android_kernel_xiaomi_sm8350/drivers/regulator/qpnp-amoled-regulator.c
Jishnu Prakash 2749076bc9 regulator: qpnp-amoled: add support to disable pulse skipping
On some customer display panels, touch ghosting can happen due to
a voltage ripple from amoled. Add support to fix this issue, following
HW recommendation, by disabling smart pulse skipping in module
probe and disabling forced PSM when AMOLED is enabled.

Change-Id: Id5886d4cdaf2aa58bc53a874041bfae90374fafb
Signed-off-by: Jishnu Prakash <jprakash@codeaurora.org>
2020-11-26 19:15:33 +05:30

765 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
*/
#define pr_fmt(fmt) "AMOLED: %s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/machine.h>
/* Register definitions */
#define PERIPH_TYPE 0x04
#define IBB_PERIPH_TYPE 0x20
#define AB_PERIPH_TYPE 0x24
#define OLEDB_PERIPH_TYPE 0x2C
#define PERIPH_SUBTYPE 0x05
/* AB */
#define AB_LDO_PD_CTL(chip) (chip->ab_base + 0x78)
/* AB_LDO_PD_CTL */
#define PULLDN_EN_BIT BIT(7)
/* IBB */
#define IBB_STATUS_2(chip) (chip->ibb_base + 0x09)
#define SOFT_START_DONE_BIT BIT(6)
#define IBB_STATUS_5(chip) (chip->ibb_base + 0x0c)
#define SWIRE_STATUS_BIT BIT(0)
#define IBB_PD_CTL(chip) (chip->ibb_base + 0x47)
/* IBB_PD_CTL */
#define ENABLE_PD_BIT BIT(7)
/* IBB_PS_CTL */
#define IBB_PS_CTL(chip) (chip->ibb_base + 0x50)
#define EN_PS_BIT BIT(7)
#define PS_THRESHOLD_0P5 0x1
#define IBB_SMART_PS_CTL(chip) (chip->ibb_base + 0x65)
#define STARTUP_PS_BIT BIT(5)
#define STEADY_STATE_PS_BIT BIT(4)
#define IBB_DUAL_PHASE_CTL(chip) (chip->ibb_base + 0x70)
/* IBB_DUAL_PHASE_CTL */
#define IBB_DUAL_PHASE_CTL_MASK GENMASK(2, 0)
#define AUTO_DUAL_PHASE_BIT BIT(2)
#define FORCE_DUAL_PHASE_BIT BIT(1)
#define FORCE_SINGLE_PHASE_BIT BIT(0)
struct amoled_regulator {
struct regulator_desc rdesc;
struct regulator_dev *rdev;
struct device_node *node;
unsigned int mode;
bool enabled;
};
struct oledb_regulator {
struct amoled_regulator vreg;
/* DT params */
bool swire_control;
};
struct ab_regulator {
struct amoled_regulator vreg;
/* DT params */
bool swire_control;
bool pd_control;
};
struct ibb_regulator {
struct amoled_regulator vreg;
u8 subtype;
/* DT params */
bool swire_control;
bool pd_control;
bool single_phase;
bool force_ccm_mode;
};
struct qpnp_amoled {
struct device *dev;
struct regmap *regmap;
struct oledb_regulator oledb;
struct ab_regulator ab;
struct ibb_regulator ibb;
/* DT params */
u32 oledb_base;
u32 ab_base;
u32 ibb_base;
struct work_struct ibb_ccm_wa_work;
};
enum reg_type {
OLEDB,
AB,
IBB,
};
enum ibb_subtype {
PM8150A_IBB = 0x03,
PM8350B_IBB = 0x04,
};
static inline bool is_phase_ctrl_supported(struct ibb_regulator *ibb)
{
if (ibb->subtype == PM8350B_IBB)
return true;
return false;
}
static int qpnp_amoled_read(struct qpnp_amoled *chip,
u16 addr, u8 *value, u8 count)
{
int rc = 0;
rc = regmap_bulk_read(chip->regmap, addr, value, count);
if (rc < 0)
pr_err("Failed to read from addr=0x%02x rc=%d\n", addr, rc);
return rc;
}
static int qpnp_amoled_write(struct qpnp_amoled *chip,
u16 addr, u8 *value, u8 count)
{
int rc;
rc = regmap_bulk_write(chip->regmap, addr, value, count);
if (rc < 0)
pr_err("Failed to write to addr=0x%02x rc=%d\n", addr, rc);
return rc;
}
static int qpnp_amoled_masked_write(struct qpnp_amoled *chip,
u16 addr, u8 mask, u8 value)
{
int rc = 0;
rc = regmap_update_bits(chip->regmap, addr, mask, value);
if (rc < 0)
pr_err("Failed to write addr=0x%02x value=0x%02x rc=%d\n",
