->policy != SCHED_RR)
return;
if (--p->rt.time_slice)
return;
p->rt.time_slice = sched_rr_timeslice;
/*
* Requeue to the end of queue if we (and all of our ancestors) are not
* the only element on the queue
*/
for_each_sched_rt_entity(rt_se) {
if (rt_se->run_list.prev != rt_se->run_list.next) {
requeue_task_rt(rq, p, 0);
resched_curr(rq);
return;
}
}
}
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
{
/*
* Time slice is 0 for SCHED_FIFO tasks
*/
if (task->policy == SCHED_RR)
return sched_rr_timeslice;
else
return 0;
}
const struct sched_class rt_sched_class = {
.next = &fair_sched_class,
.enqueue_task = enqueue_task_rt,
.dequeue_task = dequeue_task_rt,
.yield_task = yield_task_rt,
.check_preempt_curr = check_preempt_curr_rt,
.pick_next_task = pick_next_task_rt,
.put_prev_task = put_prev_task_rt,
.set_next_task = set_next_task_rt,
#ifdef CONFIG_SMP
.balance = balance_rt,
.select_task_rq = select_task_rq_rt,
.set_cpus_allowed = set_cpus_allowed_common,
.rq_online = rq_online_rt,
.rq_offline = rq_offline_rt,
.task_woken = task_woken_rt,
.switched_from = switched_from_rt,
#endif
.task_tick = task_tick_rt,
.get_rr_interval = get_rr_interval_rt,
.prio_changed = prio_changed_rt,
.switched_to = switched_to_rt,
.update_curr = update_curr_rt,
#ifdef CONFIG_UCLAMP_TASK
.uclamp_enabled = 1,
#endif
};
#ifdef CONFIG_RT_GROUP_SCHED
/*
* Ensure that the real time constraints are schedulable.
*/
static DEFINE_MUTEX(rt_constraints_mutex);
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
struct task_struct *g, *p;
/*
* Autogroups do not have RT tasks; see autogroup_create().
*/
if (task_group_is_autogroup(tg))
return 0;
for_each_process_thread(g, p) {
if (rt_task(p) && task_group(p) == tg)
return 1;
}
return 0;
}
struct rt_schedulable_data {
struct task_group *tg;
u64 rt_period;
u64 rt_runtime;
};
static int tg_rt_schedulable(struct task_group *tg, void *data)
{
struct rt_schedulable_data *d = data;
struct task_group *child;
unsigned long total, sum = 0;
u64 period, runtime;
period = ktime_to_ns(tg->rt_bandwidth.rt_period);
runtime = tg->rt_bandwidth.rt_runtime;
if (tg == d->tg) {
period = d->rt_period;
runtime = d->rt_runtime;
}
/*
* Cannot have more runtime than the period.
*/
if (runtime > period && runtime != RUNTIME_INF)
return -EINVAL;
/*
* Ensure we don't starve existing RT tasks.
*/
if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
return -EBUSY;
total = to_ratio(period, runtime);
/*
* Nobody can have more than the global setting allows.
*/
if (total > to_ratio(global_rt_period(), global_rt_runtime()))
return -EINVAL;
/*
* The sum of our children's runtime should not exceed our own.
*/
list_for_each_entry_rcu(child, &tg->children, siblings) {
period = ktime_to_ns(child->rt_bandwidth.rt_period);
runtime = child->rt_bandwidth.rt_runtime;
if (child == d->tg) {
period = d->rt_period;
runtime = d->rt_runtime;
}
sum += to_ratio(period, runtime);
}
if (sum > total)
return -EINVAL;
return 0;
}
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
int ret;
struct rt_schedulable_data data = {
.tg = tg,
.rt_period = period,
.rt_runtime = runtime,
};
rcu_read_lock();
ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
rcu_read_unlock();
return ret;
}
static int tg_set_rt_bandwidth(struct task_group *tg,
u64 rt_period, u64 rt_runtime)
{
int i, err = 0;
/*
* Disallowing the root group RT runtime is BAD, it would disallow the
* kernel creating (and or operating) RT threads.
*/
if (tg == &root_task_group && rt_runtime == 0)
return -EINVAL;
/* No period doesn't make any sense. */
if (rt_period == 0)
return -EINVAL;
/*
* Bound quota to defend quota against overflow during bandwidth shift.
