android_kernel_xiaomi_sm8350/net/neuron/channel_bus.c
Chris Lew 6493564fe3 net: Add Neuron Framework
Neuron is a device-sharing framework which is used by guests of the
haven hypervisor to serve or access shared I/O devices and other
inter-VM services.

There are three main layers that make up a neuron service.
channel - the physical layer transport that uses the hypervisor
          provided transports.

protocol - defines the syntax and semantics to virtualize a specific
           device across VMs. Block and Net are examples of protocols.

application - integrates the neuron service components into the rest of
              the system. There would be front and back end application
              drivers for the net protocol.

Change-Id: Ic7278fdaee1cd30147e91e1126643bce79c05e52
Signed-off-by: Chris Lew <clew@codeaurora.org>
2020-03-30 21:44:24 -07:00

217 lines
5.2 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2020 The Linux Foundation. All rights reserved. */
/* Neuron channel bus type driver
*
* This driver creates a channel bus type device and registers a channel driver.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/of_device.h>
#include <linux/version.h>
#include <linux/neuron.h>
static int channel_match(struct device *dev, struct device_driver *driver)
{
struct neuron_channel *channel = to_neuron_channel(dev);
struct neuron_channel_driver *channel_drv =
to_neuron_channel_driver(driver);
/* The channel's type must match the driver's. */
if (channel->type != channel_drv->type)
return 0;
/* The driver must be able to drive the channel in the required
* direction(s).
*/
if ((channel->direction & channel_drv->direction) !=
channel->direction)
return 0;
if (of_driver_match_device(dev, driver))
return 1;
return 0;
}
static int channel_probe(struct device *dev)
{
struct neuron_channel *channel_dev = to_neuron_channel(dev);
struct neuron_channel_driver *channel_drv =
to_neuron_channel_driver(dev->driver);
if (channel_drv->probe)
return channel_drv->probe(channel_dev);
else if (dev->driver->probe)
return dev->driver->probe(dev);
return 0;
}
static int channel_remove(struct device *dev)
{
struct neuron_channel *channel_dev = to_neuron_channel(dev);
struct neuron_channel_driver *channel_drv =
to_neuron_channel_driver(dev->driver);
if (channel_drv->remove)
channel_drv->remove(channel_dev);
else if (dev->driver->remove)
dev->driver->remove(dev);
return 0;
}
static struct bus_type channel_bus_type = {
.name = "neuron_channel",
.match = channel_match,
.probe = channel_probe,
.remove = channel_remove,
};
static void channel_dev_release(struct device *dev)
{
struct neuron_channel *channel_dev = to_neuron_channel(dev);
put_device(&channel_dev->protocol->dev);
kfree(channel_dev);
}
struct neuron_channel *neuron_channel_add(struct device_node *node,
struct device *parent)
{
struct neuron_channel *channel_dev;
const char *str;
int reg = 0;
int err;
channel_dev = kzalloc(sizeof(*channel_dev), GFP_KERNEL);
if (!channel_dev)
return ERR_PTR(-ENOMEM);
device_initialize(&channel_dev->dev);
channel_dev->dev.of_node = node;
channel_dev->dev.bus = &channel_bus_type;
channel_dev->dev.parent = parent;
channel_dev->dev.release = channel_dev_release;
err = of_property_read_u32(node, "reg", &reg);
if (err < 0) {
dev_err(parent, "channel %s has no reg property\n",
node->full_name);
goto fail_properties;
}
channel_dev->id = reg;
err = of_property_read_string(node, "direction", &str);
if (err < 0) {
dev_err(parent, "channel %d: channel direction is undefined\n",
reg);
goto fail_properties;
}
err = -EINVAL;
if (!strcmp(str, "send")) {
channel_dev->direction = NEURON_CHANNEL_SEND;
} else if (!strcmp(str, "receive")) {
channel_dev->direction = NEURON_CHANNEL_RECEIVE;
} else if (!strcmp(str, "both")) {
channel_dev->direction = NEURON_CHANNEL_BIDIRECTIONAL;
} else {
dev_err(parent, "channel %d: bad channel direction \"%s\"\n",
reg, str);
goto fail_properties;
}
err = of_property_read_string(node, "class", &str);
if (err < 0) {
dev_err(parent, "channel %d: channel type is undefined\n",
reg);
goto fail_properties;
}
err = -EINVAL;
if (!strcmp(str, "message-queue")) {
u64 max_size = 0;
u32 queue_length = 0;
channel_dev->type = NEURON_CHANNEL_MESSAGE_QUEUE;
/* If these reads fail, we let the driver decide */
of_property_read_u64(node, "max-size", &max_size);
channel_dev->max_size = (size_t)max_size;
of_property_read_u32(node, "queue-length", &queue_length);
channel_dev->queue_length = (unsigned int)queue_length;
} else if (!strcmp(str, "notification")) {
channel_dev->type = NEURON_CHANNEL_NOTIFICATION;
} else if (!strcmp(str, "shared-memory")) {
channel_dev->type = NEURON_CHANNEL_SHARED_MEMORY;
} else {
dev_err(parent, "channel %d: unknown channel type \"%s\"\n",
reg, str);
goto fail_properties;
}
dev_set_name(&channel_dev->dev, "%s:%s%d", dev_name(parent),
node->name, reg);
err = device_add(&channel_dev->dev);
if (err)
goto fail_device_add;
return channel_dev;
fail_device_add:
fail_properties:
put_device(&channel_dev->dev);
kfree(channel_dev);
return ERR_PTR(err);
}
EXPORT_SYMBOL(neuron_channel_add);
int neuron_register_channel_driver(struct neuron_channel_driver *drv)
{
int ret;
drv->driver.bus = &channel_bus_type;
ret = driver_register(&drv->driver);
if (ret)
return ret;
return 0;
}
EXPORT_SYMBOL(neuron_register_channel_driver);
void neuron_unregister_channel_driver(struct neuron_channel_driver *drv)
{
driver_unregister(&drv->driver);
}
EXPORT_SYMBOL(neuron_unregister_channel_driver);
static int __init channel_bus_init(void)
{
int ret;
ret = bus_register(&channel_bus_type);
if (ret < 0) {
pr_err("Unable to register bus\n");
return ret;
}
return 0;
}
static void channel_bus_exit(void)
{
bus_unregister(&channel_bus_type);
}
subsys_initcall(channel_bus_init);
module_exit(channel_bus_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Neuron channel bus module");