addr, value, rc);
return rc;
}
/* AB regulator */
static int qpnp_ab_regulator_is_enabled(struct regulator_dev *rdev)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
return chip->ab.vreg.enabled;
}
static int qpnp_ab_regulator_enable(struct regulator_dev *rdev)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
chip->ab.vreg.enabled = true;
return 0;
}
static int qpnp_ab_regulator_disable(struct regulator_dev *rdev)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
chip->ab.vreg.enabled = false;
return 0;
}
/* IBB regulator */
static int qpnp_ibb_regulator_is_enabled(struct regulator_dev *rdev)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
return chip->ibb.vreg.enabled;
}
static int qpnp_ibb_regulator_enable(struct regulator_dev *rdev)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
chip->ibb.vreg.enabled = true;
if (chip->ibb.force_ccm_mode) {
cancel_work_sync(&chip->ibb_ccm_wa_work);
pm_stay_awake(chip->dev);
schedule_work(&chip->ibb_ccm_wa_work);
}
return 0;
}
static int qpnp_ibb_regulator_disable(struct regulator_dev *rdev)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
chip->ibb.vreg.enabled = false;
if (chip->ibb.force_ccm_mode) {
cancel_work_sync(&chip->ibb_ccm_wa_work);
pm_stay_awake(chip->dev);
schedule_work(&chip->ibb_ccm_wa_work);
}
return 0;
}
/* common to AB and IBB */
static int qpnp_ab_ibb_regulator_set_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV, unsigned int *selector)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
/* HW controlled */
if (chip->ab.swire_control || chip->ibb.swire_control)
return 0;
return 0;
}
static int qpnp_ab_ibb_regulator_get_voltage(struct regulator_dev *rdev)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
/* HW controlled */
if (chip->ab.swire_control || chip->ibb.swire_control)
return 0;
return 0;
}
static int qpnp_ab_pd_control(struct qpnp_amoled *chip, bool en)
{
u8 val = en ? PULLDN_EN_BIT : 0;
return qpnp_amoled_write(chip, AB_LDO_PD_CTL(chip), &val, 1);
}
static int qpnp_ibb_pd_control(struct qpnp_amoled *chip, bool en)
{
u8 val = en ? ENABLE_PD_BIT : 0;
return qpnp_amoled_masked_write(chip, IBB_PD_CTL(chip), ENABLE_PD_BIT,
val);
}
static int qpnp_ab_ibb_regulator_set_mode(struct regulator_dev *rdev,
unsigned int mode)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
int rc = 0;
if (mode != REGULATOR_MODE_NORMAL && mode != REGULATOR_MODE_STANDBY &&
mode != REGULATOR_MODE_IDLE) {
pr_err("Unsupported mode %u\n", mode);
return -EINVAL;
}
if (mode == chip->ab.vreg.mode || mode == chip->ibb.vreg.mode)
return 0;
pr_debug("mode: %d\n", mode);
if (mode == REGULATOR_MODE_NORMAL || mode == REGULATOR_MODE_STANDBY) {
if (chip->ibb.pd_control) {
rc = qpnp_ibb_pd_control(chip, true);
if (rc < 0)
goto error;
}
if (chip->ab.pd_control) {
rc = qpnp_ab_pd_control(chip, true);
if (rc < 0)
goto error;
}
} else if (mode == REGULATOR_MODE_IDLE) {
if (chip->ibb.pd_control) {
rc = qpnp_ibb_pd_control(chip, false);
if (rc < 0)
goto error;
}
if (chip->ab.pd_control) {
rc = qpnp_ab_pd_control(chip, false);
if (rc < 0)
goto error;
}
}
chip->ab.vreg.mode = chip->ibb.vreg.mode = mode;
error:
if (rc < 0)
pr_err("Failed to configure for mode %d\n", mode);
return rc;
}
static unsigned int qpnp_ab_ibb_regulator_get_mode(struct regulator_dev *rdev)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
return chip->ibb.vreg.mode;
}
#define SINGLE_PHASE_ILIMIT_UA 30000