*/
if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
return -EINVAL;
mutex_lock(&rt_constraints_mutex);
read_lock(&tasklist_lock);
err = __rt_schedulable(tg, rt_period, rt_runtime);
if (err)
goto unlock;
raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
tg->rt_bandwidth.rt_runtime = rt_runtime;
for_each_possible_cpu(i) {
struct rt_rq *rt_rq = tg->rt_rq[i];
raw_spin_lock(&rt_rq->rt_runtime_lock);
rt_rq->rt_runtime = rt_runtime;
raw_spin_unlock(&rt_rq->rt_runtime_lock);
}
raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
unlock:
read_unlock(&tasklist_lock);
mutex_unlock(&rt_constraints_mutex);
return err;
}
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
u64 rt_runtime, rt_period;
rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
if (rt_runtime_us < 0)
rt_runtime = RUNTIME_INF;
else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
return -EINVAL;
return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
}
long sched_group_rt_runtime(struct task_group *tg)
{
u64 rt_runtime_us;
if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
return -1;
rt_runtime_us = tg->rt_bandwidth.rt_runtime;
do_div(rt_runtime_us, NSEC_PER_USEC);
return rt_runtime_us;
}
int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
{
u64 rt_runtime, rt_period;
if (rt_period_us > U64_MAX / NSEC_PER_USEC)
return -EINVAL;
rt_period = rt_period_us * NSEC_PER_USEC;
rt_runtime = tg->rt_bandwidth.rt_runtime;
return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
}
long sched_group_rt_period(struct task_group *tg)
{
u64 rt_period_us;
rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
do_div(rt_period_us, NSEC_PER_USEC);
return rt_period_us;
}
static int sched_rt_global_constraints(void)
{
int ret = 0;
mutex_lock(&rt_constraints_mutex);
read_lock(&tasklist_lock);
ret = __rt_schedulable(NULL, 0, 0);
read_unlock(&tasklist_lock);
mutex_unlock(&rt_constraints_mutex);
return ret;
}
int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
/* Don't accept realtime tasks when there is no way for them to run */
if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
return 0;
return 1;
}
#else /* !CONFIG_RT_GROUP_SCHED */
static int sched_rt_global_constraints(void)
{
unsigned long flags;
int i;
raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
for_each_possible_cpu(i) {
struct rt_rq *rt_rq = &cpu_rq(i)->rt;
raw_spin_lock(&rt_rq->rt_runtime_lock);
rt_rq->rt_runtime = global_rt_runtime();
raw_spin_unlock(&rt_rq->rt_runtime_lock);
}
raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
return 0;
}
#endif /* CONFIG_RT_GROUP_SCHED */
static int sched_rt_global_validate(void)
{
if (sysctl_sched_rt_period <= 0)
return -EINVAL;
if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
((u64)sysctl_sched_rt_runtime *
NSEC_PER_USEC > max_rt_runtime)))
return -EINVAL;
return 0;
}
static void sched_rt_do_global(void)
{
unsigned long flags;
raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
def_rt_bandwidth.rt_runtime = global_rt_runtime();
def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
}
int sched_rt_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int old_period, old_runtime;
static DEFINE_MUTEX(mutex);
int ret;
mutex_lock(&mutex);
old_period = sysctl_sched_rt_period;
old_runtime = sysctl_sched_rt_runtime;
ret = proc_dointvec(table, write, buffer, lenp, ppos);
if (!ret && write) {
ret = sched_rt_global_validate();
if (ret)
goto undo;
ret = sched_dl_global_validate();
if (ret)
goto undo;
ret = sched_rt_global_constraints();
if (ret)
goto undo;
sched_rt_do_global();
sched_dl_do_global();
}
if (0) {
undo:
sysctl_sched_rt_period = old_period;
sysctl_sched_rt_runtime = old_runtime;
}
mutex_unlock(&mutex);
return ret;
}
int sched_rr_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int ret;
static DEFINE_MUTEX(mutex);
mutex_lock(&mutex);
ret = proc_dointvec(table, write, buffer, lenp, ppos);
/*
* Make sure that internally we keep jiffies.
* Also, writing zero resets the timeslice to default:
*/
if (!ret && write) {
sched_rr_timeslice =
sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
msecs_to_jiffies(sysctl_sched_rr_timeslice);
}
mutex_unlock(&mutex);
return ret;
}
#ifdef CONFIG_SCHED_DEBUG
void print_rt_stats(struct seq_file *m, int cpu)
{
rt_rq_iter_t iter;
struct rt_rq *rt_rq;
rcu_read_lock();
for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
print_rt_rq(m, cpu, rt_rq);
rcu_read_unlock();
}
#endif /* CONFIG_SCHED_DEBUG */