static int qpnp_ibb_regulator_set_load(struct regulator_dev *rdev,
int load_uA)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
u8 ibb_phase;
if (!is_phase_ctrl_supported(&chip->ibb))
return 0;
/* For IBB single phase, it's configured only once. */
if (chip->ibb.single_phase)
return 0;
if (load_uA < 0)
return -EINVAL;
else if (load_uA <= SINGLE_PHASE_ILIMIT_UA)
ibb_phase = AUTO_DUAL_PHASE_BIT;
else
ibb_phase = FORCE_DUAL_PHASE_BIT;
return qpnp_amoled_masked_write(chip, IBB_DUAL_PHASE_CTL(chip),
IBB_DUAL_PHASE_CTL_MASK, ibb_phase);
}
static struct regulator_ops qpnp_amoled_ab_ops = {
.enable = qpnp_ab_regulator_enable,
.disable = qpnp_ab_regulator_disable,
.is_enabled = qpnp_ab_regulator_is_enabled,
.set_voltage = qpnp_ab_ibb_regulator_set_voltage,
.get_voltage = qpnp_ab_ibb_regulator_get_voltage,
.set_mode = qpnp_ab_ibb_regulator_set_mode,
.get_mode = qpnp_ab_ibb_regulator_get_mode,
};
static struct regulator_ops qpnp_amoled_ibb_ops = {
.enable = qpnp_ibb_regulator_enable,
.disable = qpnp_ibb_regulator_disable,
.is_enabled = qpnp_ibb_regulator_is_enabled,
.set_voltage = qpnp_ab_ibb_regulator_set_voltage,
.get_voltage = qpnp_ab_ibb_regulator_get_voltage,
.set_mode = qpnp_ab_ibb_regulator_set_mode,
.get_mode = qpnp_ab_ibb_regulator_get_mode,
.set_load = qpnp_ibb_regulator_set_load,
};
/* OLEDB regulator */
static int qpnp_oledb_regulator_is_enabled(struct regulator_dev *rdev)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
return chip->oledb.vreg.enabled;
}
static int qpnp_oledb_regulator_enable(struct regulator_dev *rdev)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
chip->oledb.vreg.enabled = true;
return 0;
}
static int qpnp_oledb_regulator_disable(struct regulator_dev *rdev)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
chip->oledb.vreg.enabled = false;
return 0;
}
static int qpnp_oledb_regulator_set_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV, unsigned int *selector)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
/* HW controlled */
if (chip->oledb.swire_control)
return 0;
return 0;
}
static int qpnp_oledb_regulator_get_voltage(struct regulator_dev *rdev)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
/* HW controlled */
if (chip->oledb.swire_control)
return 0;
return 0;
}
static int qpnp_oledb_regulator_set_mode(struct regulator_dev *rdev,
unsigned int mode)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
chip->oledb.vreg.mode = mode;
return 0;
}
static unsigned int qpnp_oledb_regulator_get_mode(struct regulator_dev *rdev)
{
struct qpnp_amoled *chip = rdev_get_drvdata(rdev);
return chip->oledb.vreg.mode;
}
static struct regulator_ops qpnp_amoled_oledb_ops = {
.enable = qpnp_oledb_regulator_enable,
.disable = qpnp_oledb_regulator_disable,
.is_enabled = qpnp_oledb_regulator_is_enabled,
.set_voltage = qpnp_oledb_regulator_set_voltage,
.get_voltage = qpnp_oledb_regulator_get_voltage,
.set_mode = qpnp_oledb_regulator_set_mode,
.get_mode = qpnp_oledb_regulator_get_mode,
};
static int qpnp_amoled_regulator_register(struct qpnp_amoled *chip,
enum reg_type type)
{
int rc = 0;
struct regulator_init_data *init_data;
struct regulator_config cfg = {};
struct regulator_desc *rdesc;
struct regulator_dev *rdev;
struct device_node *node;
if (type == OLEDB) {
node = chip->oledb.vreg.node;
rdesc = &chip->oledb.vreg.rdesc;
rdesc->ops = &qpnp_amoled_oledb_ops;
rdev = chip->oledb.vreg.rdev;
} else if (type == AB) {
node = chip->ab.vreg.node;
rdesc = &chip->ab.vreg.rdesc;
rdesc->ops = &qpnp_amoled_ab_ops;
rdev = chip->ab.vreg.rdev;
} else if (type == IBB) {
node = chip->ibb.vreg.node;
rdesc = &chip->ibb.vreg.rdesc;
rdesc->ops = &qpnp_amoled_ibb_ops;
rdev = chip->ibb.vreg.rdev;
} else {
pr_err("Invalid regulator type %d\n", type);
return -EINVAL;
}
init_data = of_get_regulator_init_data(chip->dev, node, rdesc);
if (!init_data) {
pr_err("Failed to get regulator_init_data for type %d\n", type);
return -ENOMEM;
}
if (init_data->constraints.name) {
rdesc->owner = THIS_MODULE;
rdesc->type = REGULATOR_VOLTAGE;
rdesc->name = init_data->constraints.name;
cfg.dev = chip->dev;
cfg.init_data = init_data;
cfg.driver_data = chip;
cfg.of_node = node;
if (of_get_property(chip->dev->of_node, "parent-supply",
NULL))
init_data->supply_regulator = "parent";
init_data->constraints.valid_ops_mask
|= REGULATOR_CHANGE_VOLTAGE
| REGULATOR_CHANGE_STATUS
| REGULATOR_CHANGE_MODE;
init_data->constraints.valid_modes_mask
|= REGULATOR_MODE_NORMAL | REGULATOR_MODE_IDLE
| REGULATOR_MODE_STANDBY;
rdev = devm_regulator_register(chip->dev, rdesc, &cfg);
if (IS_ERR(rdev)) {
rc = PTR_ERR(rdev);
rdev = NULL;
pr_err("Failed to register amoled regulator for type %d rc = %d\n",
type, rc);
return rc;
}
if (type == OLEDB)
chip->oledb.vreg.mode = REGULATOR_MODE_NORMAL;
else if (type == IBB)
chip->ibb.vreg.mode = REGULATOR_MODE_NORMAL;
else
chip->ab.vreg.mode = REGULATOR_MODE_NORMAL;
} else {
pr_err("regulator name missing for type %d\n", type);
return -EINVAL;
}
return rc;
}
#define IBB_RETRY_COUNT 25
#define IBB_POLL_DELAY_MS 20
static void qpnp_amoled_toggle_ps_ctl(struct work_struct *work)
{
struct qpnp_amoled *chip = container_of(work,
struct qpnp_amoled, ibb_ccm_wa_work);
int i, rc;
u8 val;
if (chip->ibb.vreg.enabled) {
for (i = 0; i < IBB_RETRY_COUNT; i++) {
rc = qpnp_amoled_read(chip, IBB_STATUS_2(chip), &val, 1);
if (rc < 0)
goto out;
if (val & SOFT_START_DONE_BIT) {
val = PS_THRESHOLD_0P5;
rc = qpnp_amoled_write(chip, IBB_PS_CTL(chip), &val, 1);
if (rc < 0)
pr_err("Failed to disable forced-PSM, rc = %d\n", rc);
goto out;
}
msleep(IBB_POLL_DELAY_MS);
}
pr_err("Timeout - failed to disable forced-PSM, IBB_STATUS_2:0x%x\n",
val);
} else {
for (i = 0; i < IBB_RETRY_COUNT; i++) {
rc = qpnp_amoled_read(chip, IBB_STATUS_5(chip), &val, 1);
if (rc < 0)
goto out;
if (!(val & SWIRE_STATUS_BIT)) {
val = EN_PS_BIT | PS_THRESHOLD_0P5;
rc = qpnp_amoled_write(chip, IBB_PS_CTL(chip), &val, 1);
if (rc < 0)
pr_err("Failed to enable forced-PSM, rc = %d\n", rc);
goto out;
}
msleep(IBB_POLL_DELAY_MS);
}
pr_err("Timeout - failed to enable forced-PSM, IBB_STATUS_5:0x%x\n",
val);
}
out:
pm_relax(chip->dev);
}
static int qpnp_amoled_hw_init(struct qpnp_amoled *chip)
{
int rc;
u8 val;
rc = qpnp_amoled_regulator_register(chip, OLEDB);
if (rc < 0) {
dev_err(chip->dev, "Failed to register OLEDB regulator rc=%d\n",
rc);
return rc;
}
rc = qpnp_amoled_regulator_register(chip, AB);
if (rc < 0) {
dev_err(chip->dev, "Failed to register AB regulator rc=%d\n",
rc);
return rc;
}
rc = qpnp_amoled_regulator_register(chip, IBB);
if (rc < 0) {
dev_err(chip->dev, "Failed to register IBB regulator rc=%d\n",
rc);
return rc;
}
if (is_phase_ctrl_supported(&chip->ibb) && chip->ibb.single_phase) {
val = FORCE_SINGLE_PHASE_BIT;
rc = qpnp_amoled_masked_write(chip, IBB_DUAL_PHASE_CTL(chip),
IBB_DUAL_PHASE_CTL_MASK, val);
if (rc < 0)
return rc;
}
if (chip->ibb.force_ccm_mode) {
val = STARTUP_PS_BIT | STEADY_STATE_PS_BIT;
rc = qpnp_amoled_write(chip, IBB_SMART_PS_CTL(chip), &val, 1);
if (rc < 0)
return rc;
INIT_WORK(&chip->ibb_ccm_wa_work, qpnp_amoled_toggle_ps_ctl);
}
return 0;
}
static int qpnp_amoled_parse_dt(struct qpnp_amoled *chip)
{
struct device_node *temp, *node = chip->dev->of_node;
const __be32 *prop_addr;
int rc = 0;
u32 base;
u8 val[2];
for_each_available_child_of_node(node, temp) {
prop_addr = of_get_address(temp, 0, NULL, NULL);
if (!prop_addr) {
pr_err("Couldn't get reg address\n");
return -EINVAL;
}
base = be32_to_cpu(*prop_addr);
rc = qpnp_amoled_read(chip, base + PERIPH_TYPE, val, 2);
if (rc < 0) {
pr_err("Couldn't read PERIPH_TYPE for base %x\n", base);
return rc;
}
switch (val[0]) {
case OLEDB_PERIPH_TYPE:
chip->oledb_base = base;
chip->oledb.vreg.node = temp;
chip->oledb.swire_control = of_property_read_bool(temp,
"qcom,swire-control");
break;
case AB_PERIPH_TYPE:
chip->ab_base = base;
chip->ab.vreg.node = temp;
chip->ab.swire_control = of_property_read_bool(temp,
"qcom,swire-control");
chip->ab.pd_control = of_property_read_bool(temp,
"qcom,aod-pd-control");
break;
case IBB_PERIPH_TYPE:
chip->ibb_base = base;
chip->ibb.subtype = val[1];
chip->ibb.vreg.node = temp;
chip->ibb.swire_control = of_property_read_bool(temp,
"qcom,swire-control");
chip->ibb.pd_control = of_property_read_bool(temp,
"qcom,aod-pd-control");
chip->ibb.single_phase = of_property_read_bool(temp,
"qcom,ibb-single-phase");
chip->ibb.force_ccm_mode = of_property_read_bool(temp,
"qcom,ibb-enable-force-ccm-wa");
break;
default:
pr_err("Unknown peripheral type 0x%x\n", val[0]);
return -EINVAL;
}
}
return 0;
}
static int qpnp_amoled_regulator_probe(struct platform_device *pdev)
{
int rc;
struct device_node *node;
struct qpnp_amoled *chip;
node = pdev->dev.of_node;
if (!node) {
pr_err("No nodes defined\n");
return -ENODEV;
}
chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
chip->dev = &pdev->dev;
chip->regmap = dev_get_regmap(pdev->dev.parent, NULL);
if (!chip->regmap) {
dev_err(&pdev->dev, "Failed to get the regmap handle\n");
rc = -EINVAL;
goto error;
}
dev_set_drvdata(&pdev->dev, chip);
rc = qpnp_amoled_parse_dt(chip);
if (rc < 0) {
dev_err(chip->dev, "Failed to parse DT params rc=%d\n", rc);
goto error;
}
rc = qpnp_amoled_hw_init(chip);
if (rc < 0)
dev_err(chip->dev, "Failed to initialize HW rc=%d\n", rc);
device_init_wakeup(chip->dev, true);
error:
return rc;
}
static int qpnp_amoled_regulator_remove(struct platform_device *pdev)
{
struct qpnp_amoled *chip = dev_get_drvdata(&pdev->dev);
if (chip->ibb.force_ccm_mode)
cancel_work_sync(&chip->ibb_ccm_wa_work);
device_init_wakeup(chip->dev, false);
return 0;
}
static const struct of_device_id amoled_match_table[] = {
{ .compatible = "qcom,qpnp-amoled-regulator", },
{ },
};
static struct platform_driver qpnp_amoled_regulator_driver = {
.driver = {
.name = "qpnp-amoled-regulator",
.of_match_table = amoled_match_table,
},
.probe = qpnp_amoled_regulator_probe,
.remove = qpnp_amoled_regulator_remove,
};
static int __init qpnp_amoled_regulator_init(void)
{
return platform_driver_register(&qpnp_amoled_regulator_driver);
}
arch_initcall(qpnp_amoled_regulator_init);
static void __exit qpnp_amoled_regulator_exit(void)
{
platform_driver_unregister(&qpnp_amoled_regulator_driver);
}
module_exit(qpnp_amoled_regulator_exit);
MODULE_DESCRIPTION("QPNP AMOLED regulator driver");
MODULE_LICENSE("GPL v2");